тест по алгебре (11 класс) по теме
Материал содержит подборку заданий для организации самостоятельной работы учащихся, а так же небольшую проверочную работу по теме.
Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать
Скачать:
Вложение | Размер |
---|---|
trenazh._ur._kas._moy.doc | 47.5 КБ |
Видео:Математика без Ху!ни. Уравнение касательной.Скачать
Предварительный просмотр:
Написать уравнение касательной к графику функции
1. f(x) = 5x 3 — 2x 2 x 0 = 2
2 f(x) = — 3x 3 + 3 x 0 = — 1
3 f(x) = 4x 3 — 2 x 2 — 3x + 7 x 0 = 0
4 f(x) = x 3 — 3 x 2 +1 x 0 = 2
5 f(x) = 5x 2 — 4 x x 0 = 3
6 f(x) = — 3 x 3 — 2 x 2 + 1 x 0 = 1
7 f(x) = x 3 — 2 x + 1 x 0 = 1
8 f(x) = 2 x 2 — 4 x x 0 = 2
9 f(x) = 3 x 3 — 5 x 0 = 0
10 f(x) = x 3 — 2 x 2 + 4 x 0 = 1
11 f(x) = 2x 4 — 3 x 3 + 2 x x 0 = -1
12 f(x) = -3 x 5 + x 4 x 0 = 0
13 f(x) = — 3x 4 +5 x 3 — 2 x x 0 = 2
14 f(x) = 5x 6 — 3 x 2 + 4 x 0 = 1
15 f(x) = 2 x 4 — 3 x 2 + 2 x x 0 = 1
16 f(x) = — 4 x 3 +7 x x 0 = 2
17 f(x) = 3 x 3 — 7x 2 + 5 x x 0 = 1
18 f(x) = 4 x 3 — 2 x 2 +7 x x 0 = 2
19 f(x) = 7x 4 — 2 x 3 + 5 x — 1 x 0 = 1
20 f(x) = -5x 4 + 6x 2 — 7 x 0 = -1
21. f(x) = x 4 — 2x 3 + 5x + 2 x 0 = 2
22. f(x) = 2x 5 — 3x 4 – 8 x 0 = 1
23. f(x) = -4x 3 + 2x – 2 x 0 = 2
24. f(x) = 3x 3 — 4x 2 +5 x 0 = 2
25. f(x) = 3x 4 — 2x 3 + 6 x 0 = 1
26. f(x) = 4x 3 — 2x 2 — 5x x 0 =1
27. f(x) = 4x 5 — 3x 2 — 6x x 0 = — 1
28. f(x) = 7x 4 — 2x 2 — x x 0 = 1
29. f(x) = 3x 3 — 4x + 7 x 0 = — 1
30. f(x) = 5x 5 — 3x 3 + x 2 x 0 =1
31. f(x) = 2x 4 — 8x 2 — 4x x 0 =-1
32. f(x) =3x 4 -5x 2 -7x X 0 =1
33. f(x) =-2x 5 +3x 4 -8x X 0 = — 1
34. f(x) = 2x 4 -5x 3 -3x X 0 =1
35. f(x) =3x 4 -2x 5 +7 X 0 =1
36. f(x) = 2x 3 -5x 2 +3 X 0 = — 1
5) y = 26 x – 45 0
13) y = — 38 x + 64 0
14) y = 24x — 18 0
16) y = — 41 x + 64 0
18) y = 39x — 40 0
19) y = 27x — 18 0
21) y = 13х – 14 0
23) y = — 46 x + 62
27 ) y = 20x + 19 0
28 ) y = 23x — 19 0
30) y = 18x — 15 0
33) y = — 30x — 17 0
1. вариант. а) f(x) = 3x 4 — 2x 2 — 2x X 0 = 1 b) f(x) = 2x 3 — 5x 2 + 1 X 0 = — 1
2. вариант a) f(x) = 4x 3 — 5x 2 — 7x + 1 X 0 = 1 b) f(x) = 3x 3 — 4x — 5 X 0 = — 1
3. вариант a) f(x) = 5x 3 — 2x 2 — 4x — 7 X 0 = 1 b) f(x) = 2x 4 — 3x 3 X 0 = — 1
4. вариант a) f(x) = 4x 4 — 3x 2 — 2x X 0 = 1 b) f(x) = 2x 3 — 5x 2 + 3 X 0 = — 1
5. вариант a) f(x) = 6x 5 — 4x 3 — 2x + 7 X 0 = 1 b) f(x) = 2x 3 — 3x 2 — 5x X 0 = — 1
Ответы Проверочная работа.
1. вариант. а) y =6x-7 b) y = 16x + 10
2. вариант a) y = — 5x — 2 b) y = 5x + 1
3. вариант a) y = 7x — 15 b) y = -17x — 12
4. вариант a) y = 8x — 9 b) y = 16x + 12
5. вариант a) y = 16x — 9 b) y = 7x + 7
Видео:10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
По теме: методические разработки, презентации и конспекты
Материалы к уроку по теме «Уравнение касательной», 10 класс
Разработка урока для учащихся 10 класса по алгебре и началам анализа. Тема «Уравнение касательной». К материалам прилагается презентация и раздаточный материал. Урок рассчитан на 45 минут. Урок пров.
Презентация — тренажер «Готовимся к ЕГЭ по русскому языку. Тренажер А16»
Презентация — тренажер «Готовимся к ЕГЭ по русскому языку. Тренажер А16» составлена с использованием триггеров. Предназначена для отработки навыка правописания букв Е-И в личных окончаниях глаго.
открытый урок алгебры в 11 классе. Касательная. Уравнение касательной
урок алгебры в 11 классе по теме: «Касательная. Уравнение касательной»1. Тип урока: Урок изучения нового материала 2. Цели урока: · Уточнить понятие «касательной». · Вывести уравнение касател.
Вопросы для опроса по теме «Уравнение касательной»
Материал можно использовать при итоговом повторении .
Урок по теме «Касательная. Уравнение касательной»
Урок по теме «Касательная. Уравнение касательной» Тип урока: изучение нового материала.Методы обучения: наглядный, частично поисковый.Цель урока:Ввести понятие касательной к графику функции в точке, в.
Презентация к уроку «Касательная. Уравнение касательной»
Касательная.Уравнение касательной»11 класс.
Касательная к окружности. Признак и свойства касательной к окружности.
Касательная к окружности. Признак и свойства касательной к окружности.
Видео:Уравнение касательнойСкачать
Тестовые задания по теме: «Касательная к графику функции»
Разделы: Математика
При изучении темы “Касательная к графику функции” можно выделить 5 типов задач.
I. Задачи на составление уравнения касательной к графику функции в точке, принадлежащей графику
Обучение решению задач на касательную осуществляется при помощи алгоритма.
Уравнение касательной к графику функции y=f(x) в точке х: y = f(х) + f ‘(х)(x – х)
Алгоритм составления уравнения касательной к графику функции y = f(x):
1. Обозначить х абсциссу точки касания.
2. Найти f(х)
3. Найти f ‘(x) и f ‘(х) 4. Подставить найденные числа х, f(х), f ‘(х) в общее уравнение касательной
Задача. Составьте уравнение касательной к графику функции в точке с абсциссой х=3.
1. х = 3 – абсцисса точки касания.
3. f ‘(x) = x 2 – 4, f ‘(3) = 5. 4.Подставив в уравнение касательной значения х=3, f(х)=-2, f ‘(х)=5, получим y = – 2 + 5(x – 3), т.е. y = 5x – 17. Это и есть искомое уравнение касательной. Ответ: y = 5x-17.
Найти уравнение касательной к графику функции f(x) в точке с абсциссой х.
1. f(x)=-x-4x+2, х=-1. | 1) y=-2x-3; | 2) y=2x-1; | 3) y=-2x+3; | 4) y=2x+3. |
2. f(x)=-x+6x+8, х=-2. | 1) y=2x-6; | 2 )y=10x+12; | 3) y=4x+8; | 4) y=-10x+8. |
3. f(x)=x+5x+5, х=-1. | 1) y=7x+8; | 2) y=8x+7; | 3) y=9x+8; | 4) y=8x+6. |
4. f(x)=2cosx, х= | 1) y= | 2) y= | 3) y= | 4) y= |
5. f(x)=tgx, х= 1) y=x; | 2) y=x+ | 3) y=x- | 4) y=x-1. | |
6. f(x)=1-sin2x, х=0. | 1) y=1-2x; | 2) y=2x; | 3) y = -2x; | 4) y=2x+1. |
7. f(x)= х=-2. | 1) y = -x+1; 2) y = x+1; | 3) y = -x-1; | 4) y = -x-2. |
8. Уравнение касательной, проведённой к графику функции y=lnx в точке его пересечения с осью абсцисс, имеет вид. 1) y = 2x-2; 2) y = x-1; 3) y = x+1; 4) y = x.
9. Уравнение касательной, проведённой к графику функции y=e-1 в точке его пересечения с осью абсцисс, имеет вид. 1) y = 2x; 2) y = 3x-1; 3) y = x-1; 4) y = x.
10. Уравнение касательной, проведённой к графику функции y=sin(x-)+1 в точке его пересечения с осью ординат, имеет вид. 1) y = x+1; 2) y = x-1; 3) y =- x-1; 4) y =1- x.
Ответы к упражнениям
Задание 1 2 3 4 5 6 7 8 9 10 Номер ответа 3 2 2 2 3 1 3 2 4 4
II. Проведение касательной параллельно заданной прямой
Задача 1. В каких точках касательные к кривой у=— х— х+1 параллельны прямой y=2x-1?
Решение. Так как касательные параллельны прямой у=2х-1 то их угловые коэффициенты совпадают. Т. е. угловой коэффициент касательной в этой точке есть к = 2 .
Находим у’ = х-2х-1; к= у'(х)= х-2х-1=2.
Решив уравнение х-2х-1=2; х-2х-3=0, получим (х)=3, (х)=-1, откуда (у)= -2, (у)= . Итак, искомыми точками касания являются А(3;-2) и В(-1;)
Ответ: (3;-2) и (-1;).
Задача 2. Найти абсциссу точки, в которой касательная к графику функции f(x) = 2x-lnx, параллельна прямой у = х.
Решение. Пусть х— абсцисса точки касания. Угловой коэффициент касательной в этой точке есть к=1. Находим f ‘(x)=2-. К= f ‘ (х)=2-=1.
Решив уравнение 2-=1, получим х=1.
Найти абсциссу точки, в которой касательная к графику функции f(x) параллельна прямой у(х).
1. f(x)= х+е, у(х)= -х. | 1) —; 2) 0; 3) ; 4) 1. |
2. f(x)=2+х, у(х)= 2х. | 1) 1; 2) 4; 3) 0; 4) . |
3. f(x)=х-5х, у(х)= -х. | 1) -2; 2) 3; 3) -3; 4) 2. |
4. f(x)=2lnх-x, у(х)= 0. | 1) -2; 2) 0; 3) 2; 4) 1. |
5. f(x)=-х-е, у(х)= 4-2х. | 1) 3; 2) 2; 3) 0; 4) –2. |
6. Найти сумму абсцисс точек, в которых касательные к графику функции у=х— 3х+1 параллельны оси абсцисс. 1) 0; 2) 2; 3) 1; 4) –2.
7. Найти сумму абсцисс точек в которых касательные к кривой у= параллельны прямой у=х+5. 1) –2; 2) 4; 3) 2; 4) –4.
8. К графику функции у = проведены две параллельные касательные, одна из которых проходит через точку графика с абсциссой х= -1. Найдите абсциссу точки, в которой другая касательная касается графика данной функции. 1) –2; 2) 2; 3) 1; 4) –3.
9. К графику функции у =- проведены две параллельные касательные, одна из которых проходит через точку графика с абсциссой х= 1. Найдите абсциссу точки, в которой другая касательная касается графика данной функции. 1) –1; 2) 5; 3) 2; 4) –3.
10. На графике функции у = х (х-4) указать точки, в которых касательные параллельны оси абсцисс. Найти сумму абсцисс данных точек. 1) 5; 2) 4; 3) 3; 4) – 27.
Ответы к упражнениям
Задание 1 2 3 4 5 6 7 8 9 10 Номер ответа 2 1 4 2 2 1 4 3 2 1
III. Задачи на касательную, связанные с ее угловым коэффициентом
Задача 1. К графику функции f(x) = 3x+5x-15 в точке с абсциссой x= проведена касательная. Найти тангенс угла наклона касательной к оси Ох.
f'(x) является угловым коэффициентом касательной к графику функции у =f(x) в точке x. Угловой коэффициент прямой равен тангенсу угла, образованного этой прямой с положительным направлением оси Ох.
k= f ‘(x)=tg, где x— абсцисса точки касания, а — угол наклона касательной к оси Ох.
f ‘(x)= f ‘()=6. tg=6.
Задача 2. Напишите уравнение касательной к графику функции f(x) = 0,5x 2 – 3x + 1, проходящей под углом 45° к прямой y = 0.
Решение. f ‘(x)= x-3. Из условия f ‘(x) = tg 45° найдем x: x – 3 = 1, x= 4.
1. x= 4 – абсцисса точки касания.
2. f(4) = 8 – 12 + 1 = – 3.
4. y = – 3 + 1(x – 4). y = x – 7 – уравнение касательной
Задача 3. Под каким углом к оси Ох наклонена касательная к графику функции f(x)=xlnx в точке x=1.
Решение. k= f'(x)=tg.
Находим f ‘(x)= 2xlnx+x=2xlnx+x=x(2lnx+1).
При x=1 получим f ‘(1)=1, откуда tg=1 и, значит, =.
Ответ: .
К графику функции f(x) в точке с абсциссой x проведена касательная. Найти тангенс угла наклона касательной к оси Ох если:
1. f(x)= 2+x-2x, x=1. | 1) -1; 2) –7; 3) 3; 4) 0. |
2. f(x)= , x=8. | 1) 1; 2) 32; 3) 8; 4) 16. |
3. f(x)= 5x-3x-7, x=-1. | 1) 21; 2) 14; 3) 9; 4) -21. |
4. f(x)= 3x-2lnx, x=2. | 1) 10; 2) 8; 3) 11; 4) 11,5. |
5. f(x)= -x+14, x=1. | 1) -51; 2) –65; 3) 63; 4) 77. |
Найти угловой коэффициент касательной проведённой к графику функции f(x) в точке x
6. f(x)=e-x, x=1. | 1) e-2; 2) –1; 3) e-1; 4) –2. |
7. f(x)=2sinx+2, x=0. | 1) -2; 2) 0; 3) 4; 4) 2. |
8. f(x)=4cosx-1, x=. | 1) 4; 2) 2; 3) -2; 4) 1. |
9. f(x)=2+3, x=4. | 1) 3,5; 2) 0,5; 3) 7; 4) 2,5. |
10. Под каким углом к оси Ох наклонена касательная к графику функции f(x)=3lnx — x, в точке x=1. 1) 2) 3) arctg2; 4)
Ответы к упражнениям
Задание 1 2 3 4 5 6 7 8 9 10 Номер ответа 2 3 1 3 2 1 4 3 2 4
IV. Нахождение касательной проходящей через точку, внешнюю по отношению к заданному графику
Задача 1. Составить уравнения касательных к кривой y = x— 4x+3, проходящих через точку М(2;-5).
При х =2, находим у = 4-8+3=-1-5, то есть точка М не лежит на кривой y = x-4x+3 и не является точкой касания.
Пусть (х) – точка касания.
у ‘ =2х-4, k = 2x— 4. Составим уравнение касательной, проходящей через точку М:
у=-5-(2х-4)(2-х). Поскольку точка (х) лежит на кривой, получим y = x-4x+3.
Решим уравнение x-4x+3 = -5-(2х-4)(2-х);
x-4x+3=2x-8x+3, x— 4x=0, (х)=0, (х)= 4.
Таким образом, получили две точки касания А(0;3) и В(4;3). Итак, существуют две касательные к данной кривой; одна из них имеет угловой коэффициент k= -4 (при х=0) и уравнение у = -4х+3, а другая – угловой коэффициент k=4 (при х=4) и уравнение у=4х-13.
Ответ: у =-4х+3, у = 4х-13.
Через точку М(х;у) проведены две касательные к графику функции f(x). Найти сумму абсцисс точек касания.
1. f(x)=4х-8х-2, М(3;-90). | 1) 4; 2) 6; 3) 5; 4) 3. |
2. f(x)=7х-2х-5, М(2;-93). | 1) 4; 2) 6; 3) 5; 4) 3. |
3. f(x)=6х-4х-1, М(1;-23). | 1) 1; 2) 5; 3) 2; 4) 3. |
4. f(x)=х-8х-2, М(1,5;-54). | 1) 2; 2) 4; 3) 5; 4) 3. |
5. f(x)=х-9х-5, М(-1,5;4,5). | 1) -2; 2) -5; 3) 2; 4) — 3. |
6. f(x)=7х-7х-1, М(2;-50). | 1) 4; 2) 6; 3) 5; 4) 3. |
7. Напишите уравнение касательной к графику функции f(x)= х— 4х + 5, если эта касательная проходит через точку А(0;4) и абсцисса точки касания положительна.
1) у = 2х+4; 2) у = -2х+4; 3) у = -4х+4; 4) у = 4х-3.
8. Напишите уравнение касательной к графику функции f(x)= х+ 3х + 5, если эта касательная проходит через точку А(0;1) и абсцисса точки касания отрицательна.
1) у = 2х+1; 2) у = х+1; 3) у = -х+1; 4) у = -2х-5.
9. Напишите уравнения касательных к графику функции f(x)= -0,5 х+3, если эта касательные проходят через точку на оси Оу и образуют между собой угол 90 o ?.
1) у = х+3,5 и у = х-3,5 ; 2) у = -х+3,5 и у = х+3,5; 3) у = -х+4 и у =х+4; 4) у = -х+3 и у =х+3.
10. Через точку В(-2;3) проходят касательные к графику функции у=. Найти уравнения этих касательных.
1) у = 2х+2 и у = -22х+2; 2) у =-х+3 и у = х-3; 3)у =-0,5х+2 и у =х+4; 4)у =-0,5х+2 и у =-0,1х+2,8.
Ответы к упражнениям
Задание 1 2 3 4 5 6 7 8 9 10 Номер ответа 2 1 3 4 4 1 2 4 2 4
V. Нестандартные задачи, связанные с касательной
1. Напишите уравнения касательных, проведенных к графику функции y = 2x 2 – 4x + 3 в точках пересечения графика с прямой y = x + 3. Ответ: y = – 4x + 3, y = 6x – 9,5.
2. При каких значениях a касательная, проведенная к графику функции y = x 2 – ax в точке графика с абсциссой x0 = 1, проходит через точку M(2; 3)? Ответ: a = 0,5.
3. При каких значениях p прямая y = px – 5 касается кривой y = 3x 2 – 4x – 2? Ответ: p1 = – 10, p2 = 2.
4. Найдите все общие точки графика функции y = 3x – x 3 и касательной, проведенной к этому графику через точку P(0; 16). Ответ: A(2; – 2), B(– 4; 52).
5. На кривой y = x 2 – x + 1 найдите точку, в которой касательная к графику параллельна прямой y – 3x + 1 = 0. Ответ: M(2; 3).
6. Напишите уравнение касательной к графику функции y = x 2 + 2x – | 4x |, которая касается его в двух точках. Сделайте чертеж. Ответ: y = 2x – 4.
7. На параболе y = x 2 взяты две точки с абсциссами x1 = 1, x2 = 3. Через эти точки проведена секущая. В какой точке параболы касательная к ней будет параллельна проведенной секущей? Напишите уравнения секущей и касательной.
Ответ: y = 4x – 3 – уравнение секущей; y = 4x – 4 – уравнение касательной.
8. Найдите угол между касательными к графику функции y = x 3 – 4x 2 + 3x + 1, проведенными в точках с абсциссами 0 и 1. Ответ: = 45°.
9. Напишите уравнение всех общих касательных к графикам функций y = x 2 – x + 1 и y = 2x 2 – x + 0,5. Ответ: y = – 3x и y = x.
10. Определите, под какими углами парабола y = x 2 + 2x – 8 пересекает ось абсцисс.
Ответ: 1 = arctg 6, 2 = arctg (– 6).
11. Прямая y = 2x + 7 и парабола y = x 2 – 1 пересекаются в точках M и N. Найдите точку K пересечения прямых, касающихся параболы в точках M и N. Ответ: K(1; – 9).
12. При каких значениях b прямая y = 9x + b является касательной к графику функции y = x 3 – 3x + 15? Ответ: – 1; 31.
13. При каких значениях k прямая y = kx – 10 имеет только одну общую точку с графиком функции y = 2x 2 + 3x – 2? Для найденных значений k определите координаты точки.
14. При каких значениях b касательная, проведенная к графику функции y = bx 3 – 2x 2 – 4 в точке с абсциссой x0 = 2, проходит через точку M(1; 8)?
Видео:Геометрический смысл производной. Уравнение касательнойСкачать
Решение упражнений по теме:» Уравнение касательной»
Закрепление изученного материала.
Просмотр содержимого документа
«Решение упражнений по теме:» Уравнение касательной»»
Решение упражнений по теме: Уравнение касательной к графику функции.
Цели урока: повторить правила дифференцирования функций, уравнение касательной к графику функции в заданной точке, геометрически и физический смысл производной. Отработать навык составления уравнения касательной к графику функции в заданной точке, находить тангенс угла наклона касательной и ее угловой коэффициент.
1. Организационный момент.
2. Устная работа.
По готовому рисунку ответить на вопросы.
Вариант 1
Что называется секущей для графика функции?
Чему равен угол наклона касательной к графику функции в заданной точке?
Как определяется тангенс угла наклона касательной?
Известно, что угловой коэффициент касательной к графику функции в точке с абсциссой равен 0,5. Чему равно значение производной в этой точке?
В чем заключается геометрический смысл производной?
Записать уравнение касательной к графику функции в заданной точке в общем виде.
Какая прямая называется касательной к графику функции?
Какая из отмеченных точек является точкой касания? Определите ее координаты.
Как находится угловой коэффициент касательной?
Касательная к графику функции f(x) в точке с абсциссой образует с положительным направлением оси OX угол 30 градусов. Найдите в этой точке.
Алгоритм составления уравнения касательной к графику функции f(x) в точке.
В чем заключается физический смысл производной?
3. Решение задач.
Разобрать следующие задачи.
А)Найдите скорость изменения функции в точке =2 .
Б)Найдите ускорение функции в точке =1
Составить уравнение касательной к графику заданной функции в точке с абсциссой :
а)
б)
в)
Найдите угловой коэффициент касательной, проведенной к графику функции через точку с абсциссой x = 1.
В каких точках касательные к графику функции параллельны оси OX.
4. Самостоятельная работа (с выбором ответа)
1. Найдите тангенс угла наклона касательной, проведенной к графику функции в его точке с абсциссой .
1) -3; 2) -4,5; 3) 3; 4) 0.
2. Найдите угловой коэффициент касательной, проведенной к графику функции в его точке с абсциссой .
1) -3; 2) 0; 3) 2; 4) 5
3. К графику функции проведена касательная в точке с абсциссой . Как расположена точка пересечения этой касательной с осью OY.
1) выше точки (0; 0); 2) ниже точки (0; 0);
3) выше точки (0; 1); 4) в точке (0; 0).
1. Найдите угловой коэффициент касательной, проведенной к графику функции в его точке с абсциссой .
1) -3; 2) 0; 3) 3; 4) 5.
2. Найдите тангенс угла наклона касательной, проведенной к графику функции в его точке с абсциссой .
1) -3; 2) -4,5; 3) 3; 4) 0.
3. К графику функции проведена касательная в точке с абсциссой . Как расположена точка пересечения этой касательной с осью OY.
1) выше точки (0; 0); 2) ниже точки (0; 0);
🎬 Видео
Часть 4: Общее уравнение КасательнойСкачать
Уравнение касательнойСкачать
Производная: касательная к графику.Скачать
Производная: касательная параллельная к заданной.Скачать
Уравнение касательной в точке. Практическая часть. 2ч. 10 класс.Скачать
Урок 13. Уравнение касательной, проходящей параллельно прямой. Производные. Алгебра 10, 11 класс.Скачать
М11 (9.24-9.42) Производная степенной функции, уравнение касательной.Скачать
Геометрический смысл производной | КасательнаяСкачать
Что такое касательная | Осторожно, спойлер! | Борис Трушин |Скачать
Касательная к графику функции в точке. 10 класс.Скачать
3. Геометрический смысл производной. Уравнение касательной и нормали.Скачать
ЕГЭ Задание 7 Уравнение касательнойСкачать
М11 (П24-П29) Повторение. Уравнение касательной.Скачать
Уравнение касательной к графику функции в заданной точкеСкачать
Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.Скачать