Универсальная замена в тригонометрических уравнениях

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Универсальная тригонометрическая подстановка, вывод формул, примеры.

В этой статье мы поговорим об универсальной тригонометрической подстановке. Она подразумевает выражение синуса, косинуса, тангенса и котангенса какого-либо угла через тангенс половинного угла. Более того, такая замена проводится рационально, то есть, без корней.

Сначала мы запишем формулы, выражающие синус, косинус, тангенс и котангенс через тангенс половинного угла. Дальше покажем вывод этих формул. А в заключение рассмотрим несколько примеров использования универсальной тригонометрической подстановки.

Навигация по странице.

Видео:✓ Универсальная тригонометрическая подстановка | Осторожно, спойлер! | Борис ТрушинСкачать

✓ Универсальная тригонометрическая подстановка | Осторожно, спойлер! | Борис Трушин

Синус, косинус, тангенс и котангенс через тангенс половинного угла

Для начала запишем четыре формулы, выражающие синус, косинус, тангенс и котангенс угла Универсальная замена в тригонометрических уравненияхчерез тангенс половинного угла Универсальная замена в тригонометрических уравнениях.

Универсальная замена в тригонометрических уравнениях

Указанные формулы справедливы для всех углов Универсальная замена в тригонометрических уравнениях, при которых определены входящие в них тангенсы и котангенсы:

  • Например, формулы для синуса и косинуса Универсальная замена в тригонометрических уравненияхи Универсальная замена в тригонометрических уравненияхимеют место для Универсальная замена в тригонометрических уравнениях, где z – любое целое число, так как при Универсальная замена в тригонометрических уравненияхтангенс половинного угла не определен.
  • Формула Универсальная замена в тригонометрических уравненияхсправедлива для Универсальная замена в тригонометрических уравненияхи Универсальная замена в тригонометрических уравнениях, так как при Универсальная замена в тригонометрических уравненияхне определен тангенс угла Универсальная замена в тригонометрических уравнениях, и более того обращается в нуль знаменатель дроби, а при Универсальная замена в тригонометрических уравненияхне определен тангенс половинного угла.
  • Формула Универсальная замена в тригонометрических уравнениях, выражающая котангенс через тангенс половинного угла, справедлива для Универсальная замена в тригонометрических уравнениях, так как при Универсальная замена в тригонометрических уравненияхне определен котангенс, при Универсальная замена в тригонометрических уравненияхне определен тангенс половинного угла, а при Универсальная замена в тригонометрических уравненияхзнаменатель дроби обращается в нуль.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Вывод формул

Разберем вывод формул, выражающих синус, косинус, тангенс и котангенс угла через тангенс половинного угла. Начнем с формул для синуса и косинуса.

Представим синус и косинус по формулам двойного угла как Универсальная замена в тригонометрических уравненияхи Универсальная замена в тригонометрических уравненияхсоответственно. Теперь выражения Универсальная замена в тригонометрических уравненияхи Универсальная замена в тригонометрических уравненияхзапишем в виде дробей со знаменателем 1 как Универсальная замена в тригонометрических уравненияхи Универсальная замена в тригонометрических уравнениях. Дальше на базе основного тригонометрического тождества заменяем единицы в знаменателе на сумму квадратов синуса и косинуса, после чего получаем Универсальная замена в тригонометрических уравненияхи Универсальная замена в тригонометрических уравнениях. Наконец, числитель и знаменатель полученных дробей делим на Универсальная замена в тригонометрических уравнениях(его значение отлично от нуля при условии Универсальная замена в тригонометрических уравнениях). В итоге, вся цепочка действий выглядит так:
Универсальная замена в тригонометрических уравнениях
и
Универсальная замена в тригонометрических уравнениях

На этом вывод формул, выражающих синус и косинус через тангенс половинного угла, закончен.

Осталось вывести формулы для тангенса и котангенса. Теперь, учитывая полученные выше формулы, и формулы Универсальная замена в тригонометрических уравненияхи Универсальная замена в тригонометрических уравнениях, сразу получаем формулы, выражающие тангенс и котангенс через тангенс половинного угла:
Универсальная замена в тригонометрических уравнениях

Итак, мы вывели все формулы для универсальной тригонометрической подстановки.

Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Примеры использования универсальной тригонометрической подстановки

Для начала рассмотрим пример применения универсальной тригонометрической подстановки при преобразовании выражений.

Приведите выражение Универсальная замена в тригонометрических уравненияхк выражению, содержащему лишь одну тригонометрическую функцию Универсальная замена в тригонометрических уравнениях.

Здесь следует использовать универсальную тригонометрическую подстановку. Применим к косинусу и синусу четырех альфа формулы, выражающие их через тангенс половинного угла. В результате останется лишь упростить вид полученного выражения, имеем
Универсальная замена в тригонометрических уравнениях

Универсальная замена в тригонометрических уравнениях.

Как мы уже сказали в самом начале статьи, основное предназначение универсальной тригонометрической подстановки заключается в преобразовании исходного рационального тригонометрического выражения, содержащего синус, косинус, тангенс и котангенс, к рациональному выражению с одной единственной тригонометрической функцией, а именно, с тангенсом половинного угла. А такое преобразование особенно полезно при решении тригонометрических уравнений определенного вида, а также при интегрировании тригонометрических функций.

Видео:7.10 Универсальная тригонометрическая подстановка / формулы с выводом / примерыСкачать

7.10 Универсальная тригонометрическая подстановка / формулы с выводом / примеры

Универсальная тригонометрическая подстановка, вывод формул, примеры

Данная статья посвящена разбору такой темы, как универсальная тригонометрическая подстановка. Суть данного термина состоит в том, что мы находим значение любой тригонометрической функции ( sin α , cos α , t g α , c t g α ) через формулу тангенса половинного угла. Этот вариант намного проще и рациональнее, так как выполнять дальнейшие вычисления легче без корней, а с целыми числами.

Мы подробно рассмотрим этот раздел. Для начала мы расскажем вам о формулах тангенса половинного угла, которой мы будем часто пользоваться. После мы перейдем к практическому применении формул, рассмотрим несколько примеров использования универсальной тригонометрической подстановки.

Видео:Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.

Универсальная тригонометрическая подстановка для sin α , cos α , t g α , c t g α

Во введении мы рассказали, что основной темой этого раздела станет основная тригонометрическая подстановка. Для начала запишем и разберем формулы, с помощью которых можно выразить sin α , cos α , t g α , c t g α через тангенс половинного угла α 2 .

sin α = 2 · t g α 2 1 + t g 2 α 2 , cos α = 1 — t g 2 α 2 1 + t g 2 α 2 t g α = 2 · t g α 2 1 — t g 2 α 2 , c t g = 1 — t g 2 α 2 2 · t g α 2

Указанные формулы будут правильны для всех углов α . Для работы в задаче должен быть определен входящие тангенсы и котангенсы.

Формулы для sin α и cos α , sin α = 2 · t g α 2 1 + t g 2 α 2 и cos α = 1 — t g 2 α 2 1 + t g 2 α 2 имеют место для a ≠ π + 2 π · z , где z – любое целое число, так как при a = π + 2 π · z , t g α 2 не определен.

Формула t g α = 2 · t g α 2 1 — t g 2 α 2 справедлива для α ≠ π 2 + π · z и a ≠ π + 2 π · z , так как при a = π 2 + π · z не определен t g α Знаменатель дроби обращается в нуль, а при α = π + 2 π · z не определен t g α 2 .

Формула c t g = 1 — t g 2 α 2 2 · t g α 2 , выражающая c t g через t g α 2 , справедлива для a ≠ π · z , так как при a = π · z не определен c t g , при a = π + 2 π · z не определен t g α 2 , а при α = 2 π · z знаменатель дроби обращается в нуль.

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Вывод формул

Разберем вывод формул, выражающих sin α , cos α , t g α , c t g α через тангенс половинного угла. Начнем с формул для синуса и косинуса. Представим синус и косинус по формулам двойного угла как sin α = 2 · sin α 2 · cos α 2 и cos α = cos 2 α 2 — sin 2 α 2 соответственно. Теперь выражения 2 · sin α 2 · cos α 2 и cos 2 α 2 — sin 2 α 2 запишем в виде дробей со знаменателем 1 как 2 · sin α 2 · cos α 2 1 и cos 2 α 2 — sin 2 α 2 1 . Воспользуемся основным тождеством из тригонометрии и заменим единицы в знаменателе на сумму квадратов sin и cos , после чего получаем 2 · sin α 2 · cos α 2 sin 2 α 2 + cos 2 α 2 и cos 2 α 2 — sin 2 α 2 sin 2 α 2 + cos 2 α 2

Для решения данного выражения необходимо числитель и знаменатель полученных дробей разделить на cos 2 α 2 (его значение не равно нулю при условии α ≠ π + 2 π · z ). Вся формула будет выглядеть так sin α = 2 · sin α 2 · cos α 2 = 2 · sin α 2 · cos α 2 sin 2 α 2 + cos 2 α 2 = 2 · sin α 2 · cos α 2 cos 2 α 2 sin 2 α 2 + cos 2 α 2 cos 2 α 2 = 2 · sin α 2 cos α 2 sin 2 α 2 с os 2 α 2 + cos 2 α 2 с os 2 α 2 = 2 · t g α 2 t g 2 α 2 + 1

и cos α = cos 2 α 2 — sin 2 α 2 = c os 2 α 2 — sin 2 α 2 1 = c os 2 α 2 — sin 2 α 2 sin 2 α 2 + c os 2 α 2 = = cos 2 α 2 — sin 2 α 2 c os 2 α 2 sin 2 α 2 + c os 2 α 2 c os 2 α 2 = cos 2 α 2 cos 2 α 2 — sin 2 α 2 cos 2 α 2 sin 2 α 2 c os 2 α 2 + cos 2 α 2 c os 2 α 2 = 1 — t g 2 α 2 t g 2 α 2 + 1

Мы закончили вывод формул для sin и cos , завершив все вычислительные действия.

Следующий шаг – это вывод определенных формул для нахождения t g и c t g .

Взяв за основу описанные выше примеры t g α = sin α cos α и c t g α = cos α sin α , мы сразу получаем формулы, которые выражают тангенс и котангенс через тангенс половинного угла:

t g α = sin α cos α = 2 · t g α 2 1 + t g 2 α 2 1 — t g 2 α 2 1 + t g 2 α 2 = 2 · t g α 2 1 — t g 2 α 2 ;

c t g α = cos α sin α = 1 — t g 2 α 2 1 + t g 2 α 2 2 · t g α 2 1 + t g 2 α 2 = 1 — t g 2 α 2 2 · t g α 2 ;

В этом разделе мы нашли все формулы, которые нам потребуются для выражения основных тригонометрических функций.

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Примеры использования в задачах и упражнениях

Для начала рассмотрим пример применения универсальной тригонометрической подстановки при преобразовании выражений.

Необходимо привести 2 + 3 · cos 4 α sin 4 α — 5 к примеру, который содержит только одну функцию t g 2 α .

В данном упражнении мы также воспользуемся универсальной подстановкой, которая является одним из важных правил тригонометрии. Применим к косинусу и синусу 4 α те самые формулировки, которые выражают основные функции через тангенс половинного угла. Получив сложное выражение, нам остается только его упростить.

2 + 3 · cos 4 α sin 4 α — 5 = 2 + t g 2 2 α t g 2 2 α + 1 2 · t g 2 α t g 2 2 α + 1 — 5 = 2 · t g 2 2 α + 2 + 3 — 3 · t g 2 2 α t g 2 2 α + 1 2 · t g 2 α — 5 · 2 · t g 2 2 α — 5 t g 2 2 α + 1 = t g 2 2 α — 5 5 · t g 2 2 α — 2 · t g 2 α + 5

2 + 3 · cos 4 α sin 4 α — 5 = t g 2 2 α — 5 5 · t g 2 2 α — 2 · t g 2 α + 5 .

Вспомним, что во введении мы подробно рассказали, как менять sin α , cos α , t g α , c t g α в частных случаях. Она заключается в том, чтобы преобразовать первоначальное рациональное выражение, содержащее sin , cos , t g и c t g , к выражению с одной функцией благодаря формуле. Это намного проще и понятнее. Мы выражаем все формулы через t g половинного угла. Данное преобразование обязательно пригодится при решении разнообразных уравнений и задач, интегрировании основных функций sin α , cos α , t g α , c t g α .

Видео:19.05. Тригонометрические уравнения. Универсальная тригонометрическая замена. Другие типы замен.Скачать

19.05. Тригонометрические уравнения. Универсальная тригонометрическая замена. Другие типы замен.

Универсальная замена в тригонометрических уравнениях

Универсальная замена в тригонометрических уравнениях

Универсальная замена в тригонометрических уравнениях

Универсальная замена в тригонометрических уравнениях

Видео:Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать

Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 класс

Методы решения тригонометрических уравнений.

Видео:Метод замены в тригонометрических уравнениях | МатематикаСкачать

Метод замены в тригонометрических уравнениях | Математика

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Универсальная замена в тригонометрических уравнениях

Видео:Решение уравнения методом замены переменнойСкачать

Решение уравнения методом замены переменной

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Универсальная замена в тригонометрических уравнениях

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Универсальная замена в тригонометрических уравнениях

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Универсальная замена в тригонометрических уравнениях

Видео:Решение тригонометрических уравнений и их систем. 10 класс.Скачать

Решение тригонометрических уравнений и их систем. 10 класс.

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Универсальная замена в тригонометрических уравнениях

Видео:Универсальная тригонометрическая подстановкаСкачать

Универсальная тригонометрическая подстановка

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:11 класс замена в тригонометрических уравнениях, однородные тригонометрические уравненияСкачать

11 класс замена в тригонометрических уравнениях, однородные тригонометрические уравнения

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Универсальная замена в тригонометрических уравнениях

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Универсальная замена в тригонометрических уравненияхи sin Универсальная замена в тригонометрических уравнениях( здесь Универсальная замена в тригонометрических уравнениях— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Универсальная замена в тригонометрических уравнениях

Универсальная замена в тригонометрических уравнениях

Видео:18+ Математика без Ху!ни. Формулы ПриведенияСкачать

18+ Математика без Ху!ни. Формулы Приведения

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

📺 Видео

Тригонометрия | УНИВЕРСАЛЬНАЯ ПОДСТАНОВКА | Математика ЗнатикаСкачать

Тригонометрия | УНИВЕРСАЛЬНАЯ ПОДСТАНОВКА | Математика Знатика

Тригонометрические уравнения с заменой переменных и сложным аргументом Алгебра 10 классСкачать

Тригонометрические уравнения с заменой переменных и сложным аргументом Алгебра 10 класс

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэ

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать

10 класс, 22 урок, Простейшие тригонометрические уравнения неравенства
Поделиться или сохранить к себе: