Е.П. Нелин, В.А. Лазарев
АЛГЕБРА
и начала математического
анализа
10 класс
учреждений. Базовый и
- § 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
- Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.
- Упражнения
- Тригонометрические уравнения с несколькими переменными
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- Алгебра и начала математического анализа. 11 класс
- 📺 Видео
Видео:Тригонометрические уравнения с заменой переменных и сложным аргументом Алгебра 10 классСкачать
§ 21. РЕШЕНИЕ СИСТЕМ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Работу выполнила: Мусина В.А. студентка группы 45.3
Системы тригонометрических уравнений решаются с помощью тех же методов, что и алгебраические системы, в частности это исключение неизвестных и замена переменных. Исключить неизвестные можно с помощью одного из двух приемов:из одного уравнения выразить какое-то неизвестное (или функцию от него) и подставить его в другие или преобразовать данные уравнения и потом составить из них комбинации, в которых число неизвестных уменьшается.
Задача 1 . Решите систему уравнений
Из первого уравнения находим и подставляем во второе.
Получаем
Замечание. Если бы для нахождения значения y мы не рассмотрели отдельно формулу (1) со знаком «+» и знаком «–», то вместе с верными решениями получили бы и посторонние решения заданной системы.
Действительно, в таком случае имеем
Тогда, например, при n = 0 получаем
Таким образом, кроме решений, которые вошли в ответ, мы имеем еще две возможности:
Но эти пары значений х и у не являются решениями заданной системы, поскольку они не удовлетворяют первому уравнению.
Поэтому следует запомнить:
Когда решение уравнения cos x = а приходится применять для дальнейших преобразований, то удобно записывать его в виде двух формул: отдельно со знаком «+» и отдельно со знаком «–».
Задача 2 . Решите систему уравнений
Почленно сложим и вычтем эти уравнения. Получим равносильну систему
Представим последнюю систему в виде совокупности двух систем, записывая решения второго уравнения отдельно со знаком «+» и отдельно со знаком «–»:
Почленно складывая и вычитая уравнения этих систем, находим x и y:
Замечание. В запись ответа вошли два параметра n и k, которые независимо друг от друга «пробегают» множество целых чисел. Если попробовать при решении заданной системы воспользоваться только одним параметром, например n, то это приведет к потере решений. Таким образом, в каждом случае, когда система тригонометрических уравнений приводится к системе, состоящей из элементарных тригонометрических уравнений (то есть из уравнений вида sin x = a, cos x = a, tg x = a, ctg x = a), при решении каждого из этих уравнений необходимо использовать свой целочисленный параметр.
Вопросы для контроля
- Какие методы используются для решения систем тригонометрических уравнений?
- Объясните, в каком случае при формальном решении системы уравнений мы можем потерять часть решений, а в каком случае —получить посторонние решения. Решите эту систему.
Упражнения
Решите систему уравнений (1–8).
Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Тригонометрические уравнения с несколькими переменными
Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Методы решения тригонометрических уравнений.
Видео:Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
1. Алгебраический метод.
( метод замены переменной и подстановки ).
Видео:Тригонометрические уравнения и неравенства с двумя переменнымиСкачать
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Видео:Тригонометрические уравнения | Борис ТрушинСкачать
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
Видео:Тригонометрическое уравнение с двумя переменнымиСкачать
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
Видео:Алгебра 11 класс (Урок№45 - Тригонометрические уравнения и неравенства с двумя переменными.)Скачать
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:
Видео:Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Алгебра и начала математического анализа. 11 класс
Тригонометрические уравнения и неравенства с двумя переменными
Часто при решении задач необходимо вводить несколько переменных. И возникаем вопрос, как решать уравнения и неравенства если они содержат более одной переменной.
Цели и задачи
- формировать умение применять различные способы (в том числе и графический) к решению систем линейных уравнений и систем неравенств с несколькими переменными .
- повторить известные методы решения систем уравнений и неравенств;
- познакомить с графической интерпретацией уравнений и неравенств с двумя переменными;
- проиллюстрировать решения некоторых задач итоговой аттестации.
Узнаем, научимся, сможем
- какова графическая интерпретация уравнений и неравенств с двумя переменными;
- применять графический метод к решению систем и неравенств с двумя переменными;
- решать некоторые типы задач итоговой аттестации.
Тригонометрические уравнения и неравенства с двумя переменными
Для каждого уравнения с двумя переменными найдите пары чисел, являющиеся их решениями
📺 Видео
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Математика это не ИсламСкачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Тригонометрические уравнения. Задание 12 | Профильная математика ЕГЭ 2023 | УмскулСкачать
РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Решение тригонометрических уравнений. 10 класс.Скачать
ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Решение тригонометрических уравнений и их систем. 10 класс.Скачать
Тригонометрические уравнения которые сводятся к алгебраическим. Метод: замены переменных.Скачать
Как решать тригонометрические неравенства?Скачать