Тригонометрические уравнения с комплексными числами

Видео:Тригонометрическая форма комплексного числаСкачать

Тригонометрическая форма комплексного числа

Решение уравнений с комплексными числами

Итак, необходимо решить уравнение с комплексными переменными, найти корни этого уравнения. Рассмотрим принцип решения комплексных уравнений, научимся извлекать корень из комплексного числа.

Для того, чтобы решить уравнение n-й степени с комплексными числами, используем общую формулу:

Тригонометрические уравнения с комплексными числами
где |z| — модуль числа, φ = arg z — главное значение аргумента, n — степень корня, k — параметр, принимает значения : k = .

Пример 1. Найти все корни уравнения

Тригонометрические уравнения с комплексными числами

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня третьей степени из комплексного числа

Тригонометрические уравнения с комплексными числами

Воспользуемся общей формулой для вычисления корней степени n комплексного числа z. Найдем все необходимые значения для формулы:

Тригонометрические уравнения с комплексными числамиТригонометрические уравнения с комплексными числами
Подставим найденные значения в формулу:

Тригонометрические уравнения с комплексными числами

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения.

Тригонометрические уравнения с комплексными числами

Пример 2. Найти все корни уравнения

Тригонометрические уравнения с комплексными числами

Найдем дискриминант уравнения:

Тригонометрические уравнения с комплексными числами
Поскольку дискриминант отрицательный, уравнение имеет два комплексно-сопряженных корня. Вычислим корень из дискриминанта:

Тригонометрические уравнения с комплексными числами

Найдем корни уравнения:

Тригонометрические уравнения с комплексными числами
Ответ:

Тригонометрические уравнения с комплексными числами

Пример 3. Найти все корни уравнения

Тригонометрические уравнения с комплексными числами

Выразим z из уравнения:

Все корни заданного уравнения являются значениями корня четвертой степени из комплексного числа

Тригонометрические уравнения с комплексными числами

Вновь используем общую формулу для нахождения корней уравнения n степени комплексного числа z.
n = 4 — количество корней данного уравнения. k = . Найдем модуль комплексного числа:

Тригонометрические уравнения с комплексными числами

Подставим найденные значения в формулу:

Тригонометрические уравнения с комплексными числами

Последовательно подставляя вместо k значения 0, 1, 2, 3 найдем все 4 корня уравнения:

Тригонометрические уравнения с комплексными числами

Тригонометрические уравнения с комплексными числами

Пример 4. Найти корни уравнения

Тригонометрические уравнения с комплексными числами
Решение кубического уравнения комплексными числами:

Воспользуемся общей формулой для вычисления корней степени 3 комплексного числа z.

Найдем все необходимые значения для формулы:

Тригонометрические уравнения с комплексными числами
Подставим найденные значения в формулу:

Тригонометрические уравнения с комплексными числами

Последовательно подставляя вместо k значения 0, 1, 2 найдем три корня исходного уравнения:

Тригонометрические уравнения с комплексными числами

Тригонометрические уравнения с комплексными числами

Домашнее задание: Самостоятельно составить и решить уравнение с комплексными числами.

Условия: переменная z должна быть «спрятана» и представлена в качестве аргумента тригонометрической функции косинуса. Чтобы привести данное уравнение к привычной форме, нужно «вытащить» z, а для этого необходимо помнить, как решаются тригонометрические уравнения,а также знать, как применять свойства логарифмической функции от комплексного числа.

После того, как мы решили тригонометрическое уравнение с комплексным числом, получаем «голый» z, который представлен в качестве аргумента обратной тригонометрической функции. Чтобы преобразовать данное выражение, нужно использовать формулу разложения арккосинуса в логарифм.

Вместо z — выражение (3i/4) и дальше все делаем по приведенной выше формуле, преобразовывая выражение под корнем, используя свойства мнимой единицы i.

Как быть далее? Теперь будем использовать формулу для решения выражения с натуральным логарифмом.

Для того чтобы найти корни логарифмического уравнения, нужно найти модуль комплексного числа |z| и его аргумент φ = arg z. По сути, перед нами чисто мнимое число.

Теперь предлагаем ознакомиться с формулами, которые могут пригодиться при решении уравнений или неравенств с комплексными числами. Это формулы, где комплексное число выступает в роли аргумента тригонометрической функции, логарифмической функции или показательной функции.

Видео:Тригонометрическое уравнение: cos(z)=2, а при чём тут формула Эйлера?Скачать

Тригонометрическое уравнение: cos(z)=2, а при чём тут формула Эйлера?

Примеры решений задач с комплексными числами

Тригонометрические уравнения с комплексными числами

На этой странице вы найдете подробные готовые задания с ответами по разделу «Комплексные числа»: действия с комплексными числами, преобразование в алгебраическую, тригонометрическую и показательную форму, возведение в степень и извлечение корня по формуле Муавра, решение уравнений с комплексными корнями и т.п.

Если вам нужна помощь в выполнении работы по комплексным числам, мы будем рады помочь: стоимость задания от 70 рублей, срок от 1 дня, гарантия месяц, подробное оформление (см. Решение задач на заказ).

Еще полезные ссылки для изучения:

Видео:Комплексные числа и "золотое" уравнениеСкачать

Комплексные числа и "золотое" уравнение

Графические задачи с комплексными числами

Задача 1. Найдите геометрическое место точек, изображающих $z$, удовлетворяющих системе неравенств: $$ |z-1| lt 1, \ Re z le 1, \ Im z le 1.$$

Задача 2. Изобразите на $C$: $Re z^2 =-1$.

Видео:✓ Задача про комплексное число | Ботай со мной #101 | Борис ТрушинСкачать

✓ Задача про комплексное число | Ботай со мной #101 | Борис Трушин

Действия с комплексными числами. Решения задач

Задача 3. Вычислить сумму $(z_1 + z_2)$ и разность $(z_1 — z_2)$ комплексных чисел, заданных в показательной форме, переведя их в алгебраическую форму. Построить операнды и результаты на комплексной плоскости. $$ z_1 = 2 e^, z_2=4 e^.$$

Задача 4. Вычислить произведение $z_1 cdot z_2$ и частное $z_1 / z_2$ комплексных чисел. Операнды и результаты изобразить на комплексной плоскости. $$ z_1 = 4+3i, z_2=1-sqrt i.$$

Задача 5. Найти все значения корней из заданного комплексного числа $sqrt[4].$

Задача 6. Вычислить $left(frac right)^.$ Представить результат в алгебраической и показательной формах.

Видео:Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать

Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.

Формы комплексных чисел. Решения задач

Задача 7. Найти $|z|$, $arg z$, записать число $z$ в тригонометрической и показательной форме $z=-sqrt-i.$

Задача 8. Найдите $z$ в тригонометрической форме, если $z=(3-3isqrt)(5sqrt+5i).$

Задача 9. Дано комплексное число $a$. Требуется:
1) записать число $a$ в алгебраической и тригонометрической формах;
2) найти корни уравнения $z^3+a=0$. $$a=frac<sqrt-i>.$$

Видео:Комплексные числа. Тригонометрическая форма. Формула Муавра | Ботай со мной #040 | Борис Трушин !Скачать

Комплексные числа. Тригонометрическая форма. Формула Муавра | Ботай со мной #040 | Борис Трушин !

Уравнения с комплексными числами. Решения задач

Задача 10. Решите уравнение (ответ запишите в алгебраической форме): $sh z — ch z =2i.$

Задача 11. Решить уравнения или вычислить: $$ frac = frac. $$

Задача 12. Найти все комплексные корни заданного уравнения, отметить найденные корни на комплексной плоскости: $z^6-7z^3-8=0.$

Видео:Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать

Математика без Ху!ни. Комплексные числа, часть 1. Введение.

Тригонометрическая форма комплексных чисел

Второй урок по комплексным числам. Если вы только начинаете изучать эту тему (что такое комплексная единица, модуль, сопряжённые), см. первый урок: «Что такое комплексное число».

Сегодня мы узнаем:

Начнём с ключевого определения.

Видео:10 класс, 34 урок, Тригонометрическая форма записи комплексного числаСкачать

10 класс, 34 урок, Тригонометрическая форма записи комплексного числа

1. Тригонометрическая форма

Определение. Тригонометрическая форма комплексного числа — это выражение вида

[z=left| z right|cdot left( cos text!!varphi!!text+isin text!!varphi!!text right)]

где $left| z right|$ — модуль комплексного числа, $text!!varphi!!text$ — некоторый угол, который называется аргумент комплексного числа (пишут $text!!varphi!!text=arg left( z right)$).

Любое число $z=a+bi$, отличное от нуля, можно записать с тригонометрической форме. Для этого нужно вычислить модуль и аргумент. Например:

Записать в тригонометрической форме число $z=sqrt+i$.

Переписываем исходное число в виде $z=sqrt+1cdot i$ и считаем модуль:

Выносим модуль за скобки:

[z=sqrt+1cdot i=2cdot left( frac<sqrt>+fraccdot i right)]

Вспоминаем тригонометрию, 10-й класс:

Понятно, что вместо $frac<text!!pi!!text>$ с тем же успехом можно взять аргумент $frac<13text!!pi!!text>$. Синус и косинус не поменяется. Главное — выбрать такой аргумент, чтобы в тригонометрической форме не осталось никаких минусов. Все минусы должны уйти внутрь синуса и косинуса. Сравните:

Записать в тригонометрической форме число $z=-1-i$.

Видео:Изобразить область на комплексной плоскостиСкачать

Изобразить область на комплексной плоскости

2. Умножение и деление комплексных чисел

Комплексные числа, записанные в тригонометрической форме, очень удобно умножать и делить.

Теорема. Пусть даны два комплексных числа:

[begin & <_>=left| <_> right|cdot left( cos alpha +isin alpha right) \ & <_>=left| <_> right|cdot left( cos beta +isin beta right) \ end]

Тогда их произведение равно

[<_>cdot <_>=left| <_> right|cdot left| <_> right|cdot left( cos left( alpha +beta right)+isin left( alpha +beta right) right)]

А если ещё и $left| <_> right|ne 0$, то их частное равно

Получается, что при умножении комплексных чисел мы просто умножаем их модули, а аргументы складываем. При делении — делим модули и вычитаем аргументы. И всё!

Найти произведение и частное двух комплексных чисел:

[begin <_>cdot <_> & =2cdot 5cdot left( cos left( frac+frac right)+isin left( frac+frac right) right)= \ & =10cdot left( cos frac+isin frac right) \ end]

[begin frac<<_>><<_>> & =fraccdot left( cos left( frac-frac right)+isin left( frac-frac right) right)= \ & =0,4cdot left( cos frac+isin frac right) \ end]

По сравнению со стандартной (алгебраической) формой записи комплексных чисел экономия сил и времени налицо.:)

Видео:3. Тригонометрическая форма комплексного числаСкачать

3. Тригонометрическая форма комплексного числа

3. Формула Муавра

Пусть дано комплексное число в тригонометрической форме:

[z=left| z right|cdot left( cos text!!varphi!!text+isin text!!varphi!!text right)]

Возведём его в квадрат, умножив на само себя:

[begin <^> & =zcdot z = \ & =left| z right|left| z right|cdot left( cos left( text!!varphi!!text!!varphi!!text right)+isin left( text!!varphi!!text!!varphi!!text right) right)= \ & =<^>cdot left( cos 2text!!varphi!!text+isin 2text!!varphi!!text right) \ end]

Затем возведём в куб, умножив на себя ещё раз:

Несложно догадаться, что будет дальше — при возведении в степень $n$. Это называется формула Муавра.

Формула Муавра. При возведении всякого комплексного числа

[z=left| z right|cdot left( cos varphi +isin varphi right)]

в степень $nin mathbb$ получим

Простая формула, которая ускоряет вычисления раз в десять! И кстати: эта формула работает при любом $nin mathbb$, а не только натуральном. Но об этом позже. Сейчас примеры:

Представим первое число в тригонометрической форме:

[begin sqrt-i & = 2cdot left( frac<sqrt>+icdot left( -frac right) right)= \ & =2cdot left( cos left( -frac right)+isin left( -frac right) right) \ end]

По формуле Муавра:

Последним шагом мы воспользовались периодичностью синуса и косинуса, уменьшив аргумент сразу на 28π.

Следующую задачу в разных вариациях любят давать на контрольных работах и экзаменах:

Теперь второе число запишем в комплексной форме:

По формуле Муавра:

Вот так всё просто! Следующие два раздела предназначены для углублённого изучения. Для тех, кто хочет действительно разобраться в комплексных числах.

Видео:Формула Муавра ➜ Вычислить ➜ (5+5i)⁷Скачать

Формула Муавра ➜ Вычислить ➜ (5+5i)⁷

4. Дополнение 1. Геометрический подход

Многие путают местами косинус и синус. Почему комплексная единица стоит именно у синуса? Вспомним, что есть декартова система координат, где точки задаются отступами по осям $x$ и $y$:

Тригонометрические уравнения с комплексными числами

А есть полярная система координат, где точки задаются поворотом на угол $varphi $ и расстоянием до центра $r$:

Тригонометрические уравнения с комплексными числами

А теперь объединим эти картинки и попробуем перейти из декартовой системы координат в полярную:

Тригонометрические уравнения с комплексными числами

Комплексное число $z=a+bi$ задаёт на плоскости точку $C$, удалённую от начала координат на расстояние

Треугольник $ABC$ — прямоугольный. Пусть $angle BAC=varphi $. Тогда:

[begin & AB=ACcdot cos varphi =left| z right|cdot cos varphi \ & BC=ACcdot sin varphi =left| z right|cdot sin varphi \ end]

С другой стороны, длины катетов $AB$ и $BC$ — это те самые отступы $a$ и $b$, с помощью которых мы задаём комплексное число. Поэтому:

[begin a+bi & =left| z right|cos varphi +icdot left| z right|sin varphi = \ & =left| z right|left( cos varphi +isin varphi right) \ end]

Итак, мы перешли от пары $left( a;b right)$ к паре $left( left| z right|;varphi right)$, где $left| z right|$ — модуль комплексного числа, $varphi $ — его аргумент (проще говоря, угол поворота).

Важное замечание. А кто сказал, что такой угол $varphi $ существует? Возьмём число $z=a+bi$ и вынесем модуль за скобку:

Осталось подобрать такой угол $varphi $, чтобы выполнялось два равенства:

Такой угол обязательно найдётся, поскольку выполняется основное тригонометрическое тождество:

На практике основная трудность заключается именно в поиске подходящего аргумента.

Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать

КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТ

5. Дополнение 2. Как найти аргумент?

В учебниках пишут много разной дичи, типа вот этой:

Тригонометрические уравнения с комплексными числами

Формула правильная, но пользы от неё — ноль. Запомнить сложно, а применять и вовсе невозможно. Мы пойдём другим путём.

5.1. Точки на координатных осях

Для начала рассмотрим точки, лежащие осях координат.

Тригонометрические уравнения с комплексными числами

Тут всё очевидно:

  • На положительной полуоси абсцисс $varphi =0$ (фиолетовая точка $A$).
  • На отрицательной — $varphi =pi $ (синяя точка $B$).
  • На положительной полуоси ординат $varphi =frac$ (зелёная точка $B$).
  • На отрицательной — $varphi =frac$ (красная точка $C$). Однако ничто не мешает рассмотреть $varphi =-frac$ — результат будет тем же самым.:)

5.2. Точки с арктангенсом

А если точки не лежат на осях, то в записи комплексного числа $a+bi$ числа $ane 0$ и $bne 0$. Рассмотрим вспомогательный угол

Очевидно, это острый угол:

Зная знаки чисел $a$ и $b$, мы немедленно определим координатную четверть, в которой располагается искомая точка. И нам останется лишь отложить вспомогательный угол $<_>$ от горизонтальной оси в эту четверть.

В правой полуплоскости мы откладываем от «нулевого» луча:

Тригонометрические уравнения с комплексными числами

Точка $Aleft( 3;4 right)$ удалена от начала координат на расстояние 5:

[begin 3+4i & =5cdot left( cos varphi +isin varphi right) \ varphi & =operatornamefrac end]

Для точки $Bleft( 6;-6 right)$ арктангенс оказался табличным:

[6-6i=6sqrtcdot left( cos left( -frac right)+isin left( -frac right) right)]

В левой полуплоскости откладываем от луча, соответствующего углу $pi $:

Тригонометрические уравнения с комплексными числами

Итого для точки $Cleft( -2;5 right)$ имеем:

[begin -2+5i & =sqrtcdot left( cos varphi +isin varphi right) \ varphi & =pi -operatornamefrac end]

И, наконец, для точки $Dleft( -5;-3 right)$:

[begin -5-3i & =sqrtcdot left( cos varphi +isin varphi right) \ varphi & =pi +operatornamefrac end]

Звучит просто, выглядит красиво, работает идеально! Но требует небольшой практики. Пробуйте, тренируйтесь и берите на вооружение.

А в следующем уроке мы научимся извлекать корни из комплексных чисел.:)

🎬 Видео

Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Высшая математика. Комплексные числаСкачать

Высшая математика. Комплексные числа

Математика без Ху!ни. Комплексные числа, часть 2. Простейшие действия.Скачать

Математика без Ху!ни. Комплексные числа, часть 2. Простейшие действия.

Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.Скачать

Математика без Ху!ни. Комплексные числа, часть 4. Извлечение корня n-й степени.

4. Показательная форма комплексного числаСкачать

4. Показательная форма комплексного числа

Перевод комплексного числа из алгебраической формы в тригонометрическую, показательнуюСкачать

Перевод комплексного числа из алгебраической формы в тригонометрическую, показательную

Уравнение с комплексными числамиСкачать

Уравнение с комплексными числами

Комплексные корни квадратного уравненияСкачать

Комплексные корни квадратного уравнения
Поделиться или сохранить к себе: