Укажите правильный порядок действий при решении системы алгебраических уравнений методом крамера

Видео:Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $Deltaneq 0$.
  2. Для каждой переменной $x_i$($i=overline$) необходимо составить определитель $Delta_$, полученный из определителя $Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=frac<Delta_<x_>>$ ($i=overline$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Матрица системы такова: $ A=left( begin 3 & 2\ -1 & 5 end right)$. Определитель этой матрицы:

$$Delta=left| begin 3 & 2\ -1 & 5 endright|=3cdot 5-2cdot(-1)=17.$$

Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $Delta_$ и $Delta_$. Определитель $Delta_$ получаем из определителя $Delta=left| begin 3 & 2\ -1 & 5 endright|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $left(begin -11\ 15endright)$:

Аналогично, заменяя второй столбец в $Delta=left|begin3&2\-1&5endright|$ столбцом свободных членов, получим:

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

$$Delta=left| begin 2 & 1 & -1\ 3 & 2 & 2 \ 1 & 0 & 1 endright|=4+2+2-3=5.$$

Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 3 & 1 & -1\ -7 & 2 & 2 \ -2 & 0 & 1 endright|=6-4-4+7=5. $$

Заменяя второй столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 2 & 3 & -1\ 3 & -7 & 2 \ 1 & -2 & 1 endright|=-14+6+6-7-9+8=-10. $$

Заменяя третий столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 2 & 1 & 3\ 3 & 2 & -7 \ 1 & 0 & -2 endright|=-8-7-6+6=-15. $$

Учитывая все вышеизложенное, имеем:

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Решить СЛАУ $left <begin& 2x_1+3x_2-x_3=15;\ & -9x_1-2x_2+5x_3=-7. endright.$ используя метод Крамера.

Матрица системы $ left( begin 2 & 3 & -1\ -9 & -2 & 5 end right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

Теперь матрица системы $ left( begin 2 & 3 \ -9 & -2 end right) $ стала квадратной, и определитель её $Delta=left| begin 2 & 3\ -9 & -2 endright|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

Ответ можно записать в таком виде: $left <begin& x_1=frac;\ & x_2=frac;\ & x_3in R. endright.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Матрица системы $left(begin 1 & -5 & -1 & -2 & 3 \ 2 & -6 & 1 & -4 & -2 \ -1 & 4 & 5 & -3 & 0 endright)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Метод Крамера для решения СЛАУ

В данной статье мы разберем, как найти неизвестные переменные по методу Крамера и опишем решение систем линейных уравнений.

Метод Крамера предназначен для того, чтобы решать системы линейных алгебраических уравнений (СЛАУ), в которых число неизвестных переменных равняется числу уравнений, а определитель основной матрицы не равен нулю.

Видео:Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Метод Крамера — вывод формул

Найти решение системы линейных уравнений вида:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

В этой системе x 1 , x 2 , . . . , x n — неизвестные переменные,

a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n — числовые коэффициенты,

b 1 , b 2 , . . . , b n — свободные члены.

Решение такой системы линейных алгебраических уравнений — набор значений x 1 , x 2 , . . . , x n , при которых все уравнения системы становятся тождественными.

Матричный вид записи такой системы линейных уравнений:

A X = B , где A = a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n — основная матрица системы, в которой ее элементы — это коэффициенты при неизвестных переменных;

B = b 1 b 2 ⋮ b n — матрица-столбец свободных членов;

X = x 1 x 2 ⋮ x n — матрица-столбец неизвестных переменных.

После того как мы найдем неизвестные переменные x 1 , x 2 , . . . , x n , матрица X = x 1 x 2 ⋮ x n становится решением системы уравнений, а равенство A X = B обращается в тождество.

Метод Крамера основан на 2-х свойствах определителя матрицы:

  • Определитель квадратной матрицы A = a i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , n равняется сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n = a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q

  • Сумма произведений какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующие элементы другой матрицы равняется нулю:

a p 1 × A p 1 + a p 2 × A p 2 + . . . + a p n × A p n = 0 a 1 q × A 1 q + a 2 q × A 2 q + . . . + a n q × A n q = 0

p = 1 , 2 , . . . , n , q = 1 , 2 , . . . , n p не равно q

Приступаем к нахождению неизвестной переменной x 1 :

  • Умножаем обе части первого уравнения системы на А 11 , обе части второго уравнения на А 21 и т.д. Таким образом, мы умножаем уравнения системы на соответствующие алгебраические дополнения 1-го столбца матрицы А :

A 11 a 11 x 1 + A 11 a 12 x 2 + . . . + A 11 a 1 n x n = A 11 b 1 A 21 a 21 x 1 + A 21 a 22 x 2 + . . . + A 21 x 2 n x n = A 21 b 2 ⋯ A n 1 a n 1 x 1 + A n 1 a n 2 x 2 + . . . + A n 1 a n n x n = A n 1 b n

  • Складываем все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных , и приравниваем получившуюся сумму к сумме всех правых частей уравнения:

x 1 ( A 11 a 11 + A 21 a 21 + . . . + A n 1 a n 1 ) + + x 2 ( A 11 a 12 + A 21 a 22 + . . . + A n 1 a n 2 ) + + . . . + + x n ( A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n ) = = A 11 b 1 + A 21 b 2 + . . . + A n 1 b n

Если воспользоваться свойствами определителя, то получится:

А 11 а 11 + А 21 а 21 + . . . + А n 1 a n 1 = А А 11 а 12 + А 21 а 22 + . . . + А n 1 а n 2 = 0 ⋮ A 11 a 1 n + A 21 a 2 n + . . . + A n 1 a n n = 0

A 11 b 1 + A 21 b 2 + . . . + A n 1 b n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Предыдущее равенство будет иметь следующий вид:

x 1 A = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n A

Таким же образом находим все оставшиеся неизвестные переменные.

∆ = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , ∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n ,

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n , . ∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n .

то получаются формулы для нахождения неизвестных переменных по методу Крамера:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

Видео:Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Алгоритм решения СЛАУ методом Крамера

  • Необходимо вычислить определитель матрицы системы и убедиться, что он не равен нулю.
  • Найти определители

∆ x 1 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x 2 = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

∆ x n = b 1 a 12 ⋯ a 1 n b 2 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ b n a n 2 ⋯ a n n

Эти определители являются определителями матриц, которые получены из матрицы А путем замены k -столбца на столбец свободных членов.

  • Вычислить неизвестные переменные при помощи формул:

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆ , . . . , x n = ∆ x n ∆ .

  • Выполнить проверку результатов: если все определители являются тождествами, то решение найдено верно.

Видео:Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Примеры решения СЛАУ методом Крамера

Найти решение неоднородной системы линейных уравнений методом Крамера:

3 x 1 — 2 x 2 = 5 6 2 x 1 + 3 x 2 = 2

Основная матрица представлена в виде 3 — 2 2 3 .

Мы можем вычислить ее определитель по формуле:

a 11 a 12 a 21 a 22 = a 11 × a 22 — a 12 × a 21 : ∆ = 3 — 2 2 3 = 3 × 3 — ( — 2 ) × 2 = 9 + 4 = 13

Записываем определители ∆ x 1 и ∆ x 2 . Заменяем 1-ый столбец основной матрицы на столбец свободных членов и получаем определитель ∆ x 1 = 5 6 — 2 2 3

По аналогии заменяем второй столбец основной матрицы на столбец свободных членов и получаем определитель:

Находим эти определители:

∆ x 1 = 5 6 — 2 2 3 = 5 6 × 3 — 2 ( — 2 ) = 5 2 + 4 = 13 2

∆ x 2 = 3 5 6 2 2 = 3 × 2 — 5 6 × 2 = 6 — 5 3 = 13 3

Находим неизвестные переменные по следующим формулам

x 1 = ∆ x 1 ∆ , x 2 = ∆ x 2 ∆

x 1 = ∆ x 1 ∆ = 13 2 13 = 1 2

x 2 = ∆ x 2 ∆ = 3 13 = 1 3

Выполняем проверку — подставляем полученные значения переменных в в исходную систему уравнений:

3 1 2 — 2 1 3 = 5 6 2 1 2 + 3 1 3 = 2 ⇔ 5 6 = 5 6 2 = 2

Оба уравнения превращаются в тождества, поэтому решение верное.

Ответ: x 1 = 1 2 , x 2 = 1 3

Поскольку некоторые элементы системы линейных уравнений могут равняться нулю, то в системе не будет соответствующих неизвестных переменных.

Найти решение 3-х нелинейных уравнений методом Крамера с 3-мя неизвестными:

2 y + x + z = — 1 — z — y + 3 x = — 1 — 2 x + 3 z + 2 y = 5

За основную матрицу нельзя брать 2 1 1 — 1 — 1 — 3 — 2 3 2 .

Необходимо привести к общему порядку все неизвестные переменные во всех уравнениях системы:

x + 2 y + z = — 1 3 x — y — z = — 1 — 2 x + 2 y + 3 z = 5

С этого момента основную матрицу хорошо видно:

1 2 1 3 — 1 — 1 — 2 2 3

Вычисляем ее определитель:

∆ = 1 2 1 3 — 1 — 1 — 2 2 3 = 1 × ( — 1 ) × 3 + 2 × ( — 1 ) ( — 2 ) + 1 × 2 × 3 — 1 ( — 1 ) ( — 2 ) — 2 × 3 × 3 — — 1 ( — 1 ) × 2 = — 11

Записываем определители и вычисляем их:

∆ x = — 1 2 1 — 1 — 1 — 1 5 2 3 = ( — 1 ) ( — 1 ) × 3 + 2 ( — 1 ) × 5 + 1 ( — 1 ) × 2 — 1 ( — 1 ) × 5 — 2 ( — 1 ) × 3 — — 1 ( — 1 ) × 2 = 0

∆ y = 1 — 1 1 3 — 1 — 1 — 2 5 3 = 1 ( — 1 ) × 3 + ( — 1 ) ( — 1 ) ( — 2 ) + 1 × 3 × 5 — 1 ( — 1 ) ( — 2 ) — ( — 1 ) — — 1 ( — 1 ) × 2 = 22

∆ z = 1 2 — 1 3 — 1 — 1 — 2 2 5 = 1 ( — 1 ) × 5 + 2 ( — 1 ) ( — 2 ) + ( — 1 ) × 3 × 2 — ( — 1 ) ( — 1 ) ( — 2 ) — 2 × 3 × 5 — — 1 ( — 1 ) × 2 = — 33

Находим неизвестные переменные по формулам:

x = ∆ x ∆ , y = ∆ y ∆ , z = ∆ z ∆ .

x = ∆ x ∆ = 0 — 11 = 0

y = ∆ y ∆ = 22 — 11 = — 2

z = ∆ z ∆ = — 33 — 11 = 3

Выполняем проверку — умножаем основную матрицу на полученное решение 0 — 2 3 :

1 2 1 3 — 1 — 1 — 2 2 3 × 0 — 2 3 = 1 × 0 + 2 ( — 2 ) + 1 × 3 3 × 0 + ( — 1 ) ( — 2 ) + ( — 1 ) × 3 ( — 2 ) × 0 + 2 ( — 2 ) + 3 × 3 = — 1 — 1 5

Результатом являются столбцы свободных членов исходной системы уравнений, следовательно, решение верное.

Ответ: x = 0 , y = — 2 , z = 3

Видео:Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.Скачать

Математика Без Ху!ни. Система линейных уравнений. Метод Крамера.

Метод Крамера

Вы будете перенаправлены на Автор24

Метод Крамера или так называемое правило Крамера – это способ поиска неизвестных величин из систем уравнений. Его можно использовать только если число искомых значений эквивалентно количеству алгебраических уравнений в системе, то есть образуемая из системы основная матрица должна быть квадратной и не содержать нулевых строчек, а также если её детерминант не должен являться нулевым.

Теорема Крамера Если главный определитель $D$ основной матрицы, составленной на основе коэффициентов уравнений, не равен нулю, то система уравнений совместна, причём решение у неё существует единственное. Решение такой системы вычисляется через так называемые формулы Крамера для решения систем линейных уравнений: $x_i = frac$

Видео:2 минуты на формулы Крамера ➜ Решение систем уравнений методом КрамераСкачать

2 минуты на формулы Крамера ➜ Решение систем уравнений методом Крамера

В чем заключается метод Крамера

Суть метода Крамера в следующем:

  1. Чтобы найти решение системы методом Крамера, первым делом вычисляем главный определитель матрицы $D$. Когда вычисленный детерминант основной матрицы при подсчёте методом Крамера оказался равен нулю, то система не имеет ни одного решения или имеет нескончаемое количество решений. В этом случае для нахождения общего или какого-либо базисного ответа для системы рекомендуется применить метод Гаусса.
  2. Затем нужно заменить крайний столбец главной матрицы на столбец свободных членов и высчитать определитель $D_1$.
  3. Повторить то же самое для всех столбцов, получив определители от $D_1$ до $D_n$, где $n$ — номер крайнего справа столбца.
  4. После того как найдены все детерминанты $D_1$. $D_n$, можно высчитать неизвестные переменные по формуле $x_i = frac$.

Видео:Метод Крамера для решения систем линейных алгебраических уравнений (СЛАУ) в ExcelСкачать

Метод Крамера для решения систем линейных алгебраических уравнений (СЛАУ) в Excel

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей — со знаком минус.

Готовые работы на аналогичную тему

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Видео:Метод КрамераСкачать

Метод Крамера

Решение систем уравнений методом Крамера

Применим метод Крамера для системы из 2 уравнений и двумя искомыми величинами:

$begin a_1x_1 + a_2x_2 = b_1 \ a_3x_1 + a_4x_2 = b_2 \ end$

Отобразим её в расширенной форме для удобства:

$A = begin a_1 & a_2 & b_1 \ a_3 & a_4 & b_1 \ end$

Найдём определитель основной матрицы, также называемый главным определителем системы:

$D = begin a_1 & a_2 \ a_3 & a_4 \ end = a_1 cdot a_4 – a_3 cdot a_2$

Если главный определитель не равен нулю, то для решения слау методом Крамера необходимо высчитать ещё парочку определителей от двух матриц с заменёнными столбцами основной матрицы на строчку свободных членов:

$D_1 = begin b_1 & a_2 \ b_2 & a_4 \ end = b_1 cdot a_4 – b_2 cdot a_4$

$D_2 = begin a_1 & b_1 \ a_3 & b_2 \ end = a_1 cdot b_2 – a_3 cdot b_1$

Теперь найдём неизвестные $x_1$ и $x_2$:

Метод Крамера для решения СЛАУ с основной матрицей 3 порядка (3 x 3) и тремя искомыми.

Решите систему уравнений:

$begin 3x_1 – 2x_2 + 4x_3 = 21 \ 3x_1 +4x_2 + 2x_3 = 9\ 2x_1 – x_2 — x_3 = 10 \ end$

Сосчитаем главный детерминант матрицы пользуясь вышеизложенным под пунктом номер 1 правилом:

$D = begin 3 & -2 & 4 \3 & 4 & -2 \ 2 & -1 & 1 \ end = 3 cdot 4 cdot (-1) + 2 cdot (-2) cdot 2 + 4 cdot 3 cdot (-1) – 4 cdot 4 cdot 2 – 3 cdot (-2) cdot (-1) — (-1) cdot 2 cdot 3 = — 12 – 8 -12 -32 – 6 + 6 = — 64$

А теперь три других детерминанта:

$D_1 = begin 21 & 2 & 4 \ 9 & 4 & 2 \ 10 & 1 & 1 \ end = 21 cdot 4 cdot 1 + (-2) cdot 2 cdot 10 + 9 cdot (-1) cdot 4 – 4 cdot 4 cdot 10 – 9 cdot (-2) cdot (-1) — (-1) cdot 2 cdot 21 = — 84 – 40 – 36 – 160 – 18 + 42 = — 296$

$D_2 = begin 3 & 21 & 4 \3 & 9 & 2 \ 2 & 10 & 1 \ end = 3 cdot 9 cdot (- 1) + 3 cdot 10 cdot 4 + 21 cdot 2 cdot 2 – 4 cdot 9 cdot 2 – 21 cdot 3 cdot (-1) – 2 cdot 10 cdot 3 = — 27 + 120 + 84 – 72 + 63 – 60 = 108$

$D_3 = begin 3 & -2 & 21 \ 3 & 4 & 9 \ 2 & 1 & 10 \ end = 3 cdot 4 cdot 10 + 3 cdot (-1) cdot 21 + (-2) cdot 9 cdot 2 – 21 cdot 4 cdot 2 — (-2) cdot 3 cdot 10 — (-1) cdot 9 cdot 3 = 120 – 63 – 36 – 168 + 60 + 27 = — 60$

🎦 Видео

Решение системы уравнений методом Крамера 4x4Скачать

Решение системы уравнений методом Крамера 4x4

Решение системы линейных уравнений третьего порядка методом КрамераСкачать

Решение системы линейных уравнений третьего порядка методом Крамера

Система 4x4. Решение по правилу Крамера.Скачать

Система 4x4. Решение по правилу Крамера.

10. Метод Крамера решения систем линейных уравнений.Скачать

10. Метод Крамера решения систем линейных уравнений.

Решение систем линейных уравнений методом Крамера.Скачать

Решение систем линейных уравнений методом Крамера.

Решение СЛАУ методом Крамера. Линейная алгебраСкачать

Решение СЛАУ методом Крамера. Линейная алгебра

Метод Крамера для решения систем линейных уравнений 3x3Скачать

Метод Крамера для решения систем линейных уравнений 3x3

Метод Крамера Пример РешенияСкачать

Метод Крамера Пример Решения

Решаем системы уравнений методом Крамера.Скачать

Решаем системы уравнений методом Крамера.

Решение системы линейных уравнений 3-го порядка методом КрамераСкачать

Решение  системы линейных уравнений 3-го порядка методом Крамера

Линейная алгебра, 8 урок, Метод КрамераСкачать

Линейная алгебра, 8 урок, Метод Крамера
Поделиться или сохранить к себе: