Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5
Ввод распознает различные синонимы функций, как asin , arsin , arcsin
Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)
Список математических функций и констант :
• ln(x) — натуральный логарифм
• sh(x) — гиперболический синус
• ch(x) — гиперболический косинус
• th(x) — гиперболический тангенс
• cth(x) — гиперболический котангенс
• sch(x) — гиперболический секанс
• csch(x) — гиперболический косеканс
• arsh(x) — обратный гиперболический синус
• arch(x) — обратный гиперболический косинус
• arth(x) — обратный гиперболический тангенс
• arcth(x) — обратный гиперболический котангенс
• arsch(x) — обратный гиперболический секанс
• arcsch(x) — обратный гиперболический косеканс
Видео:21. Частные производные второго порядка. Часть 4.Скачать
Электронная библиотека
Пример 1. Проверить удовлетворяет ли указанному уравнению данная функция z = f(x,y).
Решение. Находим частные производные первого и второго порядка:
Подставляем полученные значения производных в левую часть исходного уравнения:
В правой части уравнения имеем:
Сравнивая полученные результаты, видим, что данная функция удовлетворяет исходному уравнению.
Пример 2. Вычислить приближенно данные выражения, заменив приращения соответствующих функций их полными дифференциалами. Оценить в процентах возникающую при этом относительную погрешность вычислений.
Решение. а) Рассмотрим функцию
Значение этой функции в точке известно и равно
Вычислим приближенно значение функции по формуле:
Видео:Показать, что функция y=e^(-x)sinx удовлетворяет дифференциальному уравнению. Как решать?Скачать
Задача Коши онлайн
Данная задача возникает при поиске частного решения дифференциального уравнения. Наш онлайн калькулятор, построенные на основе системы Wolfram Alpha, позволяет найти решение задачи Коши для различных типов дифференциальных уравнений. Чтобы начать работу, необходимо ввести данные своей задачи (дифференциальное уравнение и начальные условия) в калькулятор.
Найти решение задачи Коши для дифференциального уравнения:
при заданных начальных условиях:
При постановке задачи Коши, указываются так называемые начальные условия, позволяющие однозначно выделить искомое частное решение из общего. Эти условия включают в себя значения функции и всех её производных до включительно (где -порядок дифференциального уравнения), заданные в одной и той же точке .
Поясним вышесказанное на конкретном примере. Пусть нам требуется найти частное решение дифференциального уравнения:
удовлетворяющее начальным условиям:
Первым делом, используя различные методы (Бернули, вариации произвольной постоянной Лагранжа), сначала находим общее решение данного дифференциального уравнения:
Теперь, для поиска частного решения, нам необходимо использовать заданные начальные условия. Для этого, находим производную функции полученной ранее:
Далее, поставляем начальные условия в функцию и её производную :
Решая полученную систему уравнений получаем значения произвольных постоянных и :
Подставляем полученные результаты в общее решение дифференциального уравнения, в результате получаем искомое частное решение:
Видео:показать, что функция удовлетворяет соотношениюСкачать
Другие полезные разделы:
Видео:Дифференциал функцииСкачать
Оставить свой комментарий:
Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме
💡 Видео
Частное решение дифференциального уравнения. 11 класс.Скачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Составить дифференциальное уравнение, которому удовлетворяет функцияСкачать
Косухин О.Н. - Математический анализ.Часть 2.Семинары - 20. Дифференцирование неявных функцийСкачать
Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2Скачать
Решение биквадратных уравнений. 8 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Частные производные функции многих переменныхСкачать
Частное решение ДУ, с помощью рядаСкачать
Область определения функции - 25 функций в одном видеоСкачать
Показательные уравнения. 11 класс.Скачать
Показательные и логарифмические уравнения. Вебинар | МатематикаСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Линейная функция, квадратичная функция и обратно-пропорциональная функция | Математика | TutorOnlineСкачать
Уравнения с модулем. Часть 2 | Математика | TutorOnlineСкачать
Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать