Уравнение 1 степени с 1 неизвестным пример

Решение уравнений первой степени

Уравнение 1 степени с 1 неизвестным пример

Решение уравнений первой степени

Определение: равенство, содержащее неизвестное, называется уравнением.

Решить уравнение — это значит найти все его корни или доказать, что их нет.

1.Раскрыть скобки в левой и правой частях уравнения.

2.Привести подобные слагаемые в каждой части уравнения. Если в левой и правой частях уравнения содержатся равные слагаемые, то их можно вычеркнуть.

3.Неизвестные слагаемые перенести в левую часть уравнения, а

известные слагаемые – в правую, соблюдая правило переноса

слагаемых из одной части в другую.

4.Упростиь каждую часть уравнения.

5.Обе части уравнения разделить на коэффициент при неизвестном,

если он не равен нулю. Если коэффициент равен нулю, то провести

рассуждения о возможном количестве корней.

Рассмотрим применение алгоритма на примерах:

Уравнение 1 степени с 1 неизвестным пример

y — любое число, т. к.при умножении любого числа на ноль

произведение равно нулю.

Ответ: любое число.

Уравнение 1 степени с 1 неизвестным пример

корней нет, т. к. произведение любого числа и 0 равно 0.

Равенство Уравнение 1 степени с 1 неизвестным пример Уравнение 1 степени с 1 неизвестным примерне может быть верным ни при каком

Ответ: корней нет.

Если уравнение первой степени содержит дроби, знаменатели которых натуральные числа, то обе части уравнения нужно умножить на наименьший общий знаменатель этих дробей, а затем применить предложенный алгоритм.

Уравнение 1 степени с 1 неизвестным примерУравнение 1 степени с 1 неизвестным примерУравнение 1 степени с 1 неизвестным пример=3 (Уравнение 1 степени с 1 неизвестным пример

Уравнение 1 степени с 1 неизвестным пример

Х =Уравнение 1 степени с 1 неизвестным пример

Х =Уравнение 1 степени с 1 неизвестным пример

Ответ: Уравнение 1 степени с 1 неизвестным пример

№2. Уравнение 1 степени с 1 неизвестным пример(Уравнение 1 степени с 1 неизвестным пример

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Уравнения первой степени: формулы, как их решать, пример, упражнения

Уравнения первой степени: формулы, как их решать, пример, упражнения — Наука

Видео:Неравенства первой степени с одним неизвестным.Скачать

Неравенства первой степени с одним неизвестным.

Содержание:

В первая степень или линейные уравнения с неизвестным — это те, которые могут быть выражены как сумма двух членов следующим образом:

куда а и б, с участием к ≠ 0, являются действительными числами R или также комплексными C. Чтобы решить эту задачу, члены транспонируются, что означает изменение членов с одной стороны равенства на другую.

Чтобы решить неизвестное, транспонируется член + b, который должен перейти в правую часть равенства с измененным знаком.

Затем значение x очищается следующим образом:

В качестве примера мы собираемся решить следующее уравнение:

Переносим член -5 в правую часть с измененным знаком:

Это эквивалентно добавлению 5 к обеим сторонам исходного уравнения:

6x — 5 + 5 = 4 + 5 → 6x = 9

А теперь решаем неизвестный «х»:

Это эквивалентно делению обеих частей равенства на 6. Таким образом, мы можем использовать следующее, чтобы получить решение:

-Вы можете прибавить или вычесть одно и то же количество к обеим сторонам равенства в уравнении, не изменяя его.

-Вы также можете умножить (или разделить) на одинаковую величину все члены как слева, так и справа от уравнения.

-И если оба члена уравнения возведены в одну и ту же степень, равенство также не изменяется.

Видео:Алгебра.7 класс (Урок№42 - Уравнения первой степени с одним неизвестным.)Скачать

Алгебра.7 класс (Урок№42 - Уравнения первой степени с одним неизвестным.)

Как решать уравнения первой степени

Решение уравнения первой степени также называется его корнем. Именно значение x преобразует исходное выражение в равенство. Например в:

Если мы подставим в это уравнение x = 5, мы получим:

Поскольку линейные уравнения первой степени бывают разных форм, которые иногда не очевидны, существует ряд общих правил, которые включают в себя несколько алгебраических манипуляций, чтобы найти значение неизвестного:

— Во-первых, если есть указанные операции, их необходимо провести.

— Группирующие символы, такие как круглые скобки, скобки и фигурные скобки, если они существуют, должны быть удалены с сохранением соответствующих знаков.

— Термины переносятся так, что все те, которые содержат неизвестное, помещаются с одной стороны равенства, а те, которые не содержат его, с другой.

-Затем все подобные термины сокращаются до формы топор = -b.

И последний шаг — прояснить неизвестное.

Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

Графическая интерпретация

Уравнение первой степени, поставленное в начале, может быть получено из уравнения прямой y = mx + c, в результате чего y = 0. Полученное значение x соответствует пересечению прямой с горизонтальной осью.

На следующем рисунке есть три линии. Начиная с зеленой линии, уравнение которой:

Делая y = 0 в уравнении прямой, получается уравнение первой степени:

Чье решение — x = 6/2 = 3. Теперь, когда мы детализируем график, легко понять, что на самом деле линия пересекает горизонтальную ось в точке x = 3.

Синяя линия пересекает ось x в точке x = 5, которая является решением уравнения –x + 5 = 0. Наконец, линия с уравнением y = 0,5x + 2 пересекает ось x в точке x = — 4, что легко увидеть из уравнения первой степени:

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Примеры простых линейных уравнений

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Целочисленные уравнения

Это те, в терминах которых нет знаменателей, например:

Видео:Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Дробные уравнения

Эти уравнения содержат по крайней мере один знаменатель, отличный от 1. Чтобы решить их, рекомендуется умножить все члены на наименьшее общее кратное (НОК) знаменателей, чтобы исключить их.

Следующее уравнение является дробным типом:

Поскольку эти числа малы, нетрудно увидеть, что m.c.m (6, 8,12) = 24. Этот результат легко получить, выразив числа как произведение простых чисел или их степеней, давайте посмотрим:

Наименьшее общее кратное определяется путем умножения общего и необычного множителей 6, 8 и 12 на их наибольшую экспоненту, затем:

lcm (6,8,12) = 2 3 ⋅3 = 8 × 3 = 24

Поскольку у нас есть наименьшее общее кратное, его нужно умножить на каждый из членов уравнения:

4 (x + 5) -3 (2x + 3) = 2 (1-5x)

Мы пользуемся распределительным свойством:

4x + 20 — 6x -9 = 2 — 10x

Все члены, содержащие неизвестный «x», сгруппированы в левой части равенства, а независимые или числовые члены остаются в правой части:

4x — 6x + 10 x = 2 +9 — 20

Видео:7й класс; Математика; "Уравнения 1 степени с одним неизвестным"Скачать

7й класс; Математика; "Уравнения 1 степени с одним неизвестным"

Буквальные уравнения

Это линейные уравнения с одним неизвестным, которые, однако, сопровождаются буквальными коэффициентами (буквами). Эти буквы обрабатываются так же, как и числа. Пример буквального уравнения первой степени:

Это уравнение решается так же, как если бы независимые члены и коэффициенты были числовыми:

-3ax — 5x = — b — 2a

Факторизация неизвестного «x»:

х (-3a — 5) = — b — 2a

х = (- b — 2a) / (-3a — 5) → x = (2a + b) / (3a + 5)

Видео:Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)Скачать

Алгебра 7 класс (Урок№45 - Уравнения первой степени с двумя неизвестными.)

Системы уравнений первой степени

Системы уравнений состоят из системы уравнений с двумя или более неизвестными. Решение системы состоит из значений, которые одновременно удовлетворяют уравнениям, и для его однозначного определения должно быть уравнение для каждой неизвестной.

Общий вид системы м линейные уравнения с п неизвестные это:

Если у системы есть решение, оно называется совместимый определен, когда существует бесконечный набор значений, которые удовлетворяют, это неопределенный совместимый, и, наконец, если у нее нет решения, то она несовместимый.

При решении систем линейных уравнений используются несколько методов: редукция, подстановка, выравнивание, графические методы, метод исключения Гаусса-Жордана и использование определителей являются одними из наиболее часто используемых. Но есть и другие алгоритмы решения, более удобные для систем со многими уравнениями и неизвестными.

Пример системы линейных уравнений с двумя неизвестными:

8x — 5 = 7лет — 9
6х = 3у + 6

Решение этой системы представлено далее в разделе решенных упражнений.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Линейные уравнения с абсолютным значением

Абсолютное значение действительного числа — это расстояние между его положением на числовой прямой и нулем на числовой прямой. Поскольку это расстояние, его значение всегда положительно.

Абсолютное значение числа обозначается полосами по модулю: │x│. Абсолютное значение положительного или отрицательного числа всегда положительно, например:

В уравнении абсолютного значения неизвестное находится между стержнями модуля. Рассмотрим следующее простое уравнение:

Есть две возможности, первая — это положительное число x, и в этом случае мы имеем:

Другая возможность состоит в том, что x — отрицательное число, в этом случае:

Это решения этого уравнения. Теперь посмотрим на другой пример:

Сумма внутри столбцов может быть положительной, поэтому:

Или это может быть отрицательно. В таком случае:

-x — 6 = 11 ⇒ -x = 11 + 6 = 17

А ценность неизвестного:

Таким образом, это уравнение абсолютного значения имеет два решения: x1 = 5 и x2 = -17. Мы можем проверить, что оба решения приводят к равенству в исходном уравнении:

Видео:Простые уравнения. Как решать простые уравнения?Скачать

Простые уравнения. Как решать простые уравнения?

Простые решаемые упражнения

Видео:Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестным

— Упражнение 1

Решите следующую систему линейных уравнений с двумя неизвестными:

8x — 5 = 7y -9
6х = 3у + 6

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Решение

Как предлагается, эта система идеальна для использования метода подстановки, поскольку во втором уравнении неизвестная Икс практически готов к оформлению:

И его можно сразу подставить в первое уравнение, которое затем становится уравнением первой степени с неизвестным «y»:

8 [(3y + 6) / 6] — 5 = 7y — 9

Знаменатель можно опустить, умножив каждый член на 6:

6. 8⋅ [(3y + 6) / 6] — 6.5 = 6 .7y– 6. 9

8⋅ (3лет + 6) — 30 = 42лет — 54

Применяя распределительное свойство в первом члене справа от равенства:

24 года + 48-30 = 42 года — 54 ⇒ 24 года + 18 = 42 года — 54

Уравнение можно упростить, так как все коэффициенты кратны 6:

4лет + 3 = 7лет — 9

С этим результатом переходим к очистке от x:

х = (3у +6) / 6 → х = (12 + 6) / 6 = 3

Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

— Упражнение 2.

Решите следующее уравнение:

Видео:Линейное уравнение с одним неизвестным.Скачать

Линейное уравнение с одним неизвестным.

Решение

Продукты представлены в этом уравнении, и, следуя инструкциям, данным в начале, они должны быть разработаны в первую очередь:

3х — 10х +14 = 5х + 36х + 12

Тогда все члены, содержащие неизвестные, переносятся в левую часть равенства, а в правую часть будут стоять независимые члены:

3x — 10x — 5x — 36x = 12 — 14

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

— Упражнение 3.

Сложение трех внутренних углов треугольника дает 180 °. Наивысшее превосходит второстепенное на 35 °, а последнее, в свою очередь, превышает разницу между наибольшим и средним на 20 °. Какие углы?

Видео:Математика| СтепениСкачать

Математика| Степени

Решение

Мы будем называть «x» большим углом, «y» — средним, а «z» — наименьшим. Когда в утверждении говорится, что их сумма равна 180º, можно записать:

Тогда мы знаем, что большее превышает меньшее на 35º, мы можем записать это так:

Наконец, наименьшее значение превышает разницу между наибольшим и средним на 20 °:

У нас есть система из 3-х уравнений и 3-х неизвестных:

Решая для z из первого уравнения, мы имеем:

180 — х — у = х — у + 20

Передача неизвестных в левую часть, как всегда:

-x — y — x + y = 20 — 180

Буква «y» отменяется и остается:

Из второго уравнения находим значение z:

z = x — 35 = 80 — 35 = 45º

И значение y находится от первого или третьего:

y = 180 — x — z = 180 — 80 — 45 = 55º

Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Ссылки

  1. Балдор. 1977. Элементарная алгебра. Венесуэльские культурные издания.
  2. Монтерейский институт. Уравнения, неравенства и абсолютное значение. Получено с: montereyinstitute.org.
  3. Интернет-учитель. Классификация линейных уравнений или уравнений первой степени. Получено с: profesorenlinea.cl.
  4. Хоффман, Дж. Выбор тем по математике. Том 2.
  5. Хименес, Р. 2008. Алгебра. Прентис Холл.
  6. Зилл, Д. 1984. Алгебра и тригонометрия. Макгроу Хилл.

Как мотивировать команду на работе: 8 советов

Видео:Уравнения первой степени с одним неизвестным. Линейные уравнения с одним неизвестнымСкачать

Уравнения первой степени с одним неизвестным. Линейные уравнения с одним неизвестным

Алгебра. 7 класс

Конспект урока

Уравнения первой степени с одним неизвестным. Линейные уравнения с одним неизвестным

Перечень рассматриваемых вопросов:

Решение линейных уравнений.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.

Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.

Свободный член – член уравнения, не содержащий неизвестного.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Давайте посмотрим на 2 уравнения: 10x = 36 и 3x 2 = 2

Можем ли мы сказать, что оба уравнения являются линейными уравнениями первой степени?

Конечно, нет. Хотя, по определению линейных уравнений, оба уравнения подходят, у второго уравнения переменная входит в него во второй степени, а это противоречит отличительной особенности линейного уравнения первой степени.

Определение: Уравнение вида ax = b, где – x переменная, a, b – некоторые числа, называется линейным уравнением с одной переменной.

А что означает решить уравнение?

Решить уравнение – означает найти все его корни или доказать, что корней нет.

Линейными уравнениями называются не только уравнения вида ax + b = 0, но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду.

Давайте подумаем, является ли уравнение 2(5x + 4) = 2x – 16 – линейным уравнением первой степени? Нет, так как оно не записано в виде ax = b. Можно ли привести его к такому виду?

Попробуем это сделать. Переменная x входит в это уравнение первой степени. Все такие уравнения можно преобразовать в вид ax + b = 0 с помощью тождественных преобразований. Для этого раскроем скобки в левой части уравнения, воспользовавшись распределительным законом умножения.

Вычтем из правой и левой частей уравнения 2x и 8.

Затем приведём подобные слагаемые в левой и правой частях уравнения и получим уравнение стандартного вида.

А как же проверить, является ли число корнем уравнения, не решая его?

В таком случае, нам достаточно подставить значение переменной в уравнение и проверить, выполняется равенство или нет.

Чтобы узнать, является ли число корнем уравнения, нужно:

— Подставить вместо переменной числовое значение.

— Посмотреть, получилось верное равенство или нет.

Если верное, то число является корнем уравнения, в противном случае – нет.

Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнения, в которых есть только неизвестные в первой степени и числа.

Приведём это уравнение к стандартному виду. В левой части раскроем скобки:

Линейное уравнение имеет вид:

Задание 1. Какое значение переменной удовлетворяет уравнению 4x – 2 = 14?

Для того чтобы определить, какое из значений удовлетворяет уравнению, нужно подставить вместо переменной соответствующее значение и проверить, получается ли истинное равенство. Соответственно, при истинности, значение переменной будет удовлетворять условию.

При x = 0 получаем: 4 · 0 – 2 = 14

–2 = 14 – ложь. Следовательно, x = 0 не удовлетворяет решению уравнения.

При x = 2,5 получаем: 4 · 2,5 – 2 = 14

3 = 14 – ложь. Следовательно, x = 2,5 не удовлетворяет решению уравнения.

При x = 4 получаем: 4 · 4 – 2 = 14

14 = 14 – истина. Следовательно, x = 4 удовлетворяет решению уравнения.

При x = 0,1 получаем: 4 · 0,1 – 2 = 14

–1,6 = 14 – ложь. Следовательно, x = 0,1 не удовлетворяет решению уравнения.

Задание 2. Уравнение 2(2x – 3) = 2x + 16 надо привести к стандартному виду.

Для того чтобы определить, какое из значений является верным приведением уравнения к стандартному виду, нужно просто привести уравнение к стандартному виду.

2(2x – 3) = 2x + 16 – раскроем скобки, умножив число на разность;

4x – 6 = 2x + 16 – преобразуем уравнение, перенеся слагаемые, содержащие переменные в левую часть уравнения, а числа в правую, меняя при этом знак на противоположный;

4x – 2x = 16 – 6 – упростим выражение, приведя подобные слагаемые;

2x = 22 – полученное уравнение приведено к стандартному виду ax = b, где a = 1, b = 22

📸 Видео

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?
Поделиться или сохранить к себе: