Укажите систему уравнений графическое решение которой изображено на рисунке 3x 6y 0 2x y 5

Школе NET

Register

Do you already have an account? Login

Login

Don’t you have an account yet? Register

Newsletter

Submit to our newsletter to receive exclusive stories delivered to you inbox!

  • Главная 
  • Вопросы & Ответы 
  • Вопрос 4919544

Укажите систему уравнений графическое решение которой изображено на рисунке 3x 6y 0 2x y 5

Пармезан Черница

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Укажите систему уравнений, графическое решение которой изображено на рисунке

Видео:7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Лучший ответ:

Укажите систему уравнений графическое решение которой изображено на рисунке 3x 6y 0 2x y 5

Онтонио Веселко

Точка пересечения двух графиков (3 ; 1) ⇒ решением системы является пара чисел :
х = 3 ; у = 1
Просто подставим в системы уравнений и проверим соблюдается ли равенство:
1) подходит
< 2*3 — 6*1 = 6 — 6 = 0
< 2 * 3 + 1 = 6 + 1 = 7

Ответ : 1) . 0.0 0 оценок 0 оценок Оцени! Оцени! Спасибо 4 Комментарии Отметить нарушение Войти чтобы добавить комментарий Не тот ответ, который тебе нужен? Не тот ответ, который тебе нужен? Найди нужный Что ты хочешь узнать? Задай вопрос Задай вопрос Самые новые вопросы sashalahana Алгебра Решите систему. Заранее спасибо 195682842 Алгебра Пожалуйста помогите решить подробно и срочно)). baronX007 Алгебра Решите пожалуйста подробно, срочно. alenap043p3rtml Алгебра Помогите пожалуйста margaritakiseleva Алгебра Выразить cos (a-b) #97​ nnnn69 Алгебра Решить неравенство.​ Reideen Алгебра Воспользуйтесь методом замены переменных и решите систему уравнений [tex]displaystyle left < <<(x+y)^-6(x+y) +5=0> atop > right.[/te x] anna255295 Алгебра Помогите решить систему 65 номер (б,в, г) nnnn69 Алгебра Решить неравенство.​ nnnn69 Алгебра Решить неравенство.​

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Укажите систему уравнений графическое решение которой изображено на рисунке 3x 6y 0 2x y 5

OBRAZOVALKA.COM — образовательный портал
Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов .

На вопросы могут отвечать также любые пользователи, в том числе и педагоги.

Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Графический метод решения системы линейных уравнений

Расположение графиков и количество решений системы линейных уравнений

Рассмотрим систему двух уравнений: $ <left< begin 3x-y = 5 \ 3x+2y = 8end right.>$

Построим график каждого из уравнений и найдём точку пересечения.

Точка пересечения (2;1)

Укажите систему уравнений графическое решение которой изображено на рисунке 3x 6y 0 2x y 5

Подставим координаты точки пересечения в уравнение:

$ <left< begin3 cdot 2-1 ≡ 5\ 3cdot2+2cdot1 ≡ 8end right.> Rightarrow$ (2;1) — решение системы

Таким образом, точка пересечения графиков уравнений является решением системы.

Графики двух уравнений системы могут пересекаться, быть параллельными и совпадать. Получаем разное количество решений системы в зависимости от соотношения коэффициентов уравнений:

Видео:Решить графически систему уравненийСкачать

Решить графически систему уравнений

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Решение системы уравнений графическим методомСкачать

Решение системы уравнений графическим методом

Немного теории.

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

💥 Видео

Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Решить графически систему уравненийСкачать

Решить графически систему уравнений

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

СИСТЕМА УРАВНЕНИЙ ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ 8 7 классСкачать

СИСТЕМА УРАВНЕНИЙ ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ 8 7 класс

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Решение системы линейных уравнений графическим способом. 7 классСкачать

Решение системы линейных уравнений графическим способом. 7 класс

#Математика ОГЭ. Алгебра. №9. Системы уравненийСкачать

#Математика ОГЭ. Алгебра. №9. Системы уравнений

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 классСкачать

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 класс
Поделиться или сохранить к себе: