- Методическая разработка урока по теме «Логарифмические уравнения»
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение логарифмических уравнений.
- Немного теории.
- Логарифмическая функция. Логарифмы
- Свойства логарифмов
- Десятичные и натуральные логарифмы
- Логарифмическая функция, её свойства и график
- Логарифмические уравнения
- 📸 Видео
Корни логарифмических уравнений
Каждому уравнению поставьте в соответствие его корень:
Корни логарифмических уравнений
- Выделите корни уравнения $log_<frac><(x^+4x-5)>=-4$
Корни логарифмических уравнений
Нули функции
Найдите нули функций
1) $y=log_$ Ответ: x = ___
Корни логарифмических уравнений
Установите соответствие между уравнением и его корнями:
Корни логарифмических уравнений
Зачеркните числа, которые не являются корнями уравнения $log_<(3^+1)>=2$
- 0
- 0,5
- 0,8
- 1
Логарифмическая функция
Решите уравнения и соберите мозаику:
Произведение логарифмических функций
Выделите верный ответ.
Решите уравнение. Если уравнение имеет более одного корня, то в ответе укажите их сумму $lg(x^2−3)⋅lgx=0$
Область определения логарифмической функции
Укажите промежуток, содержащий корень уравнения $log_-log_=log_$
Видео:ЕГЭ по математике. Профильный уровень. Задание 5. Найдите корень уравненияСкачать
Методическая разработка урока по теме «Логарифмические уравнения»
Разделы: Математика
Цели урока:
- Повторение основных приемов преобразования и методов решения логарифмических уравнений; акцентирование внимания учащихся на возможных ошибках в решении логарифмических уравнений.
- Расширение знаний темы “Логарифмические уравнения” посредством знакомства с уравнениями, содержащими знак модуля.
- Развитие познавательных способностей посредством содержания и формы проведения урока, развития вариативного мышления, развития общеучебных навыков, работа с книгой, с компьютером.
- Развитие коммуникативных навыков, развитие монологической речи, умение критически мыслить, отстаивать свою точку зрения.
- Организация на урок /5 минут/.
- Повторение теоретического материала по теме “ Равносильные уравнения. Решение логарифмических уравнений”:
а) устная работа (просмотр презентаций, обсуждение теоретических вопросов) / 7–8 минут/;
б) диктант с последующей проверкой /5–7 минут/. - Работа учащихся с карточками (нахождение ошибок) (самостоятельно), обсуждение решений уравнений /10-12 минут/.
- Совместная работа учащихся и учителя (решение уравнений в тетрадях и у доски) /10 минут/.
- Подготовка к экзаменам:
а) разбор уравнений, решения которых заранее подготовлены учителем для просмотра через плазменный экран и решаемого учеником /15 минут/;
б) самостоятельная работа учащихся (по карточкам разного уровня сложности) /20минут/. - Итог урока, выставление оценок /2 минуты/.
I этап урока — организационный
Учитель сообщает учащимся тему урока, цель и добавляет, что во время урока они будут пользоваться раздаточным материалом, находящимся на партах.
II. Повторение теоретического материала по теме: “ Равносильные уравнения. Решение логарифмических уравнений”
Для того, чтобы решать логарифмические уравнения, следует повторить необходимые для этого теоретические сведения:
Выступление I ученика
Приложение 1 показ слайдов демонстрационной презентации с четкими формулировками:
- слайд №1-определение равносильных уравнений;
- слайд № 2 – определение уравнения следствия;
- слайд № 3 – область допустимых значений уравнения
- слайд №4- что понимают под логарифмическим уравнением;
Диктант (с последующей взаимопроверкой)
Возможные ответы: “+”-да , “-” — нет
Вариант 1 | Вариант 2 |
Верно ли утверждение: | Верно ли утверждение: |
Если 4 х =7, то х=log47 |
Если log525=x, то х=2
Если log381=x, то х=4
lgxlg5=3 и lg(x+5)=3
lg=1 и lgx-lg(3+x)=1
lgx+lg(x 3 -1)= 2 и lg(x(x 3 -1))=2
=2 и lgx-lg4=2
Выступление II ученика
Приложение2 показ слайдов демонстрационной презентации с основными видами логарифмических уравнений:
- слайд №1–
;
- слайд №2 –
;
- слайд №3 – в уравнении логарифмы с разными основаниями;
- слайд №4–
;
- слайд №5– метод введения новой переменной.
1. Укажите промежуток, которому принадлежит больший корень уравнения ln(х — 5) 2 = 0.
2. Найдите произведение корней уравнения 1- lg(x 2 +1) = 0.
3. Укажите промежуток, которому принадлежат корни уравнения log0,5(x — 9) = 1 + log0,55.
4. Укажите промежуток, которому принадлежит корень уравнения log4(x — 5) = log255.
Задание 1 2 3 4 Номер ответа 4 2 1 2
III. Работа учащихся с карточками. Объяснение ошибок
Учащимся на отдельных листах предлагаются уравнения с решениями, содержащими ошибки. Необходимо обнаружить эти ошибки, объяснить их и выполнить решение предложенных уравнений правильно (допускается решение уравнения иным способом после обнаружения ошибки в приведенном варианте решения).
Обсуждение решения уравнений
В задаче 1 для преобразования выражения использовалось тождество
=
logba (а > 0, b > 0, р
0, b
1), однако не было учтено, что для данного выражения операция возведения во вторую степень является последней, и поэтому проводимые преобразования должны выглядеть иначе:
= (
) 2 = (-log2 x) 2 = log2 2 х.
В задаче 2 при преобразовании выражения log3 (x + 4) 2 пропущен знак модуля.
В задаче 3 преобразование дроби к разности выражений log3(2x + l)-log3x приводит к сужению множества значений, однако ошибка заключается в отсутствии условия корректности преобразования, в ходе которого произошло взаимное уничтожение слагаемого, содержащего переменную –log3х.
В задаче 4 при преобразовании основания логарифма был поставлен знак модуля, однако, поскольку показатель степеней нечетный, то такое преобразование привело к расширению множества решений (-2 — посторонний корень для исходного уравнения).
В решении задачи 5 нарушено условие монотонности соответствующей функции (если f— монотонная функция и а ЄDf, bЄ Df, то f (a) = f(b) а = b) .
IV. Решение уравнений
Этот этап урока может быть организован различно: учащиеся выполняют самостоятельно решение уравнений с последующей проверкой, кто-то из учащихся показывает решение на доске и пр.
V. Подготовка к экзаменам
а) разбор решения уравнений
Приложение 3) показ слайдов демонстрационной презентации с решениями уравнений:
слайд №1- решение уравнения
слайд № 2- найдите абсциссы всех точек пересечения графиков функций и
слайд № 3- решение уравнения |log2х — 1| = (4 — 8x) (log2x — 1).
б) самостоятельная работа учащихся (каждый из учащихся может сам проверить свой уровень подготовки к ЕГЭ по данной теме. Ученикам предлагается тест, содержащий задания трех уровней сложности).
1. Решите уравнение log3(x+2)=3
2. Укажите промежуток, которому принадлежит корень уравнения log12(x+3)= log12(6-5x)
3. Найдите сумму корней уравнения — 5log4x+2=0
Часть 3
5. Найдите произведение корней уравнения
1.Решите уравнение log11(2x+1)=2
2. Укажите промежуток, которому принадлежит корень уравнения –log5(4-х)= log152-1
3. Найдите сумму корней уравнения
2) ;
3) ;
4)
4. Напишите целые корни уравненияlogx7=2,5
Решите уравнение 3)+3
1. Решите уравнение log0,5(2x-0,75)=2
2. Укажите промежуток, которому принадлежит корень уравнения
1) (-4;2); 2) (-2, 0); 3) (0;0,5); 4) (0,5;4)
3. Решите уравнение log3х+14-32=0 (Если уравнение имеет более одного корня, то в бланке ответов запишите произведение всех его корней)
4. Найдите наибольший корень уравнения log3¦х+2¦+9= log3(х+2) 4
5. Решите уравнение
задания 1 2 3 4 5 Вариант 1 3 1 2 16 1 Вариант 2 3 1 2 49 -2 Вариант 3 4 2 81 25 -1
Проверка выполнения тестов на оценку. Анализ выполнения тестов.
VI. Подведение итогов урока
Учитель еще раз обращает внимание на те типы уравнений и теоретические факты, которые вспоминали на уроке, рекомендует выучить их. Отмечает наиболее успешную работу на уроке отдельных учащихся, при необходимости выставляет отметки. Каждый из учащихся проверил свой уровень подготовки к ЕГЭ по теме “Логарифмические уравнения” и делает для себя соответствующие выводы.
Решите уравнение (1—6).
1. +
= 3.
3. log2 (x 2 + 10х + 25) = 2.
4.=0,5
Видео:Отбор корней по окружностиСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:ЕГЭ база #7 / Логарифмические уравнения / Свойства, определение логарифма / решу егэСкачать
Калькулятор онлайн.
Решение логарифмических уравнений.
Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a
Введите логарифмическое уравнение
Решить уравнение
Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать
Немного теории.
Видео:Задание 13 ЕГЭ профиль логарифм равен числу а) 〖log〗_2 (x^2-14x)=5 б) [〖log〗_3 0,1; 5√10]Скачать
Логарифмическая функция. Логарифмы
Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем ( x = sqrt[4] = 3 )
Задача 2. Решить уравнение 3 x = 81
Запишем данное уравнение так: 3 x = 3 4 , откуда x = 4
В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, ( a neq 1 ), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.
Определение. Логарифмом положительного числа b по основанию a, где a > 0, ( a neq 1 ), называется показатель степени, в которую надо возвести число a, чтобы получить b
log77 = 1, так как 7 1 = 7
Определение логарифма можно записать так:
Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.
Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64 x = 128. Так как 64 = 2 6 , 128 = 2 7 , то 2 6x = 2 7 , откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6
Вычислить ( 3^ )
Используя свойства степени и основное логарифмическое тождество, находим
Решить уравнение log3(1-x) = 2
По определению логарифма 3 2 = 1 — x, откуда x = -8
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Свойства логарифмов
При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.
Пусть а > 0, ( a neq 1 ), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:
Видео:🔴 Найдите корень уравнения (x-8)^2=(x-2)^2 | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 7 | ШКОЛА ПИФАГОРАСкачать
Десятичные и натуральные логарифмы
Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.
Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b
Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb
Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + frac + frac + frac + dots + frac + dots $$
Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:
Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ log_a b = frac , ;; log_a b = frac $$
Видео:Нахождение корней уравнения, принадлежащих промежуткуСкачать
Логарифмическая функция, её свойства и график
В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, ( a neq 1 )
Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.
2) Множество значений логарифмической функции — множество всех действительных чисел.
3) Логарифмическая функция не является ограниченной.
4) Логарифмическая функция y = logax является возрастающей на промежутке ( (0; +infty) ), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.
Ось Oy является вертикальной асимптотой графика функции y = logax
Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:
Логарифмическая функция y = logax и показательная функция y = a x , где a > 0, ( a neq 1 ), взаимно обратны.
Видео:СЛОЖИТЕ ДВА КОРНЯСкачать
Логарифмические уравнения
Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х 2 + 4х + 3 = 8, т.е. х 2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1
Решить уравнение lg(2x 2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x 2 — 4x + 12) = lg(x 2 + 3x)
откуда
2x 2 — 4x + 12 = x 2 + 3x
x 2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4
Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16
📸 Видео
Я теряю корни ★ 99 ошиблись ★ Решите уравнение ★ x^x=(1/2)^(1/2)Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать
Три способа отбора корней в задании 13 ЕГЭ профильСкачать
Решение неравенства методом интерваловСкачать
Отбор корней по окружностиСкачать
Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Решение логарифмических уравнений #shortsСкачать
УРАВНЕНИЕ х²=а корни уравненияСкачать