Автор: Толмачева Надежда Алексеевна.
- Заметка 824
- Политика
- ВЦИОМ: четверть российских старшеклассников хотят уехать из страны
- Тригонометрия (задания для подготовке к ЕГЭ)
- Просмотр содержимого документа «тригонометрия (задания для подготовке к ЕГЭ)»
- Задания по теме «Тригонометрические уравнения»
- Задание №1179
- Условие
- Решение
- Ответ
- Задание №1178
- Условие
- Решение
- Ответ
- Задание №1177
- Условие
- Решение
- Ответ
- Задание №1176
- Условие
- Решение
- Ответ
- Задание №1175
- Условие
- Решение
- Ответ
- Задание №1174
- Условие
- Решение
- Ответ
- 🎥 Видео
Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Заметка 824
Даты и термины по истории
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Политика
Конспект с основными терминами по обществознанию.
Видео:Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать

ВЦИОМ: четверть российских старшеклассников хотят уехать из страны
Почти четверть российских старшеклассников хотели бы уехать из России на постоянное место жительства в другую страну. Об этом сообщил генеральный директор Всероссийского центра изучения общественного мнения Валерий Федоров.
Соц.сети — ВК, Tg.
Если нашли ошибку в тексте, выделите её и нажмите Ctrl+Enter.
Видео:Решение тригонометрических уравнение в ЕГЭ для новичков | ЕГЭ Математика | Аня Матеманя | ТопскулСкачать

Тригонометрия (задания для подготовке к ЕГЭ)
В данной работе собраны задания, встречающиеся в открытом банке заданий ЕГЭ, в сборниках по подготовке к ЕГЭ предыдущих лет, а также на различных сайтах. Все задания можно использовать на уроках в 10 классе приизучении темы : «Тригонометрия».
Просмотр содержимого документа
«тригонометрия (задания для подготовке к ЕГЭ)»
1. Найдите значение выражения 
2. Найдите значение выражения 
3. Найдите 


4. Найдите значение выражения 
5. Найдите значение выражения 
6. Найдите значение выражения 
7. Найдите 


8. Найдите значение выражения 
9. Найдите значение выражения 
10. Найдите 

11. Найдите 


12. Найдите значение выражения 
13. Найдите значение выражения
14. Найдите значение выражения 
15. Найдите значение выражения 
16. Найдите 

17. Найдите 

18. Найдите значение выражения .
19. Найдите значение выражения 
20. Найдите значение выражения , если .
21. Найдите 


22. Найдите , если и .
23. Найдите , если и .
24. Найдите значение выражения .
25. Найдите значение выражения .
26. Найдите значение выражения .
27. Найдите , если .
28. Найдите значение выражения .
29. Найдите , если
30. Найдите значение выражения .
31. Найдите значение выражения .
32. Найдите значение выражения .
33. Найдите значение выражения .
34. Найдите значение выражения .
35. Найдите 
36. Найдите 
37. Найдите 
38. Найдите значение выражения .
39. Найдите значение выражения .
40. Найдите значение выражения .
41. Найдите значение выражения .
42. Найдите значение выражения
43. Найдите значение выражения .
44. Найдите 

45. Найдите значение выражения .
46. Найдите значение выражения .
47. Найдите значение выражения .
48. Найдите значение выражения
49. Найдите 
50 Найдите значение выражения .
51. Найдите значение выражения .
52. Найдите значение выражения .
53. Найдите значение выражения
54. Найдите значение выражения
55. Найдите , если .
56. Найдите , если .
57. Найдите , если
58. Найдите , если .
59. Найдите , если и
60. Найдите значение выражения
61. Найдите значение выражения .
62. Найдите значение выражения .
63. Найдите , если и .
64. Найдите , если
65. Найдите 
66. Найдите 
67. Найдите значение выражения .
68. Найдите значение выражения .
69. Найдите , если .
70. Найдите значение выражения .
71. Найдите значение выражения .
72. Найдите значение выражения .
73. Найдите значение выражения , если .
74. Найдите значение выражения .
75. Найдите , если и .
76. Найдите , если и .
77. Найдите значение выражения .
78. Найдите значение выражения .
79. Найдите значение выражения .
80. Найдите значение выражения .
81. Найдите значение выражения .
82. Найдите значение выражения , если .
83. Найдите значение выражения .
84. Найдите значение выражения .
85 Найдите значение выражения .
86. Найдите значение выражения .
87. Найдите , если .
88. Найдите значение выражения .
89. Найдите значение выражения .
90. Найдите значение выражения .
91. Найдите значение выражения:
92. Найдите , если .
93. Найдите , если и .
94. Найдите значение выражения .
95. Найдите значение выражения .
96. Найдите значение выражения .
97. Найдите значение выражения .
98. Найдите значение выражения .
99. Найдите значение выражения .
100. Найдите значение выражения .
101. Найдите значение выражения .
102. Найдите значение выражения .
103. Найдите значение выражения: .
104. Найдите значение выражения: .
105. Найдите значение выражения .
106. Найдите значение выражения .
107. Найдите значение выражения .
109. Найдите корень уравнения . В ответе напишите наименьший положительный корень.
Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Задания по теме «Тригонометрические уравнения»
Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)
Видео:Тригонометрия в ЕГЭ по базовой математике 2023Скачать

Задание №1179
Условие
а) Решите уравнение 2(sin x-cos x)=tgx-1.
б) Укажите корни этого уравнения, принадлежащие промежутку left[ frac2;,3pi right].
Решение
а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 sin x-2 cos x-tg x=0. Учитывая, что cos x neq 0, слагаемое 2 sin x можно заменить на 2 tg x cos x, получим уравнение 1+2 tg x cos x-2 cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 cos x)=0.
1) 1-tg x=0, tg x=1, x=fracpi 4+pi n, n in mathbb Z;
2) 1-2 cos x=0, cos x=frac12, x=pm fracpi 3+2pi n, n in mathbb Z.
б) С помощью числовой окружности отберём корни, принадлежащие промежутку left[ frac2;, 3pi right].
x_1=fracpi 4+2pi =frac4,
x_2=fracpi 3+2pi =frac3,
x_3=-fracpi 3+2pi =frac3.
Ответ
а) fracpi 4+pi n, pmfracpi 3+2pi n, n in mathbb Z;
б) frac3, frac3, frac4.
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

Задание №1178
Условие
а) Решите уравнение (2sin ^24x-3cos 4x)cdot sqrt =0.
б) Укажите корни этого уравнения, принадлежащие промежутку left( 0;,frac2right] ;
Решение
а) ОДЗ: begin tgxgeqslant 0\xneq fracpi 2+pi k,k in mathbb Z. end
Исходное уравнение на ОДЗ равносильно совокупности уравнений
left[!!begin 2 sin ^2 4x-3 cos 4x=0,\tg x=0. endright.
Решим первое уравнение. Для этого сделаем замену cos 4x=t, t in [-1; 1]. Тогда sin^24x=1-t^2. Получим:
t_1=frac12, t_2=-2, t_2notin [-1; 1].
4x=pm fracpi 3+2pi n,
x=pm fracpi +frac2, n in mathbb Z.
Решим второе уравнение.
tg x=0,, x=pi k, k in mathbb Z.
При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.
Знаком «+» отмечены 1 -я и 3 -я четверти, в которых tg x>0.
Получим: x=pi k, k in mathbb Z; x=fracpi +pi n, n in mathbb Z; x=frac+pi m, m in mathbb Z.
б) Найдём корни, принадлежащие промежутку left( 0;,frac2right].
Ответ
а) pi k, k in mathbb Z; fracpi +pi n, n in mathbb Z; frac+pi m, m in mathbb Z.
Видео:САМЫЕ СЛОЖНЫЕ Задания #6 ЕГЭ 2024 (Тригонометрические Уравнения) | Школа ПифагораСкачать

Задание №1177
Условие
а) Решите уравнение: cos ^2x+cos ^2fracpi 6=cos ^22x+sin ^2fracpi 3;
б) Укажите все корни, принадлежащие промежутку left( frac2;,frac2right].
Решение
а) Так как sin fracpi 3=cos fracpi 6, то sin ^2fracpi 3=cos ^2fracpi 6, значит, заданное уравнение равносильно уравнению cos^2x=cos ^22x, которое, в свою очередь, равносильно уравнению cos^2x-cos ^2 2x=0.
Но cos ^2x-cos ^22x= (cos x-cos 2x)cdot (cos x+cos 2x) и
cos 2x=2 cos ^2 x-1, поэтому уравнение примет вид
(cos x-(2 cos ^2 x-1)),cdot (cos x+(2 cos ^2 x-1))=0,
(2 cos ^2 x-cos x-1),cdot (2 cos ^2 x+cos x-1)=0.
Тогда либо 2 cos ^2 x-cos x-1=0, либо 2 cos ^2 x+cos x-1=0.
Решая первое уравнение как квадратное уравнение относительно cos x, получаем:
(cos x)_=frac4=frac4. Поэтому либо cos x=1, либо cos x=-frac12. Если cos x=1, то x=2kpi , k in mathbb Z. Если cos x=-frac12, то x=pm frac3+2spi , s in mathbb Z.
Аналогично, решая второе уравнение, получаем либо cos x=-1, либо cos x=frac12. Если cos x=-1, то корни x=pi +2mpi , m in mathbb Z. Если cos x=frac12, то x=pm fracpi 3+2npi , n in mathbb Z.
Объединим полученные решения:
x=mpi , m in mathbb Z; x=pm fracpi 3 +spi , s in mathbb Z.
б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.
Получим: x_1 =frac3, x_2=4pi , x_3 =frac3.
Ответ
а) mpi, m in mathbb Z; pm fracpi 3 +spi , s in mathbb Z;
б) frac3, 4pi , frac3.
Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Задание №1176
Условие
а) Решите уравнение 10cos ^2frac x2=frac<11+5ctgleft( dfrac2-xright) >.
б) Укажите корни этого уравнения, принадлежащие интервалу left( -2pi ; -frac2right).
Решение
а) 1. Согласно формуле приведения, ctgleft( frac2-xright) =tgx. Областью определения уравнения будут такие значения x , что cos x neq 0 и tg x neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 cos ^2 frac x2=1+cos x. Получим уравнение: 5(1+cos x) =frac.
Заметим, что frac= frac= 5+frac, поэтому уравнение принимает вид: 5+5 cos x=5 +frac. Отсюда cos x =frac, cos x+sin x =frac65.
2. Преобразуем sin x+cos x по формуле приведения и формуле суммы косинусов: sin x=cos left(fracpi 2-xright), cos x+sin x= cos x+cos left(fracpi 2-xright)= 2cos fracpi 4cos left(x-fracpi 4right)= sqrt 2cos left( x-fracpi 4right) = frac65.
Отсюда cos left(x-fracpi 4right) =frac5. Значит, x-fracpi 4= arccos frac5+2pi k, k in mathbb Z,
или x-fracpi 4= -arccos frac5+2pi t, t in mathbb Z.
Поэтому x=fracpi 4+arccos frac5+2pi k,k in mathbb Z,
или x =fracpi 4-arccos frac5+2pi t,t in mathbb Z.
Найденные значения x принадлежат области определения.
б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=fracpi 4+arccos frac5 и b=fracpi 4-arccos frac5.
1. Докажем вспомогательное неравенство:
Заметим также, что left( frac5right) ^2=frac значит frac5
2. Из неравенств (1) по свойству арккосинуса получаем:
Отсюда fracpi 4+0
Аналогично, -fracpi 4
0=fracpi 4-fracpi 4 fracpi 4
При k=-1 и t=-1 получаем корни уравнения a-2pi и b-2pi.
Bigg( a-2pi =-frac74pi +arccos frac5,, b-2pi =-frac74pi -arccos frac5Bigg). При этом -2pi
-2pi Значит, эти корни принадлежат заданному промежутку left( -2pi , -frac2right).
При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.
Действительно, если kgeqslant 1 и tgeqslant 1, то корни больше 2pi. Если kleqslant -2 и tleqslant -2, то корни меньше -frac2.
Ответ
а) fracpi4pm arccosfrac5+2pi k, kinmathbb Z;
б) -frac4pm arccosfrac5.
Видео:Вся тригонометрия к ЕГЭ за 20 минут | Математика ЕГЭ — Эрик ЛегионСкачать

Задание №1175
Условие
а) Решите уравнение sin left( fracpi 2+xright) =sin (-2x).
б) Найдите все корни этого уравнения, принадлежащие промежутку [0; pi ];
Решение
а) Преобразуем уравнение:
cos x+2 sin x cos x=0,
x =fracpi 2+pi n, n in mathbb Z;
x=(-1)^cdot fracpi 6+pi k, k in mathbb Z.
б) Корни, принадлежащие отрезку [0; pi ], найдём с помощью единичной окружности.
Указанному промежутку принадлежит единственное число fracpi 2.
Ответ
а) fracpi 2+pi n, n in mathbb Z; (-1)^cdot fracpi 6+pi k, k in mathbb Z;
б) fracpi 2.
Видео:Что есть ответ на тригонометрическое уравнение? Тригонометрические уравнения Часть 1 из 6.Скачать

Задание №1174
Условие
б) Найдите все корни этого уравнения, принадлежащие отрезку left[ -frac; -frac2 right].
Решение
а) Найдём ОДЗ уравнения: cos 2x neq -1, cos (pi +x) neq -1; Отсюда ОДЗ: x neq frac pi 2+pi k,
k in mathbb Z, x neq 2pi n, n in mathbb Z. Заметим, что при sin x=1, x=frac pi 2+2pi k, k in mathbb Z.
Полученное множество значений x не входит в ОДЗ.
Значит, sin x neq 1.
Разделим обе части уравнения на множитель (sin x-1), отличный от нуля. Получим уравнение frac 1=frac 1, или уравнение 1+cos 2x=1+cos (pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 cos ^2 x=1-cos x. Это уравнение с помощью замены cos x=t, где -1 leqslant t leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=frac12. Возвращаясь к переменной x , получим cos x = frac12 или cos x=-1, откуда x=frac pi 3+2pi m, m in mathbb Z, x=-frac pi 3+2pi n, n in mathbb Z, x=pi +2pi k, k in mathbb Z.
б) Решим неравенства
1) -frac2 leqslant frac3+2pi m leqslant -frac pi 2 ,
2) -frac2 leqslant -frac pi 3+2pi n leqslant -frac pi
3) -frac2 leqslant pi+2pi k leqslant -frac pi 2 , m, n, k in mathbb Z.
1) -frac2 leqslant frac3+2pi m leqslant -frac pi 2 , -frac32 leqslant frac13+2m leqslant -frac12 -frac6 leqslant 2m leqslant -frac56 , -frac leqslant m leqslant -frac5.
Нет целых чисел, принадлежащих промежутку left [-frac;-frac5right] .
2) -frac 2 leqslant -frac3+2pi n leqslant -frac, -frac32 leqslant -frac13 +2n leqslant -frac12 , -frac76 leqslant 2n leqslant -frac1, -frac7 leqslant n leqslant -frac1.
Нет целых чисел, принадлежащих промежутку left[ -frac7 ; -frac1 right].
3) -frac2 leqslant pi +2pi kleqslant -frac2, -frac32 leqslant 1+2kleqslant -frac12, -frac52 leqslant 2k leqslant -frac32, -frac54 leqslant k leqslant -frac34.
Этому неравенству удовлетворяет k=-1, тогда x=-pi.
Ответ
а) frac pi 3+2pi m; -frac pi 3+2pi n; pi +2pi k, m, n, k in mathbb Z;
🎥 Видео
ЕГЭ №9. Тригонометрические выражения.Тригонометрические уравнения | Математика | TutorOnlineСкачать

Преобразование тригонометрических выражений / #26761 #77414 ЕГЭ базаСкачать

Тригонометрические уравнения. Задание 12 | Профильная математика ЕГЭ 2023 | УмскулСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрияСкачать

ЕГЭ-ПРОФИЛЬ. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. ЗАДАНИЕ-12Скачать

Тригонометрические уравнения | Борис ТрушинСкачать

Тригонометрические уравнения 2 части ЕГЭСкачать

Как решить пункт б) в задании 13 профиля ЕГЭ. ТригонометрияСкачать




.png)

