Углерод плюс азот уравнение реакции

Углерод. Химия углерода и его соединений

Углерод плюс азот уравнение реакции

Углерод

Положение в периодической системе химических элементов

Углерод расположен в главной подгруппе IV группы (или в 14 группе в современной форме ПСХЭ) и во втором периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение углерода

Электронная конфигурация углерода в основном состоянии :

+6С 1s 2 2s 2 2p 2 1s Углерод плюс азот уравнение реакции 2s Углерод плюс азот уравнение реакции 2p Углерод плюс азот уравнение реакции

Электронная конфигурация углерода в возбужденном состоянии :

+6С * 1s 2 2s 1 2p 3 1s Углерод плюс азот уравнение реакции 2s Углерод плюс азот уравнение реакции 2p

Атом углерода содержит на внешнем энергетическом уровне 2 неспаренных электрона и 1 неподеленную электронную пару в основном энергетическом состоянии и 4 неспаренных электрона в возбужденном энергетическом состоянии.

Степени окисления атома углерода — от -4 до +4. Характерные степени окисления -4, 0, +2, +4.

Физические свойства

Углерод в природе существует в виде нескольких аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — это модификация углерода с атомной кристаллической решеткой. Алмаз — самое твердое минеральное кристаллическое вещество, прозрачное, плохо проводит электрический ток и тепло. Атомы углерода в алмазе находятся в состоянии sp 3 -гибридизации.

Углерод плюс азот уравнение реакцииУглерод плюс азот уравнение реакции

Графит — это аллотропная модификация, в которой атомы углерода находятся в состоянии sp 2 -гибридизации. При этом атомы связаны в плоские слои, состоящие из шестиугольников, как пчелиные соты. Слои удерживаются между собой слабыми связями. Это наиболее устойчивая при нормальных условиях аллотропная модификация углерода.

Графит — мягкое вещество серо-стального цвета, с металлическим блеском. Хорошо проводит электрический ток. Жирный на ощупь.

Углерод плюс азот уравнение реакцииУглерод плюс азот уравнение реакции

Карбин — вещество, в составе которого атомы углерода находятся в sp-гибридизации. Состоит из цепочек и циклов, в которых атомы углерода соединены двойными и тройными связями. Карбин — мелкокристаллический порошок серого цвета.

[=C=C=C=C=C=C=]n или [–C≡C–C≡C–C≡C–]n

Углерод плюс азот уравнение реакцииУглерод плюс азот уравнение реакции

Фуллерен — это искусственно полученная модифицикация углерода. Молекулы фуллерена — выпуклые многогранники С60, С70 и др. Многогранники образованы пяти- и шестиугольниками, в вершинах которых расположены атомы углерода.

Фуллерены — черные вещества с металлическим блеском, обладающие свойствами полупроводников.

Углерод плюс азот уравнение реакции

В природе углерод встречается как в виде простых веществ (алмаз, графит), так и в виде сложных соединений (органические вещества — нефть, природные газ, каменный уголь, карбонаты).

Качественные реакции

Качественная реакция на карбонат-ионы CO3 2- — взаимодействие солей-карбонатов с сильными кислотами . Более сильные кислоты вытесняют угольную кислоту из солей. При этом выделяется бесцветный газ, не поддерживающий горение – углекислый газ.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Качественная реакция на углекислый газ CO2помутнение известковой воды при пропускании через нее углекислого газа:

При дальнейшем пропускании углекислого газа осадок растворяется, т.к. карбонат кальция под действием избытка углекислого газа переходит в растворимый гидрокарбонат кальция:

Углерод плюс азот уравнение реакции

Видеоопыт взаимодействия гидроксида кальция с углекислым газом (качественная реакция на углекислый газ) можно посмотреть здесь.

Углекислый газ СО2 не поддерживает горение . Угарный газ CO горит голубым пламенем.

Углерод плюс азот уравнение реакции

Соединения углерода

Основные степени окисления углерода — +4, +2, 0, -1 и -4.

Наиболее типичные соединения углерода:

Степень окисленияТипичные соединения
+4оксид углерода (IV) CO2

гидрокарбонаты MeHCO3

+2оксид углерода (II) СО

муравьиная кислота HCOOH

-4метан CH4

карбиды металлов (карбид алюминия Al4C3)

бинарные соединения с неметаллами (карбид кремния SiC)

Химические свойства

При нормальных условиях углерод существует, как правило, в виде атомных кристаллов (алмаз, графит), поэтому химическая активность углерода — невысокая.

1. Углерод проявляет свойства окислителя (с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому углерод реагирует и с металлами , и с неметаллами .

1.1. Из галогенов углерод при комнатной температуре реагирует с фтором с образованием фторида углерода:

1.2. При сильном нагревании углерод реагирует с серой и кремнием с образованием бинарного соединения сероуглерода и карбида кремния соответственно:

C + 2S → CS2

C + Si → SiC

1.3. Углерод не взаимодействует с фосфором .

При взаимодействии углерода с водородом образуется метан. Реакция идет в присутствии катализатора (никель) и при нагревании:

1.4. С азотом углерод реагирует при действии электрического разряда, образуя дициан:

2С + N2 → N≡C–C≡N

1.5. В реакциях с активными металлами углерод проявляет свойства окислителя. При этом образуются карбиды:

2C + Ca → CaC2

1.6. При нагревании с избытком воздуха графит горит , образуя оксид углерода (IV):

при недостатке кислорода образуется угарный газ СО:

2C + O2 → 2CO

Алмаз горит при высоких температурах:

Горение алмаза в жидком кислороде:

Графит также горит:

Углерод плюс азот уравнение реакции

Графит также горит, например, в жидком кислороде:

Углерод плюс азот уравнение реакции

Графитовые стержни под напряжением:

2. Углерод взаимодействует со сложными веществами:

2.1. Раскаленный уголь взаимодействует с водяным паром с образованием угарного газа и водорода:

C 0 + H2 + O → C +2 O + H2 0

2.2. Углерод восстанавливает многие металлы из основных и амфотерных оксидов . При этом образуются металл и угарный газ. Получение металлов из оксидов с помощью углерода и его соединений называют пирометаллургией.

Например , углерод взаимодействует с оксидом цинка с образованием металлического цинка и угарного газа:

ZnO + C → Zn + CO

Также углерод восстанавливает железо из железной окалины:

4С + Fe3O4 → 3Fe + 4CO

При взаимодействии с оксидами активных металлов углерод образует карбиды.

Например , углерод взаимодействует с оксидом кальция с образованием карбида кальция и угарного газа. Таким образом, углерод диспропорционирует в данной реакции:

3С + СаО → СаС2 + СО

2.3. Концентрированная серная кислота окисляет углерод при нагревании. При этом образуются оксид серы (IV), оксид углерода (IV) и вода:

2.4. Концентрированная азотная кислотой окисляет углерод также при нагревании. При этом образуются оксид азота (IV), оксид углерода (IV) и вода:

2.5. Углерод проявляет свойства восстановителя и при сплавлении с некоторыми солями , в которых содержатся неметаллы с высокой степенью окисления.

Например , углерод восстанавливает сульфат натрия до сульфида натрия:

Карбиды

Карбиды – это соединения элементов с углеродом . Карбиды разделяют на ковалентные и ионные в зависимости от типа химической связи между атомами.

Это соединения с металлами, при гидролизе которых образуется пропин

Например : Mg2C3

Пропиниды разлагаются водой или кислотами с образованием пропина и гидроксида или соли

Например:

Все карбиды проявляют свойства восстановителей и могут быть окислены сильными окислителями .

Например , карбид кремния окисляется концентрированной азотной кислотой при нагревании до углекислого газа, оксида кремния (IV) и оксида азота (II):

Оксид углерода (II)

Строение молекулы и физические свойства

Оксид углерода (II) («угарный газ») – это газ без цвета и запаха. Сильный яд. Небольшая концентрация угарного газа в воздухе может вызвать сонливость и головокружение. Большие концентрации угарного газа вызывают удушье.

Строение молекулы оксида углерода (II) – линейное. Между атомами углерода и кислорода образуется тройная связь, за счет дополнительной донорно-акцепторной связи:

Углерод плюс азот уравнение реакции

Способы получения

В лаборатории угарный газ можно получить действием концентрированной серной кислоты на муравьиную или щавелевую кислоты:

НСООН → CO + H2O

В промышленности угарный газ получают в газогенераторах при пропускании воздуха через раскаленный уголь:

CO2 + C → 2CO

Еще один важный промышленный способ получения угарного газа — паровая конверсия метана. При взаимодействии перегретого водяного пара с метаном образуется угарный газ и водород:

Также возможна паровая конверсия угля:

C 0 + H2 + O → C +2 O + H2 0

Угарный газ в промышленности также можно получать неполным окислением метана:

Химические свойства

Оксид углерода (II) – несолеобразующий оксид . За счет углерода со степенью окисления +2 проявляет восстановительные свойства.

1. Угарный газ горит в атмосфере кислорода . Пламя окрашено в синий цвет:

2. Оксид углерода (II) окисляется хлором в присутствии катализатора или под действием света с образованием фосгена. Фосген – ядовитый газ.

3. Угарный газ взаимодействует с водородом при повышенном давлении . Смесь угарного газа и водорода называется синтез-газ. В зависимости от условий из синтез-газа можно получить метанол, метан, или другие углеводороды.

Например , под давлением больше 20 атмосфер, при температуре 350°C и под действием катализатора угарный газ реагирует с водородом с образованием метанола:

4. Под давлением оксид углерода (II) реагирует с щелочами. При этом образуется формиат – соль муравьиной кислоты.

Например , угарный газ реагирует с гидроксидом натрия с образованием формиата натрия:

CO + NaOH → HCOONa

5. Оксид углерода (II) восстанавливает металлы из оксидов .

Например , оксид углерода (II) реагирует с оксидом железа (III) с образованием железа и углекислого газа:

Оксиды меди (II) и никеля (II) также восстанавливаются угарным газом:

СО + CuO → Cu + CO2

СО + NiO → Ni + CO2

6. Угарный газ окисляется и другими сильными окислителями до углекислого газа или карбонатов.

Например , пероксидом натрия:

Оксид углерода (IV)

Строение молекулы и физические свойства

Оксид углерода (IV) (углекислый газ) — газ без цвета и запаха. Тяжелее воздуха. Замороженный углекислый газ называют также «сухой лед». Сухой лед легко подвергается сублимации — переходит из твердого состояния в газообразное.

Смешивая сухой лед и различные вещества, можно получить интересные эффекты. Например, сухой лед в пиве:

Углекислый газ не горит, поэтому его применяют при пожаротушении.

Молекула углекислого газа линейная , атом углерода находится в состоянии sp-гибридизации, образует две двойных связи с атомами кислорода:

Углерод плюс азот уравнение реакции

Обратите внимание! Молекула углекислого газа не полярна. Каждая химическая связь С=О по отдельности полярна, а вся молекула не будет полярна. Объяснить это очень легко. Обозначим направление смещения электронной плотности в полярных связях стрелочками (векторами):

Углерод плюс азот уравнение реакции

Теперь давайте сложим эти векторы. Сделать это очень легко. Представьте, что атом углерода — это покупатель в магазине. А атомы кислорода — это консультанты, которые тянут его в разные стороны. В данном опыте консультанты одинаковые, и тянут покупателя в разные стороны с одинаковыми силами. Несложно увидеть, что покупатель двигаться не будет ни влево, ни вправо. Следовательно, сумма этих векторов равна нулю. Следовательно, полярность молекулы углекислого газа равна нулю.

Способы получения

В лаборатории углекислый газ можно получить разными способами:

1. Углекислый газ образуется при действии сильных кислот на карбонаты и гидрокарбонаты металлов. При этом взаимодействуют с кислотами и нерастворимые карбонаты, и растворимые.

Например , карбонат кальция растворяется в соляной кислоте:

Видеоопыт взаимодействия карбоната кальция с соляной кислотой можно посмотреть здесь.

Еще один пример : гидрокарбонат натрия реагирует с бромоводородной кислотой:

2. Растворимые карбонаты реагируют с растворимыми солями алюминия, железа (III) и хрома (III) . Карбонаты трехвалентных металлов необратимо гидролизуются в водном растворе.

Например: хлорид алюминия реагирует с карбонатом калия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется хлорид калия:

3. Углекислый газ также образуется при термическом разложении нерастворимых карбонатов и при разложении растворимых гидрокарбонатов.

Например , карбонат кальция разлагается при нагревании на оксид кальция и углекислый газ:

Химические свойства

Углекислый газ — типичный кислотный оксид . За счет углерода со степенью окисления +4 проявляет слабые окислительные свойства .

1. Как кислотный оксид, углекислый газ взаимодействует с водой . Реакция очень сильно обратима, поэтому мы считаем, что в реакциях угольная кислота распадается почти полностью при образовании.

2. Как кислотный оксид, углекислый газ взаимодействует с основными оксидами и основаниями . При этом углекислый газ реагирует только с сильными основаниями (щелочами) и их оксидами . При взаимодействии углекислого газа с щелочами возможно образование как кислых, так и средних солей.

Например , гидроксид калия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат калия:

При избытке щелочи образуется средняя соль, карбонат калия:

Помутнение известковой воды — качественная реакция на углекислый газ:

Видеоопыт взаимодействия гидроксида кальция (известковая вода) с углекислым газом можно посмотреть здесь.

3. Углекислый газ взаимодействует с карбонатами . При пропускании СО2 через раствор карбонатов образуются гидрокарбонаты.

Например , карбонат натрия взаимодействует с углекислым газом. В избытке углекислого газа образуется кислая соль, гидрокарбонат натрия:

4. Как слабый окислитель, углекислый газ взаимодействует с некоторыми восстановителями .

Например , углекислый газ взаимодействует с углеродом с образованием угарного газа:

CO2 + C → 2CO

Магний горит в атмосфере углекислого газа:

Видеоопыт взаимодействия магния с углекислым газом можно посмотреть здесь.

Поэтому углекислый газ нельзя применять для пожаротушения горящего магния.

Углекислый газ взаимодействует с пероксидом натрия. При этом пероксид натрия диспропорционирует:

Карбонаты и гидрокарбонаты

При нагревании карбонаты (все, кроме карбонатов щелочных металлов и аммония) разлагаются до оксида металла и оксида углерода (IV).

Карбонат аммония при нагревании разлагается на аммиак, воду и углекислый газ:

Гидрокарбонаты при нагревании переходят в карбонаты:

Качественной реакцией на ионы СО3 2─ и НСО3 − является их взаимодействие с более сильными кислотами , последние вытесняют угольную кислоту из солей, а та разлагается с выделением СО2.

Например , карбонат натрия взаимодействует с соляной кислотой:

Гидрокарбонат натрия также взаимодействует с соляной кислотой:

NaHCO3 + HCl → NaCl + CO2 ↑ + H2O

Гидролиз карбонатов и гидрокарбонатов

Растворимые карбонаты и гидрокарбонаты гидролизуются по аниону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

Однако карбонаты и гидрокарбонаты алюминия, хрома (III) и железа (III) гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Более подробно про гидролиз можно прочитать в соответствующей статье.

Видео:Углерод - Самый СТРАННЫЙ химический Элемент!Скачать

Углерод - Самый СТРАННЫЙ химический Элемент!

Углерод плюс азот уравнение реакции

Углерод

Углерод – основная составная часть всех организмов, встречается как в свободном виде (алмаз, графит), так и в связанном состоянии (СО2, карбонаты, уголь, нефть, природный газ). Минералы: магнезит MgСО3, кальцит (известковый шпат, известняк, мел, мрамор) CaСО3, доломит CaСО3·MgСО3.

Аллотропные модификации – алмаз, графит, карбин.

Алмаз – бесцветное, прозрачное, кристаллическое вещество с очень высоким преломлением света. Показатели преломления для световых волн различных длин в алмазе сильно различаются, поэтому видимый свет разлагается в спектр. Алмаз – самый твёрдый, но хрупкий минерал, шлифуется только собственным порошком. После огранки и шлифовки получают бриллианты, массу которых выражают в каратах(1 карат – 200).

Структура алмаза отвечает sp 3 -гибридизации орбиталей атомов углерода. Каждый атом углерода имеет 4 σ –связи и тетраэдрически окружён четырьмя такими же атомами углерода.

Графит – тёмно-серое, мягкое вещество с металлическим блеском, жирное на ощупь, хорошо проводит тепло, обладает электрической проводимостью. У графита слоистая структура. Атомы углерода расположены отдельными слоями, образованными из плоских шестиугольников. В слое sp 2 -гибридизация орбиталей атомов углерода. Слои связаны друг с другом слабыми силами, поэтому графит легко расслаивается на чешуйки.

Карбин – чёрный мелкокристаллический порошок, имеет структуру параллельно расположенных линейных цепей с sp-гибридизацией орбиталей атомов углерода с двойными связями.

При нагревании до 800 0 С карбин превращается в графит.

Амфотерный углерод (сажа) – мелкий графитовый порошок, образуется при неполном сгораний соединений углерода. Применяют в качестве наполнителя для резин.

Химические свойства углерода

При обычной температуре инертен, при нагревании 800-900 0 С взаимодействует с О2, N2, Si, S, металлами:

2С + N2=(СN)2 циан – ядовитый газ

С + Si = SiС карбид Si(карборунд)

Оксиды углерода

СО (ΙΙ) (угарный газ) – бесцветный газ без запаха, мало растворим в воде, очень ядовит. Угарным газом называется потому, что образует с железом гемоглобина крови прочное комплексное соединение, препятствующее переносу кислорода.

Получают при неполном окислении углерода:

  1. 2С + О2 = 2СО
  2. из муравьиной кислоты, используя водоотнимающие вещества
  1. восстановлением диоксида углерода
  1. восстановлением водяного пара раскалённым коксом

Молекула СО имеет строение:

Третья связь образована по донорно-акцепторному механизму (кислород – донор электронной пары, углерод – акцептор).

СО обладает свойствами сильного восстановителя. При высоких температурах СО восстанавливает оксиды металлов:

Cu + СО = CuО + СО2

С некоторыми окислителями СО взаимодействует при небольшом нагревании:

СО + Cl2 = COCl фосген – ядовит

СО + S = COS тиооксид углерода

В присутствии катализатора при высоких температурах и давлении СО взаимодействует с H2:

С NH3 с образованием циановодорода:

При высоких температурах и давлениях СО взаимодействует с d-элементами, например, железом и никелем с образованием комплексных соединений, которые называются карбонилами:

5СО + Fe = [Fe(CO)5] — пентакарбонил железа

4СО + Ni = [Ni(CO)4] — тетракарбонил никеля

Это бесцветные легко испаряющиеся жидкости, ядовиты. При термическом разложении карбонилов получаются особо чистые металлы.

СО2 (ΙV) (углекислый газ) – бесцветный газ со слабым кислым вкусом и запахом, в 1,5 раза тяжелее воздуха.

(Опыты: «переливание» из сосуда в сосуд; тушение пламени)

При 20 0 С под давлением 5МПа (≈ 50 атм.) СО2 сжижается. Испарение жидкого СО2 приводит к охлаждению и образованию твёрдого диоксида углерода снегоподобной массы («сухой лёд»).

Получают в лабораторных условиях:

В промышленности: обжиг известняка:

СО2 проявляет слабые окислительные свойства, взаимодействует только с очень сильными восстановителями:

СО2 + 2Mg = 2MgO + C (опыт)

СО2 – кислотообразующий оксид:

СО2 используется в огнетушителях, для приготовления газированных напитков, как охлаждающий агент («сухой лёд» и его смеси).

Угольная кислота H2CO3

СО2 мало растворим в воде. В водном растворе имеет место равновесие:

Диссоциация в основном идёт по Ι ступени.

Равновесие сильно смещено влево. Кислота слабая, являясь двухосновной, образует два ряда солей: гидрокарбонаты и карбонаты.

Соли H2CO3 получаются при взаимодействии СО2 со щелочами:

При избытке СО2 – гидрокарбонат:

Карбонаты и гидрокарбонаты щелочных металлов и аммония растворимы, остальные – нерастворимы. Карбонаты могут растворяться при взаимодействии с диоксидом углерода:

Гидрокарбонаты и карбонаты термически неустойчивы:

Соединения углерода с серой

Сероуглерод (дисульфид углерода) СS2 , получают из метана:

С S 2 – бесцветный, летуч, не растворяется в воде, ядовит, горит:

При взаимодействии с сульфидами образуются тиокарбонаты:

СS2 + K2S = K2СS3 (инсектицид при борьбе с насекомыми)

При действии на тиокарбонаты кислот образуется неустойчивая тиоугольная кислота:

Соединения с галогенами

Галогениды нельзя получить непосредственным соединением углерода с галогенами, а только косвенным путём, например, СCl4 (тетрахлорид углерода, четырёххлористый углерод) можно получить хлорированием метана, но большое распространение получило хлорирование сероуглерода:

В ряду СF4 – CCl4 – CBr4 – CI4 устойчивость галогенидов углерода уменьшается, а химическая активность их возрастает.

С Cl 4 – бесцветная тяжёлая, негорючая жидкость, растворяет смолы, жиры, лаки.

С F 4 – бесцветный газ с низкими температурами кипения (-128 0 С) и плавления (-184 0 С), химически инертен, используется в качестве фреона.

Смешанные галогениды типа СF2Cl2 с F3Cl и другие используют в качестве фреонов (-это жидкости с очень низкой температурой кипения или газы, легко превращающиеся в жидкости – в холодильной технике).

Соединения углерода с азотом

также циан можно получить:

Взаимодействует со щелочами:

Растворяется в воде: (гидролиз С2N2 на первой ступени)

HCN – циановодород (синильная кислота) – бесцветная жидкость с характерным запахом горького миндаля, tкип=+26 0 С, очень ядовит. Смертельная доза – 50 мг. HCN, продолжительность действия – несколько секунд, циановодород блокирует дыхательные ферменты и вызывает удушье, хорошо растворяется в воде, водный раствор называется циановодородная (синильная) кислота, слабая. Соли – цианиды, цианиды щелочных металлов хорошо растворимы в воде, относятся к сильнейшим ядам (смертельная доза – 150 мг.). При хранении во влажном воздухе переходит в карбонаты с выделением HCN:

Цианиды используются для получения комплексных соединений:

жёлтая кровяная соль

K3[Fe(CN)6] – красная кровяная соль

HCNO – циановая кислота (H-O-C≡N) – летучая (tкип=25 0 С), неустойчивая жидкость (её водный раствор представляет собой весьма сильную кислоту pK 3,53)

Другая форма –HONC− гремучая кислота (H-O-N≡C:).

Очень неустойчива, при ударе взрывается, её соли – фульминаты – взрывчатые вещества. Например, фульминат ртути (гремучая ртуть) взрывается при ударе и применяется в качестве детонатора. Его разложение сопровождается выделением газообразных веществ:

Тиоциановая кислота

При взаимодействии цианидов с серой образуются соли тиоциановой кислоты – роданиды.

Родановодород получают по уравнению:

Тиоцианат калия KCNS – реагент на Fe 3+ , с которыми образует тиоцианатные комплексы Fe(ΙΙΙ), Fe(CNS)3 – имеющий красную окраску.

Применение углерода и его соединений

Алмаз – при изготовлении режущего и бурового инструмента; графит служит основой огнеупорных, электродных материалов; карборунд – для изготовления огнеупорных плит, муфелей; CO 2 – для получения соды, мочевины, при производстве сахара, пива; активированный уголь – в медицине, в противогазах.

Германий, олово, свинец

В природе олово и свинец обычно встречаются в виде: SnO2 – кассетерит, PbS – свинцовый блеск. Германий собственных руд не имеет, встречается с рудами цинка, олова, свинца. Олово и свинец получают пирометаллургическим способом: олово — непосредственно восстановлением углеродом из оксида, свинец — обжигом сульфида в кислороде, с последующим восстановлением оксидом углерода (II) до металла. Германий получают более сложным способом: вначале получают четыреххлористый германий GeCl4 , который растворяют в воде и получают оксид германия, из которого водородом восстанавливают германий:

Германий и олово – белые блестящие металлы на воздухе окисляются слабо. Свинец – серого цвета за счет пленки оксида. Олово полиморфно. При температуре > +13 о С устойчива β-модификация. С понижением температуры β-олово переходит в α- модификацию. Этот переход начинается при +13 о С и очень быстро протекает при -33 о С, в результате олово превращается в порошок. Это явление носит название “оловянная чума”.

Химические свойства

1. Характерные степени окисления в соединениях для Ge +4; для Sn +4,+2; для Pb +2.

2. При нагревании реагируют с кислородом, серой, хлором, не реагируют с водородом, углеродом, азотом.

3.Германий и олово с водой не взаимодействуют. Свинец медленно растворяется в воде:

4. В ряду активности Ge стоит между Cu и Ag, т.е. после водорода, а Sn и Pb до водорода. Олово взаимодействуя с разбавленными кислотами вяло вытесняет водород:

Аналогичные реакции со свинцом практически не идут, т.к. PbCl2 и PbSO4 плохо растворимы.

Свинец и олово взаимодействуют с разбавленной азотной кислотой (в концентрированной cвинец пассивируется):

Олово и германий взаимодействуют с концентрированной азотной кислотой:

5. Все три элемента взаимодействуют со щелочами (германий в присутствии окислителя):

6. С кислородом Ge, Sn, Pb дают два ряда оксидов и гидроксидов (валентности II и IV).

GeO, SnO черные тугоплавкие порошки, PbO желтый порошок (свинцовый глет). Все три оксида не растворимы в воде, взаимодействуют с кислотами и щелочами:

аналогично идут реакции с германием и свинцом и соли анионного типа носят названия: “германит”, “станнит”, “плюмбит», т.е. это соли германистой, оловянистой и свинцовистой кислот.

7. Гидроксиды (II) получают взаимодействием соли со щелочью:

При избытке щелочи гидроксиды, выпавшие в осадок растворяются:

В ряду Ge(OH)2 — Sn(OH)2 — Pb(OH)2 основные свойства усиливаются.

Гидролиз солей анионного типа идет практически необратимо:

Соли катионного типа гидролизуются только по I ступени, т.к. получающиеся основные соли выпадают в осадок:

8. Оксиды GeO2, SnO2 – тугоплавкие белые вещества, PbO2 – коричневого цвета. Оксиды германия и олова получают окислением металла в кислороде при нагревании. Оксид свинца PbO2 можно получить по реакции:

Все три оксида проявляют амфотерные свойства, но кислотная функция у них выражена сильнее, чем у оксидов в низшей степени окисления. Существует смешанный оксид свинца Pb3O4 – свинцовый сурик, нерастворимый в воде порошок красивого ярко-оранжевого цвета. При взаимодействии этого оксида с разбавленной азотной кислотой образуются двухвалентный нитрат свинца и диоксид свинца:

Это взаимодействие подтверждает, что Pb3O4 можно рассматривать как смесь 2PbO + PbO2.

9. Гидроксиды (IV) можно получить при действии на соли четырехвалентных металлов щелочью:

10. Гидроксиды (IV) амфотерны:

Соли анионного типа носят название “германаты”, “станнаты”, “плюмбаты”.

11. Соединения с серой получают как непосредственным взаимодействием простых веществ, так и при пропускании сероводорода через растворы солей:

Германий и олово дают сульфиды и дисульфиды, свинец дисульфидов не образует. Дисульфиды образуют тиосоединения:

Ge – как полупроводниковый материал,

Sn и Pb в основном в виде сплавов (бронзы, баббиты),

Sn – в качестве защитного покрытия от коррозии,

Pb(C2H5)4 (тетраэтилсвинец) – добавка в бензин (антидетонатор).

Тема. Побочная подгруппа IV группы

Элементы побочной подгруппы IV группы — типичные металлы. Химически наиболее активен титан. Цирконий и гафний менее активны.

В природе встречаются в виде минералов: FeTiO3 – ильменит, TiO2 – рутил, ZrSiO4 – циркон. Hf своих руд не имеет, встречается в рудах циркония, железа, марганца.

Ti получают пирометаллургическим способом из TiCl4 или TiO2:

TiO2 + 2Mg = Ti + 2MgO

Очистка титана от примесей обычно проводится газотранспортным методом:

Цирконий и гафний получают электролизом расплавов их солей.

Чистые металлы вязкие, ударопрочные, с высокими температурами плавления (Ti – 1700 о С, Zr – 1900 о С, Hf – 2200 о С). Ti относится к легким металлам, плотность его 4,5 г/см 3 .

Химические свойства

1. Характерные степени окисления в соединениях для Ti +4,+3; для Zr и Hf +4. При нагревании все три элемента активно взаимодействуют с различными неметаллами:

Нитриды циркония очень твердые, имеют высокую температуру плавления. Используются в качестве покрытия бурильных коронок.

Карбиды (TiC, ZrC, HfC) – сталеподобные вещества, устойчивые к химическим воздействиям.

2. С кислотами Ti, Zr и Hf взаимодействуют плохо. Лишь титан растворяется в азотной кислоте:

Цирконий и гафний легко взаимодействуют только с “царской водкой”:

3. Оксиды TiO2 – амфотерный, ZrO2 – слабоамфотерный, HfO2 – основный могут быть получены при нагревании металлов в атмосфере кислорода или на воздухе. Это тугоплавкие белые порошки, при сплавлении со щелочью образуют соли анионного типа — титанаты и цирконаты. Для гафния аналогичные соли не получены.

4. При взаимодействии с серной кислотой оксиды образуют соответствующие сульфаты, которые быстро гидролизуются до сульфата титанила, цирконила, гафнила:

У амфотерного TiO2 более выражена кислотная функция. Соответствующая ему метатитановая кислота H2TiO3 существует в двух модификациях α и β. Общая формула титановых кислот xTiO2 · yH2O.

Применение. Титан – третий по значимости (после железа и алюминия) конструкционный материал. Титан применяется в виде сплавов в корабле-, ракето-, машиностроении. Цирконий и гафний применяются в ядерном реакторостроении (цирконий для оболочек тепловыделяющих элементов, гафний – регулирующие стержни для поглощения нейтронов при работе реактора).

Тема. V ГРУППА Главная подгруппа

Общая электронная формула . ns 2 p 3 .

Для азота известны соединения, в которых он проявляет степени окисления -3, -2, -1, -1/3, +1, +2, +3, +4, +5. Причем, азот довольно легко переходит из одной степени окисления в другую.

Для фосфора, мышьяка и сурьмы характерны степени окисления +5, +3, -3. Для висмута – только +3; соединения Bi (+5) – очень сильные окислители.

Азот, фосфор, мышьяк – типичные неметаллы. Сурьма – полуметалл. Висмут – типичный металл.

Азот

Большая часть азота в природе находится в свободном состоянии. 78% (по объему) воздуха приходится на долю молекулярного азота N2. Входит в состав селитр, необходимая составная часть белка, поэтому входит в состав всех живых организмов.

В промышленности азот получают ректификацией воздуха, т.е. при высоком давлении и низкой температуре сжижают воздух. Затем, повышая температуру, фракционно испаряют сжиженный воздух. Первой выкипающей фракцией при -196 о С является азот. Молекулярный азот не имеет запаха и вкуса, малорастворим в воде, очень инертен.

Химические свойства

1. Все реакции N2 с металлами (кроме реакции с литием) идут при довольно сильном нагревании. Исключением является взаимодействие азота с литием, которое начинается уже при комнатной температуре:

Соединения азота с металлами носят название нитриды. Нитриды активных металлов разлагаются водой:

Нитриды тяжелых металлов входят в состав сплавов, повышая их прочность и коррозионную стойкость.

2. С неметаллами азот взаимодействует только при высоких температурах и обратимо. Равновесие как правило сдвинуто влево:

Реакция получения аммиака имеет большое практическое значение, т.к. аммиак является важным сырьем для химической промышленности. Его синтез идет при давлении 300-500 атм (для смещения равновесия вправо), температуре 400-550 о С, в присутствии железо-никелевого катализатора. В лабораторных условиях аммиак можно получить из хлорида аммония:

Аммиак – ядовитый газ с резким запахом. При -38 о С сжижается. Жидкий аммиак – полярный растворитель, имеющий ряд необычных свойств.

Аммиак очень хорошо растворим в воде: при 20 о С в 1 литре воды можно растворить до 800 литров NH3, а при 0 о С – около 1200 литров. Молекулы аммиака и воды образуют довольно прочные водородные связи, часть из них соединяются в малоустойчивый гидрат NH3×H2O, который в водном растворе диссоциирует как слабое основание (NH4OH):

NH4 + – ион аммония. Все соли аммония прекрасно растворимы в воде.

Для аммиака характерны реакции присоединения, окислительно-восстановительные и замещения.

а) Реакции присоединения:

б) Окислительно-восстановительные реакции:

в) Реакции замещения:

3. Наиболее практически важным продуктом частичного окисления аммиака является гидразин (N2H4),образующийся при взаимодействии аммиака с перхлоратом натрия:

Как видно из уравнения, под действием окислителя каждая молекула аммиака теряет один атом водорода, а оставшиеся радикалы -NH2 соединяются друг с другом. Следовательно, структурная формула гидразина будет: H2N-NH2. Это бесцветная жидкость, дымящая на воздухе и смешивающаяся с водой в любых соотношениях. Пары гидразина сгорают на воздухе фиолетовым пламенем:

На этой реакции основано использование гидразина в качестве ракетного топлива.

N2O – оксид азота (I) (закись азота, «веселящий газ») может быть получен разложением нитрата аммония по уравнению:

При 168 о С NH4NO3 плавится, при 190 о С начинает разлагаться, выше 300 о С распад может протекать с взрывом. N2O – несолеобразующий оксид, бесцветный газ со слабым приятным запахом и сладковатым вкусом, довольно хорошо растворим в воде. При нагревании может проявлять окислительные свойства, не ядовит, наркотик.

NO – оксид азота (II) получается в природе при грозовых разрядах. В лабораторных условиях можно получить действием на медь разбавленной азотной кислотой:

NO – несолеобразующий оксид. Бесцветный газ, малорастворимый в воде. Ядовит. Легко окисляется на воздухе до NO2. Проявляет восстановительные и окислительные свойства, восстановительная функция выражена сильнее.

N2O3 – оксид азота (III) получается в виде синей жидкости в ходе обратимой реакции между NO и NO2, при t = -20 о С — -30 о С:

При комнатной температуре неустойчив, разлагается на NO и NO2. При растворении в воде образует слабую азотистую кислоту HNO2. Как азотистая кислота, так и ее соли неустойчивы и уже на воздухе окисляются до нитратов. Соли и кислота обладают окислительно-восстановительными свойствами:

Соли азотистой кислоты используются в производстве взрывчатки, красок, в пищевой промышленности (KNO2 – для сохранения цвета мясных продуктов).

NO2 – оксид азота (IV) очень ядовитый газ бурого цвета, склонен образовывать димеры состава N2O4. Сильный окислитель. В лабораторных условиях можно получить действием на медь концентрированной азотной кислотой:

N2O5 оксид азота (V) получается при обезвоживании азотной кислоты оксидом фосфора (V):

N2O5 — твердое белое вещество, при ударе взрывается. Растворяясь в воде, образует азотную кислоту.

Азотная кислота

В промышленности азотную кислоту получают в три этапа:

Азотная кислота и ее соли сильные окислители.

HNO3 в отличии от других кислот никогда не взаимодействует с металлами с выделением молекулярного водорода H2. В зависимости от концентрации кислоты и активности металла продуктами восстановления азотной кислоты могут быть NO2, NO, N2O, N2, NH3(NH4NO3). Чем менее активен металл и чем большую концентрацию имеет HNO3, тем более вероятно образование NO2 (или NO):

Чем более активен металл и чем меньшую концентрацию имеет HNO3, тем более вероятно образование N2O, N2, NH3 (NH4NO3):

Концентрированная азотная кислота взаимодействует и с неметаллами. При этом образуются оксиды NO2 и NO (так как неметаллы – слабые восстановители), а сами неметаллы как правило окисляются до высших кислот или высших оксидов:

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Углерод

Углерод

Углерод — неметаллический элемент IV группы периодической таблицы Д.И. Менделеева, является важнейшей частью всех органических веществ в природе.

Углерод плюс азот уравнение реакции

Общая характеристика элементов IVa группы

От C к Pb (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Из элементов IVа группы углерод и кремний относятся к неметаллам, германий, олово и свинец — металлы.

Углерод плюс азот уравнение реакции

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 2 :

  • C — 2s 2 2p 2
  • Si — 3s 2 3p 2
  • Ge — 4s 2 4p 2
  • Sn — 5s 2 5p 2
  • Pb — 6s 2 6p 2

Углерод плюс азот уравнение реакции

Природные соединения

В природе углерод встречается в виде следующих соединений:

  • Аллотропных модификаций — графит, алмаз, фуллерен
  • MgCO3 — магнезит
  • CaCO3 — кальцит (мел, мрамор)
  • CaCO3*MgCO3 — доломит

Углерод плюс азот уравнение реакции

Получение

Углерод получают в ходе пиролиза углеводородов (пиролиз — нагревание без доступа кислорода). Также применяется получение углеродистых соединений: древесины и каменного угля.

Углерод плюс азот уравнение реакции

Химические свойства
  • Реакции с неметаллами

При нагревании углерод реагирует со многими неметаллами: водородом, кислородом, фтором.

2С + O2 → (t) 2CO (угарный газ — продукт неполного окисления углерода, образуется при недостатке кислорода)

С + O2 → (t) CO2 (углекислый газ — продукт полного окисления углерода, образуется при достаточном количестве кислорода)

Реакции с металлами

При нагревании углерод реагирует с металлами, проявляя свои окислительные свойства. Напомню, что металлы могут принимать только положительные степени окисления.

Ca + C → CaC2 (карбид кальция, СО углерода = -1)

Al + C → Al4C3 (карбид алюминий, СО углерода -4)

Очевидно, что степень окисления углерода в соединении с различными металлами может отличаться.

Углерод плюс азот уравнение реакции

Углерод — хороший восстановитель. С помощью него металлургическая промышленность справляется с задачей получения чистых металлов из их оксидов:

Углерод восстанавливает не только металлы из их оксидов, но и неметаллы подобным образом:

SiO2 + C → (t) Si + CO

Может восстановить и собственный оксид:

Углерод плюс азот уравнение реакции

Известная реакция взаимодействия угля с водяным паром, называемая также газификацией угля, торфа, сланца — крайне важна в промышленности:

Реакции с кислотами

В реакциях с кислотами углерод проявляет себя как восстановитель:

Углерод плюс азот уравнение реакции

Оксид углерода II — СO

Оксид углерода II — продукт неполного окисления углерода. Несолеобразующий оксид. Это чрезвычайно опасное вещество часто образуется при пожарах в замкнутых помещениях, при прогревании машины в гараже.

Растворяясь в крови угарный газ (имеющий в 300 раз большее сродство к гемоглобину, чем кислород) легко выигрывает конкуренцию у кислорода и занимает его место в эритроцитах. Отравление угарным газом нередко заканчивается летальным исходом.

В промышленности угарный газ получают восстановлением оксида углерода IV или газификацией угля (t = 1000 °С).

В лаборатории угарный газ получают при разложении муравьиной кислоты в присутствии серной:

Полностью окисляется до углекислого газа в реакции с кислородом, восстанавливает оксиды металлов.

FeO + CO → Fe + CO2

Образование карбонилов — чрезвычайно токсичных веществ.

Углерод плюс азот уравнение реакции

Оксид углерода IV — CO2

Продукт полного окисления углерода. Относится к кислотным оксидам, соответствует угольной кислоте H2CO3. Бесцветный газ, без запаха.

В промышленности углекислый газ получают при разложении известняка, в ходе производства алкоголя, при спиртовом брожении глюкозы.

В лабораторных условиях используют реакцию мела (мрамора) с соляной кислотой.

Углекислый газ образуется при горении органических веществ:

Углерод плюс азот уравнение реакции

    Реакция с водой

В результате реакции с водой образуется нестойкая угольная кислота, которая сразу же распадается на воду и углекислый газ.

Реакции с основными оксидами и основаниями

В ходе реакций с основаниями и основными оксидами углекислый газ образует соли угольной кислоты: средние — карбонаты (при избытке основания), кислые — гидрокарбонаты (при избытке кислотного оксида).

2KOH + CO2 → K2CO3 + H2O (соотношение основание — кислотный оксид 2:1)

KOH + CO2 → KHCO3 (соотношение основание — кислотный оксид 1:1)

При нагревании способен окислять металлы до их оксидов.

Zn + CO2 → (t) ZnO + CO

Углерод плюс азот уравнение реакции

Угольная кислота

Слабая двухосновная кислота, существующая только в растворах, разлагается на воду и углекислый газ.

Углерод плюс азот уравнение реакции

Определить наличие карбонат-иона можно с помощью кислоты: такая реакция сопровождается «закипанием» — появлением пузырьков бесцветного газа без запаха.

Я не раз встречал описание реакций, связанных с этой кислотой, которое заслуживает нашего внимания. В задании было сказано, что при добавлении к раствору гидроксида кальция углекислого газа осадок появлялся, при дальнейшем пропускании углекислого газа — помутнение исчезало.

Это можно легко объяснить, вспомнив про способность угольной кислоты образовывать кислые соли, которые растворимы.

Углерод плюс азот уравнение реакции

Чтобы сделать из средней соли (карбоната) — кислую соль (гидрокарбонат) нужно добавить угольную кислоту. Однако написать ее формулу H2CO3 — ошибка. Ее следует записать в виде воды и углекислого газа.

Li2CO3 + CO2 + H2O → LiHCO3 (средняя соль + кислота = кислая соль)

Чтобы вернуть среднюю соль, следует добавить к кислой соли щелочь.

Нагревание солей угольной кислоты

При нагревании карбонаты распадаются на соответствующий оксид металла и углекислый газ, гидрокарбонаты — на карбонат металла, углекислый газ и воду.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

📸 Видео

Химия. 9 класс (Урок№17 - Углерод. Аллотропные модификации углерода.Химические свойства. Адсорбция.)Скачать

Химия. 9 класс (Урок№17 - Углерод. Аллотропные модификации углерода.Химические свойства. Адсорбция.)

Углерод. Видеоурок 33. Химия 9 классСкачать

Углерод. Видеоурок 33. Химия 9 класс

Химия 9 класс (Урок№18 - Угарный газ. Углекислый газ.)Скачать

Химия 9 класс (Урок№18 - Угарный газ. Углекислый газ.)

9 класс. Углерод.Скачать

9 класс.  Углерод.

Уравнивание реакций горения углеводородовСкачать

Уравнивание реакций горения углеводородов

Углерод: химические свойства, аллотропия #углерод #химшкола #неметаллы #егэхимияСкачать

Углерод: химические свойства, аллотропия #углерод #химшкола #неметаллы #егэхимия

Решение задач на термохимические уравнения. 8 класс.Скачать

Решение задач на термохимические уравнения. 8 класс.

Углерод и его соединенияСкачать

Углерод и его соединения

Биогеохимический цикл углеродаСкачать

Биогеохимический цикл углерода

Рассказ 41. Образование химических элементов. Углерод. Азот. Кислород. Фтор. Неон.Скачать

Рассказ 41. Образование химических элементов. Углерод. Азот. Кислород. Фтор. Неон.

Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Химия 9 класс (Урок№14 - Азот: свойства и применение. Аммиак. Физические и химические свойства.)Скачать

Химия 9 класс (Урок№14 - Азот: свойства и применение. Аммиак. Физические и химические свойства.)

Особенности строения и свойства молекулы азота. 11 класс.Скачать

Особенности строения и свойства молекулы азота. 11 класс.

Проклятая химическая реакция 😜 #shortsСкачать

Проклятая химическая реакция 😜 #shorts

Круговорот веществ: углерод, азот, сера | ЕГЭ Биология | Даниил ДарвинСкачать

Круговорот веществ: углерод, азот, сера | ЕГЭ Биология | Даниил Дарвин

Экзотермические и эндотермические реакцииСкачать

Экзотермические и эндотермические реакции

Химические свойства углеродаСкачать

Химические свойства углерода
Поделиться или сохранить к себе:
Ковалентные карбидыИонные карбиды
МетанидыАцетиленидыПропиниды
Это соединения углерода с неметаллами

Например :

SiC, B4C

Это соединения с металлами, в которых с.о. углерода равна -4

Например :

Al4C3, Be2C

Это соединения с металлами, в которых с.о. углерода равна -1

Например :

Na2C2, CaC2

Частицы связаны ковалентными связями и образуют атомные кристаллы. Поэтому ковалентные карбиды химически стойкие. Окисляются только сильными окислителямиМетаниды разлагаются водой или кислотами с образованием метана и гидроксида или соли:

Например :

Al4C3 + 12H2O → 4Al(OH)3 + 3CH4

Ацетилениды разлагаются водой или кислотами с образованием ацетилена и гидроксида или соли:

Например:

СаС2+ 2Н2O

Са(OH)2 + С2Н2