Найдите все значения параметра а, при которых уравнение
имеет единственный корень.
Пусть 3 x = t,t > 0. Заметим, что после замены каждому положительному корню уравнения √(t 2 − 4a) = t − a соответствует единственный корень исходного уравнения (это следует из монотонности функции 3 x = t). Уравнение √(t 2 − 4a) = t − a равносильно системе
Если a = 0, то любое t > 0 является корнем первого уравнения системы, следовательно, исходное уравнение имеет бесконечное множество корней. Значит, a ≠ 0, тогда система примет вид
Учитывая, что a ≠ 0, получаем: −4 4.
Ответ: (−4; 0) ∪ (0; 4].
Видео:При каких значениях параметра уравнение имеет единственный кореньСкачать

Задача 49462 .
Условие
36^x-(8a-1)×6^x+16a^2-4a-2=0
найти все значения параметра а, при каждом из которых уравнение имеет единственный корень
Все решения
Показательная функция принимает только положительные значения. ⇒
Решаем квадратное уравнение:
Уравнение имеет два корня t_(1) и t_(2)
Одно из этих показтельных уравнений не должно иметь корней.
Это возможно только в том случае, когда t_(1) и t_(2)
имеют разные знаки, т.е произведение корней отрицательно
По теореме Виета
t_(1)*t_(2)=16a^2-4a-2
Видео:Найдите все значения параметра m≦100 , при которых уравнение σ(x)=m имеет решениеСкачать

Задачи с параметром
1. Задача.
При каких значениях параметра a уравнение ( a — 1) x 2 + 2 x + a — 1 = 0 имеет ровно один корень?
1. Решение.
При a = 1 уравнение имеет вид 2 x = 0 и, очевидно, имеет единственный корень x = 0. Если a № 1, то данное уравнение является квадратным и имеет единственный корень при тех значениях параметра, при которых дискриминант квадратного трехчлена равен нулю. Приравнивая дискриминант к нулю, получаем уравнение относительно параметра a 4 a 2 — 8 a = 0, откуда a = 0 или a = 2.
1. Ответ: уравнение имеет единственный корень при a О .
2. Задача.
Найти все значения параметра a , при которых имеет два различных корня уравнение x 2 +4 ax +8 a +3 = 0.
2. Решение.
Уравнение x 2 +4 ax +8 a +3 = 0 имеет два различных корня тогда и только тогда, когда D = 16 a 2 -4(8 a +3) > 0. Получаем (после сокращения на общий множитель 4) 4 a 2 -8 a -3 > 0, откуда
| a Ц 7 2 | или a > 1 + | Ц 7 2 |
2. Ответ:
| a О (- Ґ ; 1 – | Ц 7 2 | ) И (1 + | Ц 7 2 | ; Ґ ). |
3. Задача.
Известно, что 
f 2 ( x ) = 6 x — x 2 -6.
а) Постройте график функции f 1 ( x ) при a = 1.
б) При каком значении a графики функций f 1 ( x ) и f 2 ( x ) имеют единственную общую точку?
3. Решение.
3.а. Преобразуем f 1 ( x ) следующим образом


3.б. Сразу отметим, что графики функций y = kx + b и y = ax 2 + bx + c ( a № 0) пересекаются в единственной точке тогда и только тогда, когда квадратное уравнение kx + b = ax 2 + bx + c имеет единственный корень. Используя представление f 1 из 3.а , приравняем дискриминант уравнения a = 6 x — x 2 -6 к нулю. Из уравнения 36-24-4 a = 0 получаем a = 3. Проделав то же самое с уравнением 2 x — a = 6 x — x 2 -6 найдем a = 2. Нетрудно убедиться, что эти значения параметра удовлетворяют условиям задачи. Ответ: a = 2 или a = 3.
4. Задача.
Найти все значения a , при которых множество решений неравенства x 2 -2 ax -3 a і 0 содержит отрезок [3;6].
4. Решение.
Первая координата вершины параболы f ( x ) = x 2 -2 ax -3 a равна x 0 = a . Из свойств квадратичной функции условие f ( x ) і 0 на отрезке [3;6] равносильно совокупности трех систем
| м н о | a Ј 3, f (3) = 9-9 a і 0, | м н о | 3 a D = 4 a 2 +12 a Ј 0, | м н о | a і 6, f (6) = 36-15 a і 0. |
Решением первой системы является множество (- Ґ ,1]. Вторая и третья система решений не имеют.
4. Ответ: a О (- Ґ ,1].
5. Задача (9 кл.)
При каком наименьшем натуральном значении a уравнение
| x 2 +2 ax -3 a +7 = 2 x |
имеет ровно два решения?
5. Решение.
Перепишем это уравнение в виде x 2 + (2 a -2) x — 3 a +7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a 2 + a -6 > 0. Решая неравенство, находим a a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.
6. Задача (10 кл.)
Найти все значения a , при которых график функции
| f ( x ) = | x 2 + | ax +2 | a -1 |
6. Решение.
Из условия f (-1) = 1 имеем уравнение
| 1 = | 1+ | — a +2 | a -1 | , |
6. Ответ: a О [2; Ґ ).
7. Задача (10 кл.)
При каких значениях a сумма квадратов корней уравнения
| x 2 -2 ax + a 2 — a = 0 |
7. Решение.
Дискриминант уравнения x 2 -2 ax + a 2 — a = 0 равен 4 a . Поэтому действительные корни этого уравнения существуют, если a і 0. Применяя к данному уравнению теорему Виета получаем x 1 + x 2 = 2 a и x 1 · x 2 = a 2 — a . Отсюда x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 -2 x 1 · x 2 = 2 a 2 +2 a . Решениями неравенства 2 a 2 +2 a > 12, удовлетворяющими условию a і 0, являются числа a > 2.
📸 Видео
Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать

✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать

Найдите все значения параметра а, при которых система имеет единственное решениеСкачать

#118 Урок 43 Квадратные уравнения. Параметры. При каком значении параметра уравнение имеет 1 корень.Скачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

РАЗБОР СЛОЖНОГО ЗАДАНИЯ 18, ПАРАМЕТР. ЕГЭ МАТЕМАТИКА с Артуром ШарифовымСкачать

Задача 17 ЕГЭ профильный. Параметры с нуляСкачать

Все НОВЫЕ Задания 11 с FIPI (ЕГЭ 2024 Профиль)Скачать

ВСЕ лайфхаки ЕГЭ по математике | ЕГЭ Математика | Аня Матеманя | ТопскулСкачать

11.88 найти все значения параметра а при которых два уравнения имеют общий кореньСкачать

Уравнение с параметром | Математика TutorOnlineСкачать

Алгебра 7 класс в одной задаче | МатематикаСкачать

Что Такое Параметр? Параметр с Нуля + ДЗ (Задание 18 ЕГЭ 2024 Математика Профиль)Скачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать

6. ПРИ КАКИХ ЗНАЧЕНИЯХ ПАРАМЕТРА УРАВНЕНИЕ НЕ ИМЕЕТ КОРНЕЙСкачать

САМОЕ СЛОЖНОЕ ЗАДАНИЕ 18. ЕГЭ МАТЕМАТИКА, ПАРАМЕТР. АРТУР ШАРИФОВСкачать

Найти все значения параметра a при котором уравнение имеет чётное число корней Д213Скачать





