Что такое «уравнение с параметром» и его решение – см. §32 справочника для 8 класса
п.1. Уравнения с функцией первого порядка и параметром
Уравнения вида (F(g(x),a)=0), где (g(x)) — некоторая линейная функция от тригонометрической функции, решаются аналогично линейным уравнениям с параметром.
Как решать линейные уравнения с параметром – см. Примеры 5-7, §7 справочника для 7 класса.
п.2. Уравнения с квадратичной функцией и параметром
Уравнения вида (F(g(x),a)=0), где (g(x)) — некоторая квадратичная функция от тригонометрической функции, решаются аналогично квадратичным уравнениям с параметром.
Как решать квадратичные уравнения с параметром – см. §32 справочника для 8 класса
Например:
Решим уравнение ( cos^4x-(a+2)cos^2x-(a+3)=0 )
Замена: (t=cos^2x, 0leq tleq 1): begin t^2-(a+2)t-(a+3)=0\ D=(a+2)^2+4(a+3)=a^2+4a+4+4a+12=a^2+8a+16=(a+4)^2\ t=frac= left[ begin -1\ a+3 end right. end Корень (t_1=-1lt 0) не подходит по определению замены.
Второй корень (t_2=a+3) должен удовлетворять ограничениям: $$ 0leq a+3leq 1Rightarrow -3leq aleq -2 $$ Возвращаемся к исходной переменной: begin cos^2x=a+3Rightarrowfrac=a+3Rightarrow cos2x=2a+5Rightarrow\ Rightarrow 2x=pm arccos(2a+5)+2pi kRightarrow x=pmfrac12 arccos(2a+5)+pi k end Ответ:
При (alt -3cup agt -2) решений нет, , (xin varnothing)
При (-3leq aleq -2, x=pmfrac12 arccos(2a+5)+pi k )
п.3. Другие уравнения с параметрами
При решении других тригонометрических уравнений с параметрами используются тригонометрические преобразования, замены переменных, переход от одного уравнения к системе (совокупности) уравнений и т.п.
п.4. Примеры
Пример 1. Решите уравнение: a) ( sin3x=asinx )
Формула для тройного угла – см. §16 данного справочника.
(sin3alpha=3sinalpha-4sin^3alpha)
Подставляем: begin 3sinx-4sin^3x=a sinx\ sinx(3-4sin^2x-a=0\ left[ begin sinx=0\ 3-4sin^2x-a=0 end right. Rightarrow left[ begin x=pi k\ sin^2 x=frac end right. Rightarrow left[ begin x=pi k\ frac=frac end right. Rightarrow \ Rightarrow left[ begin x=pi k\ cos2x=frac end right. Rightarrow left[ begin x=pi k\ 2x=pm arccosfrac+2pi k end right. Rightarrow left[ begin x=pi k\ x=pmfrac12 arccosfrac+pi k end right. end Первое семейство решений (x=pi k) существует при любых (a).
Для второго семейства решений действует ограничение: begin -1leqfracleq 1Rightarrow -2leq a-1leq 2 Rightarrow -1leq aleq 3 end Ответ:
При (alt -1cup agt 3) одно семейство решений (x=pi k)
При (-1leq aleq 3) два семейства решений ( left[ begin x=pi k\ x=pmfrac12 arccosfrac+pi k end right. )
б) ( sin^2x-5cosx+a=0 ) begin (1-cos^2x)-5cosx+a=0\ cos^2x+5cosx-(a+1)=0 end Замена: (t=cosx, -1leq tleq 1)
(t^2+5t-(a+1)=0)
(f(t)=t^2+5t-(a+1)) — это парабола ветками вверх с вершиной: begin t_0=-frac52=-2,5,\ f(t_0)=t_0^2+5t_0-(a+1)=6,25-12,5-(a+1)=-6,25-(a+1) end За счет параметра (a) парабола перемещается по вертикали вдоль оси (t_0=-2,5).
Интервал (-1leq tleq 1) лежит справа от оси, т.е. только одно решение квадратного уравнения попадает в этот интервал. Условие существования этого решения (пересечение оси абсцисс) – разные знаки функции на концах интервала: begin f(-1)f(1)leq 0\ left(1-5-(a+1)right)left(1+5-(a+1)right)leq 0\ (a+5)(a-5)leq 0\ -5leq aleq 5 end (D=5^2+4(a+1)=4a+26geq 0Rightarrow ageq -6,5)
Условие (-5leq aleq 5) достаточно для существования решения, при нем (Dgt 0).
Получаем: begin t=frac<-5pmsqrt>Rightarrow cosx=frac<-5pmsqrt>\ x=pm arccosleft(frac<-5pmsqrt>right)+2pi k end Ответ:
При (|a|gt 5) решений нет, (xin varnothing)
При (|a|leq 5, x=pm arccosleft(frac<-5pmsqrt>right)+2pi k )
в) ( 2cos3x+4cos5x=a^2-4a+10 )
Исследуем параболу (f(a)=a^2-4a+10)
(D=16-40=-24lt 0) — парабола всегда положительна
Вершина: (a_0=-frac=2, f(a_0)=2^2-8+10=6)
Таким образом, наименьшее значение функции (f_=f(2)=6).
Для суммы (2cos3x+4cos5x) значение 6 является наибольшим из возможных.
Получаем систему: begin begin 2cos3x+4cos5x=6\ a^2-4a+10=6 end end Нижнее уравнение мы уже решили и получили (a=2).
Решаем верхнее уравнение для максимальных значений косинусов: begin cos3x+2cos5x=3Rightarrow begin cos3x=1\ cos5x=1 end Rightarrow begin 3x=2pi k\ 5x=2pi n end Rightarrow begin x=frac23pi k\ x=frac25pi n end \ frac23pi k=frac25pi nRightarrowfrac=fracRightarrow k=3m, minmathbbRightarrow x=frac23picdot 3m=2pi m end
На чертеже видно, что сумма косинусов достигает максимального значения 6 через каждые (2pi,) т.е. полный оборот.
Ответ:
При (ane 2) решений нет, (xin varnothing)
При (a=2, x=2pi k )
г) ( asin^2x+cos^2x=0 )
(a(1-cos^2x)+cosx=0)
(acos^2x-cosx-a=0)
Замена: (t=cosx, -1leq tleq 1)
(at^2-t-a=0)
При (a=0) квадратное уравнение вырождается в линейное, получаем: begin cos x=0, x=fracpi2+pi k end При (ane 0: D=1+4a^2, t_=frac<1pmsqrt>)
Рассмотрим модуль корня с плюсом: begin |t_2|=frac<1+sqrt>gtfracgt 1 end Таким образом, этот корень не подходит.
Сравним модуль корня с минусом и единицу: begin |t_1|=|frac<1-sqrt>|=frac<sqrt-1> ? 1\ sqrt-1 ? 2|a|\ sqrt ? 2|a|+1\ 1+4a^2leq 4a^2+4|a|+1 end Получаем, что (|t_1|leq 1). Этот корень нам подходит. begin cosx=frac<1-sqrt>\ x=pm arccosleft(frac<1-sqrt>right)+2pi k end Ответ:
При (a=0, x=fracpi2+pi k)
При (ane0, x=pm arccosleft(frac<1-sqrt>right)+2pi k )
Видео:ЕГЭ-2023 по математике. Тригонометрия от А до Я: тригонометрические уравнения с параметромСкачать
165 задач с параметрами
1. Линейные уравнения и приводимые к ним уравнения с параметрами.
2. Квадратичные и сводимые к ним уравнения с параметрами.
3. Уравнения с параметрами, содержащие модуль.
4. Системы уравнений с параметрами.
5. Иррациональные уравнения с параметрами.
6. Линейные неравенства и неравенства, приводимые к линейным. Системы неравенств.
7. Квадратичные неравенства с параметрами.
8. Иррациональные неравенства с параметрами.
9. Уравнения и неравенства с параметрами, содержащие логарифмы.
10. Тригонометрические уравнения, неравенства и системы уравнений с параметрами.
Видео:✓ Параметр с тригонометрией за 10 минут | ЕГЭ-2020. Задание 17. Математика. Профиль | Борис ТрушинСкачать
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №48. Тригонометрические уравнения с параметром.
Перечень вопросов, рассматриваемых в теме:
1) Тригонометрическое уравнение с параметром;
2) Решение тригонометрического уравнения с параметром;
3) Значения параметра, при котором простейшее тригонометрическое неравенство имеет решение.
Глоссарий по теме:
Если некоторое уравнение F(x, a)=0 требуется решить относительно переменной х, то а называется параметром, а это уравнение называется уравнением с параметром а относительно переменной х.
Колягин Ю.М., под ред. Жижченко А.Б. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни – М.: Просвещение, 2010. — 368 с.
Амелькин,, В.В., Рабцевич В.Л., Задачи с параметрами: Справ. пособие по математике – М.: «Асар», 1996. – 464 с.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/
Теоретический материал для самостоятельного изучения
1. Если некоторое уравнение F(x, a)=0 требуется решить относительно переменной х, то а называется параметром, то это уравнение называется уравнением с параметром а относительно переменной икс.
Простейшим примером уравнения с параметром является такое: .
Если требуется решить такое уравнение, то ответ мы должны записать так:
1) при |a|>1 уравнение решений не имеет
3) при 0 1 уравнение решений не имеет
2) при
).
2. Рассмотрим решение более сложных тригонометрических уравнений с параметрами.
Решите уравнение с переменной х и параметром а:
Решение: рассмотрим это уравнение как квадратное относительно и введем новую переменную: , .
Его дискриминант:
Очевидно, что если , то есть , то вспомогательное уравнение и исходное уравнение решений не имеют.
Если , то вспомогательное уравнение имеет один корень: . Это удовлетворяет условию , поэтому при .
.
Если , то вспомогательное уравнение имеет два корня. Но для того чтобы исходное уравнение имело корни, нужно чтобы .
Так как вершина параболы находится в точке , то для того чтобы вспомогательное уравнение имело на отрезке [-1; 1] одно решение, нужно, чтобы выполнялось условие: ,
где .
, .
То есть одно решение на отрезке [-1; 1] вспомогательное уравнение будет иметь при , причем это больший корень вспомогательного уравнения:
, , .
два решения на отрезке [-1; 1] вспомогательное уравнение будет иметь при
.
.
1) при решений нет
2) при .
3) при .
4) при .
Если в этом примере требуется найти наибольшее значение параметра, при котором уравнение имеет решение, то ответ будет 3. Если требуется найти, например, наименьшее целое решение, то ответ будет 0.
Решим относительно переменной x уравнение:
Преобразуем исходное уравнение:
Рассмотрим полученное уравнение как квадратное относительно . Введем новую переменную .
Рассмотрим вспомогательное уравнение.
.
Его дискриминант:
Видно, что это уравнение имеет решение только при a=0. При остальных значениях параметра уравнение решений не имеет.
Проверим, дает ли полученное решение вспомогательного уравнения решение исходного уравнения.
Если a=0,то .
Отсюда .
Ответ: 1) при ,
2) при решений нет.
Примеры и разбор решения заданий тренировочного модуля
1. При каком наибольшем значении параметра уравнение имеет решение
Рассмотрим это уравнение как квадратное относительно .
Найдем его дискриминант:
Видно, что вспомогательное уравнение всегда имеет решение.
Но , поэтому нужно выяснить, при каком значении параметра t корни уравнения попадают в отрезок [0; 1].
Так как старший коэффициент этого уравнения положителен, то для того чтобы хотя бы один корень уравнения (функции f(p)) попал в отрезок [0; 1], нужно, чтобы выполнялось одно из неравенств: .
, . Наибольшее значение 0.
2. Найдите наименьшее положительно значение параметра, при котором решением неравенства является любое действительное число.
Неравенство всегда верно, то есть выполнено при любых значениях переменной. Значит, данное неравенство будет всегда верно, если , то есть , .
Наименьшее положительное значение параметра .
🎥 Видео
Самая сложная тема из ЕГЭ. Задание с ПАРАМЕТРОМ | Математика TutorOnlineСкачать
Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать
Тригонометрия в задаче с параметром. Задача 18 профильный ЕГЭСкачать
Профильный ЕГЭ 2023 математика. Задача 17. Параметр. Аналитический методСкачать
Все уравнения с параметром на РешуЕГЭ. Тотальный разбор 17 номера ЕГЭ по математикеСкачать
✓ Параметры с нуля и до ЕГЭ | Задание 17. Профильный уровень | #ТрушинLive #041 | Борис ТрушинСкачать
Алгебра 10 класс (Урок№48 - Тригонометрические уравнения с параметрами.)Скачать
Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать
Тригонометрические уравнения с параметромСкачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
✓ Тригонометрический параметр | Резерв досрока ЕГЭ-2019. Задание 17. Математика | Борис ТрушинСкачать
Хитрое решение убийственной тригонометрии в задаче с параметром | Параметр 119 | mathus.ru #егэ2024Скачать
ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ | 12 задача ЕГЭ 🔴Скачать
5-часовой стрим по ПАРАМЕТРАМ. Вся алгебра для №17 с нуля и до уровня ЕГЭ 2023Скачать
Параметр с тригонометрией | 4 способа решения | Параметр №4 | ЕГЭ по математикеСкачать
✓ Тригонометрическое уравнение с параметром | ЕГЭ. Задание 17. Математика. Профиль | Борис ТрушинСкачать
ЕГЭ по математике 2021. №18 из СтатГрад. Параметр с тригонометриейСкачать
ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать