Тригонометрические уравнения с понижением степени примеры

Видео:Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.Скачать

Решение тригонометрических уравнений. Метод понижения порядка. 10 класс.

Формулы понижения степени в тригонометрии

Тригонометрические формулы обладают рядом свойств, одно из которых это применение формул понижения степени. Они способствуют упрощению выражений при помощи уменьшения степени.

Формулы понижения работают по принципу выражения степени синуса и косинуса через синус и косинус первой степени, но кратного угла. При упрощении формула становится удобной для вычислений, причем повышается кратность угла от α до n α .

Видео:10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степениСкачать

10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степени

Формулы понижения степени, их доказательство

Ниже приводится таблица формул понижения степени со 2 по 4 для sin и cos угла. После ознакомления с ними зададим общую формулу для всех степеней.

sin 2 α = 1 — cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 = 3 · sin α — sin 3 α 4 sin 4 = 3 — 4 · cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8

Данные формулы предназначены для понижения степени.

Существует формулы двойного угла у косинуса и синуса, из которых и следуют формулы понижения степени cos 2 α = 1 — 2 · sin 2 α и cos 2 α = 2 · cos 2 α — 1 . Равенства разрешаются относительно квадрата синуса и косинуса, которые предоставляются как sin 2 α = 1 — cos 2 α 2 и cos 2 α = 1 + cos 2 α 2 .

Формулы понижения степеней тригонометрических функций перекликаются с формулами синуса и косинуса половинного угла.

Имеет место применение формулы тройного угла sin 3 α = 3 · sin α — 4 · sin 3 α и cos 3 α = — 3 · cos α + 4 · cos 3 α .

Если решать равенство относительно синуса и косинуса в кубе, получим формулы понижения степеней для синуса и косинуса:

sin 3 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 3 α = 3 · cos α + cos 3 α 4 .

Формулы четвертой степени тригонометрических функций выглядят так: sin 4 α = 3 — 4 · cos 2 α + cos 4 α 8 и cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 .

Чтобы понизить степени эти выражений, можно действовать в 2 этапа, то есть дважды понижать, тогда это выглядит таким образом:

sin 4 α = ( sin 2 α ) 2 = ( 1 — cos 2 α 2 ) 2 = 1 — 2 · cos 2 α + cos 2 2 α 4 = = 1 — 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 — 4 · cos 2 α + cos 4 α 8 ; cos 4 α = ( cos 2 α ) 2 = ( 1 + cos 2 α 2 ) 2 = 1 + 2 · cos 2 α + cos 2 2 α 4 = = = 1 + 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 + 4 · cos 2 α + cos 4 α 8

Методом подстановки мы упростили сложное выражение. Для того, чтобы записать общий вид формул понижения степени разделим их на с наличием четных и нечетных показателей. Четные показатели, где n = 2 , 4 , 6 … , выражение имеет вид sin n α = C n 2 n 2 n + 1 2 n — 1 · ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = C n 2 n 2 n + 1 2 n — 1 ∑ ( — 1 ) n 2 — k k = 0 n 2 — 1 · C k n · cos ( ( n — 2 · k ) α ) .

Нечетные показатели, где n = 3 , 5 , 7 …, выражение имеет вид

sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) и cos n α = 1 2 n — 1 ∑ ( — 1 ) n — 1 2 — k k = 0 n — 1 2 · C k n · cos ( ( n — 2 · k ) α ) .

C p q = p ! q ! · ( p — q ) ! — это число сочетаний из p элементов по q .

Формулы понижения степени общего вида используются на любого выражения с высокой степенью для его упрощения. Рассмотрим пример для понижения кубического синуса. Третья степень нечетная, значит воспользуемся формулой sin n α = 1 2 n — 1 · ∑ ( — 1 ) n — 2 2 — k k = 0 n — 1 2 — k · C k n · sin ( ( n — 2 · k ) α ) где значение n присвоим 3 . Подставляя n = 3 в выражение, получим

sin 3 α = 1 2 3 — 1 · ∑ ( — 1 ) 3 — 1 2 — k k = 0 3 — 1 2 — k · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ∑ ( — 1 ) 1 — k k = 0 1 · C k 3 · sin ( ( 3 — 2 · k ) α ) = = 1 4 · ( ( — 1 ) 1 — 0 · C 0 3 · sin ( ( 3 — 2 · 0 ) α ) + ( 1 ) 1 — 1 · C 1 3 · sin ( ( 3 — 2 · 1 ) α ) ) = = 1 4 · ( ( — 1 ) 1 · 3 ! 0 ! · 3 ! · sin 3 α + ( — 1 ) 0 · 3 ! 1 ! · ( 3 — 1 ) ! · sin α ) = = 1 4 · ( — sin 3 α + 3 · sin α ) = 3 · sin α — sin 3 α 4

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

Примеры применения формул понижения степени

Чтобы закрепить материал, необходимо детально разобрать его на примерах с использованием формулы понижения степени. Таким образом будет понятен принцип решения, подстановка и весь алгоритм.

Справедлива ли формула вида cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 при α = α 6 .

Для того, чтобы данная формула прошла проверку на возможность понижения степени с заданным значением угла α , необходимо посчитать левую и правую стороны. По условию имеем, что α = π 6 , тогда 2 α = π 3 , следовательно 4 α = 2 π 3 .

По таблице тригонометрических функций имеем, что cos α = cos π 6 = 3 2 , тогда cos 2 α = cos π 3 = 1 2 .

Для подробного уяснения необходимо проштудировать статью значения синуса, косинуса, тангенса и котангенса. Подставляя в формулу, получим cos 4 α = ( cos π 6 ) 4 = ( 3 2 ) 4 = 9 16 и 3 + 4 cos 2 α + cos 4 α 8 = 3 + 4 cos π 3 + cos 2 π 3 8 = 3 + 4 · 1 2 + ( — 1 2 ) 8 = 9 16

Отсюда видим, что левая и правая части равенства верны при α = π 6 , значит, выражение справедливо при значении заданного угла. Если угол отличен от α , формула понижения степени одинаково применима.

При помощи формулы понижения степени преобразовать выражение sin 3 2 β 5 .

Кубический синус для угла α имеет формулу вида sin 3 α = 3 · sin α — sin 3 α 4 . В данном случае необходимо выполнить замену α на 2 β 5 и подставить в формулу, тогда получаем выражение вида sin 3 2 β 5 = 3 · sin 2 β 5 — sin ( 3 · 2 β 5 ) 4 .

Это выражение равно равенству sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .

Ответ: sin 3 2 β 5 = 3 · sin 2 β 5 — sin 6 β 5 4 .

Для решения сложных тригонометрических уравнений применяют формулы понижения степени. Они способны упростить выражение и сделать его намного удобным для вычислений или подстановки числовых значений.

Видео:Формулы понижения степени. Для чего нужны формулы понижения степени?Скачать

Формулы понижения степени. Для чего нужны формулы понижения степени?

Тема 18. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. Уравнения, решаемые понижением степени. Однородные уравнения и приводимые к ним. Универсальная подстановка.
материал для подготовки к егэ (гиа) по алгебре (10 класс) по теме

Тригонометрические уравнения с понижением степени примеры

Актуальной задачей на сегодняшний день является качественная подготовка учащихся к единому государственному экзамену (ЕГЭ) по математике, а также абитуриентов к вступительным экзаменам по математике в вузы, проводимым как в форме письменных контрольных работ, так и в форме тестирований.

Имея многолетний положительный опыт подготовки школьников и абитуриентов к экзаменам по математике, проводимым в разных формах, считаю целесообразным поделиться своими разработками со всеми заинтересованными в них лицами.

Тема 18. «Тригонометрические уравнения. Уравнения, решаемые понижением степени. Однородные уравнения и приводимые к ним. Универсальная подстановка» содержит теоретические сведения, систематизированный набор ключевых методов решения типовых задач, сопровождающихся подробным разбором решений. По каждому методу приводятся упражнения с ответами для закрепления изучаемого материала.

Материал будет полезен для использования учителями общеобразовательных учреждений на элективных курсах и факультативных занятиях по математике для подготовки учащихся к ЕГЭ, абитуриентов при подготовке к вступительным экзаменам в вузы.

Видео:№18 Тригонометрические уравнения. Формула понижения степени. cos^4x+2sin^2(x)=0Скачать

№18 Тригонометрические уравнения. Формула понижения степени. cos^4x+2sin^2(x)=0

Скачать:

ВложениеРазмер
tema_18._trigonometricheskie_uravneniya.metody_resheniya_4-6.docx67.08 КБ

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Предварительный просмотр:

Тема 18. Тригонометрические уравнения.

Уравнения, решаемые понижением степени. Однородные уравнения и приводимые к ним. Универсальная подстановка.

IV. Уравнения, решаемые понижением степени.

Если уравнение содержит в четной степени, то бывает удобно применять формулы понижения степени

Пример. Решить уравнение

Решение является частью множества корней

1) Число корней уравнения на интервале равно.

V. Однородные уравнения и приводимые к ним.

Однородные уравнения, то есть уравнения вида

где — некоторые числа (у всех слагаемых сумма показателей одинакова) приводятся к алгебраическим относительно путем деления обеих частей уравнения на соответственно.

Некоторые уравнения можно сделать однородными путем замены 1 на путем различных преобразований функций, входящих в уравнение и т.д.

Примеры. Решить уравнение.

Решение. Легко убедиться, что не является корнем исходного уравнения. В самом деле, если , то в силу исходного уравнения, и , что противоречит основному тригонометрическому тождеству Этот факт позволяет разделить левую и правую части уравнения на . Получим уравнение

Решение. Поскольку не является корнем данного уравнения, разделим левую и правую части уравнения на В результате приходим к квадратному уравнению относительно

Ответ: Тригонометрические уравнения с понижением степени примеры

Решение. Представим правую часть данного уравнения в виде . Тогда исходное уравнение запишется в виде

После преобразований приходим к уравнению

разобранному в предыдущем примере.

Ответ: Тригонометрические уравнения с понижением степени примеры

  1. Ответ:
  2. Ответ:
  3. Ответ:
  4. Ответ: Тригонометрические уравнения с понижением степени примеры
  5. Ответ:
  6. Число корней уравнения на интервале равно.

VI. Универсальная подстановка.

Универсальная тригонометрическая подстановка позволяет перейти от синуса и косинуса аргумента к тангенсу половинного аргумента. Используются формулы

Этим методом удобно решать линейные тригонометрические уравнения, т.е. уравнения вида

При переходе от синуса и косинуса аргумента к тангенсу половинного аргумента возможна потеря решений, следует помнить, что (в этих точках не существует). Поэтому всякий раз, когда приходится пользоваться формулами , значения необходимо проверять отдельно, подставляя в исходное уравнение.

Примеры. Решить уравнение.

Решение. Сделаем подстановку для сокращения письма введем новую переменную Исходное уравнение перепишется в виде

Проверим, является ли решением данного уравнения значит не является корнем.

Видео:Как решать тригонометрические уравнения с помощью формул понижения степени. Тригонометрия #46Скачать

Как решать тригонометрические уравнения с помощью формул понижения степени. Тригонометрия #46

Формулы понижения степени в тригонометрии: вывод и примеры

Формулы понижения степени являются одним из видов основных тригонометрических формул. Они выражают степени (2, 3, …) тригонометрических функций синус, косинус, тангенс, котангенс через синус и косинус первой степени, но кратного угла (`alpha, 3alpha, …` или `2alpha, 4alpha, …`).

Видео:✓ Тригонометрические формулы | Борис ТрушинСкачать

✓ Тригонометрические формулы | Борис Трушин

Список всех тригонометрических формул понижения степени

Запишем данные тождества для тригонометрических функций от 2-й по 4-ю степень угла `alpha`, а также для угла `frac alpha 2` и для произведения синус на косинус. Для удобства разделим их на группы.

Для квадрата

Формулы этой группы, особенно две первые, наиболее нужны. Они применяются при решении тригонометрических уравнений, интегралов и т. д.

Для куба

Тождества этой группы и следующих встречаются гораздо реже, но это не повод их не знать.

Для 4-й степени

Для функций половинного угла

Это формулы половинного угла. Но когда они записаны именно в таком виде, то их можно отнести и к тодествам понижения степени.

Для произведения синус на косинус

`sin^2 alpha cdot cos^2 alpha=frac8`
`sin^3 alpha cdot cos^3 alpha=frac32`

Видео:0711 Тригонометрические уравнения, решаемые с помощью формул понижения степениСкачать

0711 Тригонометрические уравнения, решаемые с помощью формул понижения степени

Доказательство

Теперь перейдем непосредственно к выводу формул понижения степени тригонометрических функций.

Чтобы доказать их для квадрата, нам понадобятся фождества двойного угла `cos 2alpha=1-2 sin^2 alpha` и `cos 2alpha=2 cos^2 alpha-1`.

Формулу понижения степени синуса в квадрате получим, разрешив первое равенство относительно ` sin^2 alpha`: `sin^2 alpha=frac2`.

Аналогично и с косинусом в квадрате, получим тождество, разрешив второе равенство относительно ` cos^2 alpha`: `cos^2 alpha=frac2`.

Для лучшего усвоения теоретического материала рекомендуем посмотреть видео, где подробно описывается процесс доказательстве первых двух формул:

Если формулы тройного угла `sin 3alpha=3 sin alpha-4sin^3 alpha` и
`cos 3alpha=4cos^3 alpha-3 cos alpha` разрешить относительно `sin 3alpha` и `cos 3alpha`, то получим формулы понижения степени для синуса и косинуса в кубе: `sin^3 alpha=frac4` и `cos^3 alpha=frac4`.

Доказать данной равности для синуса и косинуса можно, воспользовавшись два раза формулами понижения квадратов:

Общий вид формул понижения степени

Для четных показателей степени (n=1, 2, 3,…):

Для нечетных показателей степени (n=3, 5, 7,…):

`sin^n alpha=frac1<2^> cdot sum_^<frac 2> (-1)^ <frac 2 -k> cdot C_k^n cdot sin((n-2k) alpha)` и `cos^n alpha=frac1<2^> cdot sum_^<frac 2> C_k^n cdot cos((n-2k) alpha)`.

Видео:Метод понижения степени. Пример 1. Тригонометрия.Скачать

Метод понижения степени. Пример 1. Тригонометрия.

Примеры решения задач с применением формул понижения степени

Пример 1. Воспользуйтесь формулой понижения степени для `cos^2 4alpha`.

Решение. Применив формулу `cos^2 alpha=frac2`, получим `cos^2 4alpha=frac2=frac2`.

Пример 2. Используя выше указанные тождества, вычислить `sin^2 frac pi 8`.

Решение. Согласно формуле `sin^2 alpha=frac2`, понизим степень синуса. Получим `sin^2 frac pi 8=frac2=frac2`. Поскольку `cos frac pi 4=frac 2`, то `sin^2 frac pi 8=frac2=frac<1-frac 2>2=frac<frac 2>2=frac 4`.

Ответ. `sin^2 frac pi 8=frac 4`.

Отметим, что формулы понижения степени в тригонометрии чаще всего используются при решении уравнений и преобразовании выражений.

🎦 Видео

Решение примеров на формулы понижения степени. Как решать? Тригонометрия 10 класс. Видеоурок #23Скачать

Решение примеров на формулы понижения степени. Как решать? Тригонометрия 10 класс. Видеоурок #23

решение тригонометрического уравнения методом понижения степени cosСкачать

решение тригонометрического уравнения методом понижения степени cos

№17 Тригонометрические уравнения. Формула понижения степени. sin^4(x)+cos^4(x)=7/8Скачать

№17 Тригонометрические уравнения. Формула понижения степени. sin^4(x)+cos^4(x)=7/8

Метод понижения степени. Пример 6. Тригонометрия.Скачать

Метод понижения степени. Пример 6. Тригонометрия.

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Решение тригонометрического уравнения методом понижения степениСкачать

Решение тригонометрического уравнения методом понижения степени

Решение примеров на формулы понижения степени. Как решать? Тригонометрия 10 класс. Видеоурок #22Скачать

Решение примеров на формулы понижения степени. Как решать? Тригонометрия 10 класс. Видеоурок #22

Решение примеров на формулы понижения степени. Как решать? Тригонометрия 10 класс. Видеоурок #24Скачать

Решение примеров на формулы понижения степени. Как решать? Тригонометрия 10 класс. Видеоурок #24

Понижение степени тригонометрических функцийСкачать

Понижение степени тригонометрических функций

Метод понижения степени. Пример 4. Тригонометрия.Скачать

Метод понижения степени. Пример 4. Тригонометрия.
Поделиться или сохранить к себе: