Укажи пару чисел которая является решением системы уравнений 9x yy 19x

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.

С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2

В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &

Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)

Решить систему уравнений

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Немного теории.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение систем линейных уравнений. Способ подстановки

Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$

Пара (1;4) — решение системы

Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Решение систем линейных уравнений способом сложения

Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.

Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$

Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )

Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

Видео:Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

Укажи пару чисел которая является решением системы уравнений 9x yy 19x

3.14159.. e Число e — основание натурального логарифма, примерно равно

2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

© Контрольная работа РУ — калькуляторы онлайн

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Где учитесь?

Для правильного составления решения, укажите:

Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Тест с ответами: “Система линейных уравнений”

1. Укажите пару чисел, которая является решением системы уравнений y + 2x = 7 и 3x – 5y = 4:
а) (3; 1) +
б) (1; -0.2)
в) (1; 3)

2. Выберите линейное уравнение с двумя переменными:
а) 3ху = 18
б) х – 4у = 26 +
в) (5х – 4) (у + = 5

3. Способом подставки найдите решение (х0, у0) системы уравнений у – 2х = 1 и 12х – у = 9. Вычислите у0 – х0:
а) 0
б) -2
в) 2 +

4. Подберите к данному уравнению 2х + 3у = -11 такое уравнение, чтобы решением получившейся системы была пара (2; -5):
а) –х – 4у = 18 +
б) у – 5х = -20
в) 3х – у = 14

5. Найдите решение (х0; у0) системы уравнений 7х – 2у = 0 и 3х + 6у = 24. Вычислите х0 + 2у0:
а) -6
б) 0
в) 8 +

6. Сколько решений имеет система 6х − 4у = 12 и −2у + 3х = 6:
а) ни одного
б) бесконечно много +
в) один

7. Способом сложения найдите решение (х0, у0), системы уравнений х – у = 2 и х + у = -6. Вычислите х0 + 3у0:
а) 14
б) 10
в) -14 +

8. Решением системы х + у = 1 и 2х − у = −10 служит пара:
а) (-3; 4) +
б) (3; -4)
в) (4; -3)

9. Угловой коэффициент прямой y + 2x + 3 является:
а) -3
б) 2
в) -2 +

10. Пара чисел (-4; -1) является решением уравнения ах + 3у – 5 = 0,если а равно:
а) -4
б) 4 +
в) -5

11. Решите систему уравнений способом подстановки 3x – 2y = -5 и x + 2y = 2. Ответ ввести разность x-y:
а) 2
б) -2 +
в) 7

12. Абсцисса точки, принадлежащей графику уравнения 2х – 3у = -7, равна 4. Найдите ординату этой точки:
а) -5
б) 5 +
в) 0

13. Найдите абсциссу точки пересечения прямых y = 2x + 3 и -1/3x + 24:
а) 9 +
б) 7
в) 3

14. Выразите переменную х через переменную у из уравнения 5у – 2х = -15:
а) х = -15 – 5у
б) х= -2,5у + 7,5
в) х = 2,5у + 7,5 +

15. Укажите пару чисел, являющуюся решением уравнения 2x+4y=-3:
а) (-0,5; -0,5) +
б) (-2; 1)
в) (1; -2)

16. Найдите решение уравнения 2х + 3у = 2:
а) (5; -4)
б) (-5; 4) +
в) (-5; -4)

17. Подберите к данному уравнению 4х –2у = -18 такое уравнение, чтобы решением получившейся системы была пара (-2; 5):
а) у –4х = 24
б) –х +3у = 18
в) 2х –3у = -19 +

18. Выберите линейное уравнение с двумя переменными:
а) ху + 6 = 26
б) 3х – у = 18 +
в) (х + 4) (у – 3) = 5

19. Выясните, сколько решений имеет система 3х + 5у = 12 и −2у + 3х = 6:
а) ни одного
б) бесконечно много
в) одно +

20. Система уравнений, каждое уравнение в которой является линейным – алгебраическим уравнением первой степени:
а) система криволинейных уравнений
б) система линейных уравнений +
в) система линейно-простых уравнений

21. Решением системы х − у = 2 и 3х − у = 10 служит пара:
а) (4; 2) +
б) (2;-4)
в) (-2; 4)

22. Одна из классических задач линейной алгебры, во многом определившая её объекты и методы:
а) теория систем линейных алгебраических уравнений
б) решение систем линейных алгебраических уравнений +
в) сравнение систем линейных алгебраических уравнений

23. Пара чисел (-4;-1) является решением уравнения 4х + ау + 5 = 0, если а равно:
а) -21
б) 11
в) -11 +

24. Система, у которой количество уравнений совпадает с числом неизвестных (m = n):
а) кубическая система линейных уравнений
б) квадратная система линейных уравнений +
в) сложная система линейных уравнений

25. Ордината точки, принадлежащей графику уравнения 6х + 2у = 2, равна 4. Найдите абсциссу этой точки:
а) 1
б) -11
в) -1 +

26. Система, у которой число неизвестных больше числа уравнений является:
а) неопределенной
б) недоопределённой +
в) переопределённой

27. Выразите переменную х через переменную у из уравнения -6у + 3х = 24:
а) х = 2у + 8 +
б) х = -4 – 2у
в) х = 8 – 3у

28. Если уравнений больше, чем неизвестных, то система является:
а) недоопределённой
б) неопределенной
в) переопределённой +

29. Найдите решение уравнения: 4х – 3у = 5:
а) (2; 1) +
б) (1;2)
в) (-2; 1)

30. Такие методы дают алгоритм, по которому можно найти точное решение систем линейных алгебраических уравнений:
а) дифференциальные
б) прямые +
в) искаженные

Видео:Системы уравнений с двумя переменными - 9 класс алгебраСкачать

Системы уравнений с двумя переменными - 9 класс алгебра

Системы уравнений по-шагам

Видео:Как решить систему уравнений на ОГЭ 2021? / Полный разбор задачи №20 ОГЭ по математикеСкачать

Как решить систему уравнений на ОГЭ 2021? / Полный разбор задачи №20 ОГЭ по математике

Результат

Примеры систем уравнений

  • Метод Гаусса
  • Метод Крамера
  • Прямой метод
  • Система нелинейных уравнений

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

📺 Видео

Математическое моделирование - 9 класс алгебра. Решение задач с помощью уравненийСкачать

Математическое моделирование - 9 класс алгебра. Решение задач с помощью уравнений

Решение задач с помощью систем уравнений второй степени. Алгебра, 9 классСкачать

Решение задач с помощью систем уравнений второй степени. Алгебра, 9 класс

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Решение уравнений и систем уравнений из ОГЭ.Скачать

Решение уравнений и систем уравнений из ОГЭ.

Системы уравнений с двумя переменными. Алгебра 9 классСкачать

Системы уравнений с двумя переменными. Алгебра 9 класс

Алгебра 9 класс. Решение систем уравнений через подстановку.Скачать

Алгебра 9 класс. Решение систем уравнений через подстановку.

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений
Поделиться или сохранить к себе: