Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.
Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .
Пример 1. Найти все корни уравнения
Выразим z из уравнения:
Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа
Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.
Пример 2. Найти все корни уравнения
Найдем дискриминант уравнения:
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:
Найдем корни уравнения:
Ответ:
Пример 3. Найти все корни уравнения
Выразим z из уравнения:
Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа
Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:
Пример 4. Найти корни уравнения
Решение кубического уравнения комплексными числами:
Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.
Найдем все необходимые значения для формулы:
Подставим найденные значения в формулу:
Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:
Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.
Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.
После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.
Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.
Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.
Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.
Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.
- Примеры решений задач с комплексными числами
- Графические задачи с комплексными числами
- Действия с комплексными числами. Решения задач
- Формы комплексных чисел. Решения задач
- Уравнения с комплексными числами. Решения задач
- Тригонометрическая форма комплексных чисел
- 1. Тригонометрическая форма
- 2. Умножение и деление комплексных чисел
- 3. Формула Муавра
- 4. Дополнение 1. Геометрический подход
- 5. Дополнение 2. Как найти аргумент?
- 5.1. Точки на координатных осях
- 5.2. Точки с арктангенсом
- 🎦 Видео
Видео:Тригонометрическое уравнение: cos(z)=2, а при чём тут формула Эйлера?Скачать
Примеры решений задач с комплексными числами
На этой странице вы найдете подробные готовые задания с ответами по разделу «Комплексные числа»: действия с комплексными числами, преобразование в алгебраическую, тригонометрическую и показательную форму, возведение в степень и извлечение корня по формуле Муавра, решение уравнений с комплексными корнями и т.п.
Если вам нужна помощь в выполнении работы по комплексным числам, мы будем рады помочь: стоимость задания от 70 рублей, срок от 1 дня, гарантия месяц, подробное оформление (см. Решение задач на заказ).
Еще полезные ссылки для изучения:
Видео:Тригонометрическая форма комплексного числаСкачать
Графические задачи с комплексными числами
Задача 1. Найдите геометрическое место точек, изображающих $z$, удовлетворяющих системе неравенств: $$ |z-1| lt 1, \ Re z le 1, \ Im z le 1.$$
Задача 2. Изобразите на $C$: $Re z^2 =-1$.
Видео:Комплексные числа и "золотое" уравнениеСкачать
Действия с комплексными числами. Решения задач
Задача 3. Вычислить сумму $(z_1 + z_2)$ и разность $(z_1 — z_2)$ комплексных чисел, заданных в показательной форме, переведя их в алгебраическую форму. Построить операнды и результаты на комплексной плоскости. $$ z_1 = 2 e^, z_2=4 e^.$$
Задача 4. Вычислить произведение $z_1 cdot z_2$ и частное $z_1 / z_2$ комплексных чисел. Операнды и результаты изобразить на комплексной плоскости. $$ z_1 = 4+3i, z_2=1-sqrt i.$$
Задача 5. Найти все значения корней из заданного комплексного числа $sqrt[4].$
Задача 6. Вычислить $left(frac right)^.$ Представить результат в алгебраической и показательной формах.
Видео:Комплексные числа. Тригонометрическая форма. Формула Муавра | Ботай со мной #040 | Борис Трушин !Скачать
Формы комплексных чисел. Решения задач
Задача 7. Найти $|z|$, $arg z$, записать число $z$ в тригонометрической и показательной форме $z=-sqrt-i.$
Задача 8. Найдите $z$ в тригонометрической форме, если $z=(3-3isqrt)(5sqrt+5i).$
Задача 9. Дано комплексное число $a$. Требуется:
1) записать число $a$ в алгебраической и тригонометрической формах;
2) найти корни уравнения $z^3+a=0$. $$a=frac<sqrt-i>.$$
Видео:✓ Задача про комплексное число | Ботай со мной #101 | Борис ТрушинСкачать
Уравнения с комплексными числами. Решения задач
Задача 10. Решите уравнение (ответ запишите в алгебраической форме): $sh z — ch z =2i.$
Задача 11. Решить уравнения или вычислить: $$ frac = frac. $$
Задача 12. Найти все комплексные корни заданного уравнения, отметить найденные корни на комплексной плоскости: $z^6-7z^3-8=0.$
Видео:Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать
Тригонометрическая форма комплексных чисел
Второй урок по комплексным числам. Если вы только начинаете изучать эту тему (что такое комплексная единица, модуль, сопряжённые), см. первый урок: «Что такое комплексное число».
Сегодня мы узнаем:
Начнём с ключевого определения.
Видео:10 класс, 34 урок, Тригонометрическая форма записи комплексного числаСкачать
1. Тригонометрическая форма
Определение. Тригонометрическая форма комплексного числа — это выражение вида
[z=left| z right|cdot left( cos text!!varphi!!text+isin text!!varphi!!text right)]
где $left| z right|$ — модуль комплексного числа, $text!!varphi!!text$ — некоторый угол, который называется аргумент комплексного числа (пишут $text!!varphi!!text=arg left( z right)$).
Любое число $z=a+bi$, отличное от нуля, можно записать с тригонометрической форме. Для этого нужно вычислить модуль и аргумент. Например:
Записать в тригонометрической форме число $z=sqrt+i$.
Переписываем исходное число в виде $z=sqrt+1cdot i$ и считаем модуль:
Выносим модуль за скобки:
[z=sqrt+1cdot i=2cdot left( frac<sqrt>+fraccdot i right)]
Вспоминаем тригонометрию, 10-й класс:
Понятно, что вместо $frac<text!!pi!!text>$ с тем же успехом можно взять аргумент $frac<13text!!pi!!text>$. Синус и косинус не поменяется. Главное — выбрать такой аргумент, чтобы в тригонометрической форме не осталось никаких минусов. Все минусы должны уйти внутрь синуса и косинуса. Сравните:
Записать в тригонометрической форме число $z=-1-i$.
Видео:Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать
2. Умножение и деление комплексных чисел
Комплексные числа, записанные в тригонометрической форме, очень удобно умножать и делить.
Теорема. Пусть даны два комплексных числа:
[begin & <_>=left| <_> right|cdot left( cos alpha +isin alpha right) \ & <_>=left| <_> right|cdot left( cos beta +isin beta right) \ end]
Тогда их произведение равно
[<_>cdot <_>=left| <_> right|cdot left| <_> right|cdot left( cos left( alpha +beta right)+isin left( alpha +beta right) right)]
А если ещё и $left| <_> right|ne 0$, то их частное равно
Получается, что при умножении комплексных чисел мы просто умножаем их модули, а аргументы складываем. При делении — делим модули и вычитаем аргументы. И всё!
Найти произведение и частное двух комплексных чисел:
[begin <_>cdot <_> & =2cdot 5cdot left( cos left( frac+frac right)+isin left( frac+frac right) right)= \ & =10cdot left( cos frac+isin frac right) \ end]
[begin frac<<_>><<_>> & =fraccdot left( cos left( frac-frac right)+isin left( frac-frac right) right)= \ & =0,4cdot left( cos frac+isin frac right) \ end]
По сравнению со стандартной (алгебраической) формой записи комплексных чисел экономия сил и времени налицо.:)
Видео:Изобразить область на комплексной плоскостиСкачать
3. Формула Муавра
Пусть дано комплексное число в тригонометрической форме:
[z=left| z right|cdot left( cos text!!varphi!!text+isin text!!varphi!!text right)]
Возведём его в квадрат, умножив на само себя:
[begin <^> & =zcdot z = \ & =left| z right|left| z right|cdot left( cos left( text!!varphi!!text!!varphi!!text right)+isin left( text!!varphi!!text!!varphi!!text right) right)= \ & =<^>cdot left( cos 2text!!varphi!!text+isin 2text!!varphi!!text right) \ end]
Затем возведём в куб, умножив на себя ещё раз:
Несложно догадаться, что будет дальше — при возведении в степень $n$. Это называется формула Муавра.
Формула Муавра. При возведении всякого комплексного числа
[z=left| z right|cdot left( cos varphi +isin varphi right)]
в степень $nin mathbb$ получим
Простая формула, которая ускоряет вычисления раз в десять! И кстати: эта формула работает при любом $nin mathbb$, а не только натуральном. Но об этом позже. Сейчас примеры:
Представим первое число в тригонометрической форме:
[begin sqrt-i & = 2cdot left( frac<sqrt>+icdot left( -frac right) right)= \ & =2cdot left( cos left( -frac right)+isin left( -frac right) right) \ end]
По формуле Муавра:
Последним шагом мы воспользовались периодичностью синуса и косинуса, уменьшив аргумент сразу на 28π.
Следующую задачу в разных вариациях любят давать на контрольных работах и экзаменах:
Теперь второе число запишем в комплексной форме:
По формуле Муавра:
Вот так всё просто! Следующие два раздела предназначены для углублённого изучения. Для тех, кто хочет действительно разобраться в комплексных числах.
Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
4. Дополнение 1. Геометрический подход
Многие путают местами косинус и синус. Почему комплексная единица стоит именно у синуса? Вспомним, что есть декартова система координат, где точки задаются отступами по осям $x$ и $y$:
А есть полярная система координат, где точки задаются поворотом на угол $varphi $ и расстоянием до центра $r$:
А теперь объединим эти картинки и попробуем перейти из декартовой системы координат в полярную:
Комплексное число $z=a+bi$ задаёт на плоскости точку $C$, удалённую от начала координат на расстояние
Треугольник $ABC$ — прямоугольный. Пусть $angle BAC=varphi $. Тогда:
[begin & AB=ACcdot cos varphi =left| z right|cdot cos varphi \ & BC=ACcdot sin varphi =left| z right|cdot sin varphi \ end]
С другой стороны, длины катетов $AB$ и $BC$ — это те самые отступы $a$ и $b$, с помощью которых мы задаём комплексное число. Поэтому:
[begin a+bi & =left| z right|cos varphi +icdot left| z right|sin varphi = \ & =left| z right|left( cos varphi +isin varphi right) \ end]
Итак, мы перешли от пары $left( a;b right)$ к паре $left( left| z right|;varphi right)$, где $left| z right|$ — модуль комплексного числа, $varphi $ — его аргумент (проще говоря, угол поворота).
Важное замечание. А кто сказал, что такой угол $varphi $ существует? Возьмём число $z=a+bi$ и вынесем модуль за скобку:
Осталось подобрать такой угол $varphi $, чтобы выполнялось два равенства:
Такой угол обязательно найдётся, поскольку выполняется основное тригонометрическое тождество:
На практике основная трудность заключается именно в поиске подходящего аргумента.
Видео:3. Тригонометрическая форма комплексного числаСкачать
5. Дополнение 2. Как найти аргумент?
В учебниках пишут много разной дичи, типа вот этой:
Формула правильная, но пользы от неё — ноль. Запомнить сложно, а применять и вовсе невозможно. Мы пойдём другим путём.
5.1. Точки на координатных осях
Для начала рассмотрим точки, лежащие осях координат.
Тут всё очевидно:
- На положительной полуоси абсцисс $varphi =0$ (фиолетовая точка $A$).
- На отрицательной — $varphi =pi $ (синяя точка $B$).
- На положительной полуоси ординат $varphi =frac$ (зелёная точка $B$).
- На отрицательной — $varphi =frac$ (красная точка $C$). Однако ничто не мешает рассмотреть $varphi =-frac$ — результат будет тем же самым.:)
5.2. Точки с арктангенсом
А если точки не лежат на осях, то в записи комплексного числа $a+bi$ числа $ane 0$ и $bne 0$. Рассмотрим вспомогательный угол
Очевидно, это острый угол:
Зная знаки чисел $a$ и $b$, мы немедленно определим координатную четверть, в которой располагается искомая точка. И нам останется лишь отложить вспомогательный угол $<_>$ от горизонтальной оси в эту четверть.
В правой полуплоскости мы откладываем от «нулевого» луча:
Точка $Aleft( 3;4 right)$ удалена от начала координат на расстояние 5:
[begin 3+4i & =5cdot left( cos varphi +isin varphi right) \ varphi & =operatornamefrac end]
Для точки $Bleft( 6;-6 right)$ арктангенс оказался табличным:
[6-6i=6sqrtcdot left( cos left( -frac right)+isin left( -frac right) right)]
В левой полуплоскости откладываем от луча, соответствующего углу $pi $:
Итого для точки $Cleft( -2;5 right)$ имеем:
[begin -2+5i & =sqrtcdot left( cos varphi +isin varphi right) \ varphi & =pi -operatornamefrac end]
И, наконец, для точки $Dleft( -5;-3 right)$:
[begin -5-3i & =sqrtcdot left( cos varphi +isin varphi right) \ varphi & =pi +operatornamefrac end]
Звучит просто, выглядит красиво, работает идеально! Но требует небольшой практики. Пробуйте, тренируйтесь и берите на вооружение.
А в следующем уроке мы научимся извлекать корни из комплексных чисел.:)
🎦 Видео
Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать
Комплексные числа в уравненияхСкачать
Математика без Ху!ни. Комплексные числа, часть 2. Простейшие действия.Скачать
Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать
Высшая математика. Комплексные числаСкачать
4. Показательная форма комплексного числаСкачать
Перевод комплексного числа из алгебраической формы в тригонометрическую, показательнуюСкачать
Уравнение с комплексными числамиСкачать
Комплексные корни квадратного уравненияСкачать