Точки равновесия системы дифференциальных уравнений это

Точки равновесия системы дифференциальных уравнений это

МОДЕЛИ БИОЛОГИЧЕСКИХ СИСТЕМ, ОПИСЫВАЕМЫЕ

ОДНИМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЕМ ПЕРВОГО ПОРЯДКА

Модели, приводящие к одному дифференциальному уравнению. Понятие решения одного автономного дифференциального уравнения. Стационарное состояние (состояние равновесия). Устойчивость состояния равновесия. Методы оценки устойчивости. Решение линейного дифференциального уравнения Примеры: экспоненциальный рост, логистический рост.

Изучение математических моделей биологических систем начнем с систем первого порядка, которым соответствует одно дифференциальное уравнение первого порядка:

Точки равновесия системы дифференциальных уравнений это

Если система автономная, то правая часть уравнений не зависит явно от времени и уравнение имеет вид:

Точки равновесия системы дифференциальных уравнений это (2.1)

Состояние таких систем в каждый момент времени характеризуется одной единственной величиной – значением переменной x в данный момент времени t.

Рассмотрим плоскость t, x. Решениями уравнения (2.1): x( t) являются кривые на плоскости t, x , называемые интегральными кривыми (рис. 2.1)

Пусть заданы начальные условия Точки равновесия системы дифференциальных уравнений это при t =0 или, иначе, пусть на плоскости t, x задана точка с координатами Точки равновесия системы дифференциальных уравнений это . Если для уравнения (2.1) выполнены условия теоремы Коши, то имеется единственное решение уравнения (2.1), удовлетворяющее этим начальным условиям, и через точку Точки равновесия системы дифференциальных уравнений это проходит одна единственная интегральная кривая x( t) .

Рис. 2.1. Интегральные кривые x ( t ); – решения уравнения f ( x ) = 0

Точки равновесия системы дифференциальных уравнений это Точки равновесия системы дифференциальных уравнений это

Интегральные кривые уравнения (2.1) не могут пересекаться. Решения уравнения (2.1) не могут быть периодическими, они монотонны.

Поведение интегральных кривых на плоскости t, x можно установить, не решая в явном виде дифференциального уравнения (2.1), если известен характер движения изображающей точки на фазовой прямой.

Рассмотрим плоскость t, x , причем фазовую прямую совместим с осью x . Построим на плоскости t, x точку с абсциссой t и с ординатой, равной смещению изображающей точки по оси x в данный момент времени t. С течением времени в соответствии с уравнением (2.1) изображающая точка будет двигаться по фазовой прямой (рис. 2.2), а на плоскости t, x описывать некую кривую. Это будет интегральная кривая уравнения (2.1).

Решения одного автономного дифференциального уравнения либо уходят в бесконечность (чего не бывает в реальных системах), либо асимптотически приближаются к стационарному состоянию.

Точки равновесия системы дифференциальных уравнений это Точки равновесия системы дифференциальных уравнений это

Стационарное состояние (точка покоя, особая точка, состояние равновесия)

В стационарном состоянии значения переменных в системе не меняются со временем. На языке дифференциальных уравнений это означает:

Точки равновесия системы дифференциальных уравнений это (2.2)

Если левая часть уравнения равна нулю, значит равна нулю и его правая часть:

Корни алгебраического уравнения (2.3): Точки равновесия системы дифференциальных уравнений это суть стационарные состояния дифференциального уравнения (2.1). На плоскости ( t, x) прямые Точки равновесия системы дифференциальных уравнений это – асимптоты, к которым приближаются интегральные кривые. На фазовой прямой (рис. 2.2) стационарное состояние Точки равновесия системы дифференциальных уравнений это – точка, к которой стремится величина x.

Реальные биологические системы испытывают многочисленные флуктуации, переменные при малых отклонениях возвращаются к своим стационарным значениям. Поэтому при построении модели важно знать, устойчивы ли стационарные состояния модели.

Рис. 2.3. К понятию устойчивости состояния равновесия

Точки равновесия системы дифференциальных уравнений это Точки равновесия системы дифференциальных уравнений это

Устойчивость состояния равновесия

Каждый имеет интуитивное представление об устойчивости. На рис. 2.3. в обоих положениях (а и б) шарик находится в равновесии, т.к. сумма сил, действующих на него, равна нулю.

Попытайтесь ответить на вопрос : «Какое из этих состояний равновесия устойчиво?»

Скорее всего, Вы дали правильный ответ. Сказать, как Вы догадались? Вы дали шарику малое отклонение от состояния равновесия . В случае ( а) шарик вернулся. В случае ( б) покинул состояние равновесия навсегда.

Устойчивое состояние равновесия можно определить так: если при достаточно малом отклонении от положения равновесия система никогда не уйдет далеко от особой точки, то особая точка будет устойчивым состоянием равновесия, что соответствует устойчивому режиму функционирования системы.

Строгое математическое определение устойчивости состояния равновесия уравнения dx/dt = f( x) выглядит следующим образом :

Состояние равновесия устойчиво по Ляпунову, если задав сколь угодно малое положительное Точки равновесия системы дифференциальных уравнений это , всегда можно найти такое Точки равновесия системы дифференциальных уравнений это , что

Точки равновесия системы дифференциальных уравнений это для Точки равновесия системы дифференциальных уравнений это если Точки равновесия системы дифференциальных уравнений это .

Иначе говоря, для устойчивого состояния равновесия справедливо утверждение: если в момент времени Точки равновесия системы дифференциальных уравнений это отклонение от состояния равновесия мало ( Точки равновесия системы дифференциальных уравнений это ), то в любой последующий момент времени Точки равновесия системы дифференциальных уравнений это отклонение решения системы от состояния равновесия будет также мало: Точки равновесия системы дифференциальных уравнений это .

Другими словами: c тационарное состояние называется устойчивым, если малые отклонения не выводят систему слишком далеко из окрестности этого стационарного состояния. Пример — шарик в ямке (с трением или без трения).

Стационарное состояние называется асимптотически устойчивым, если малые отклонения от него со временем затухают. Пример — шарик в ямке в вязкой среде.

Стационарное состояние называется неустойчивым, если малые отклонения со временем увеличиваются. Пример: шарик на горке.

Устойчивое стационарное состояние представляет собой простейший тип аттрактора.

Аттрактором называется множество, к которому стремится изображающая точка системы с течением времени (притягивающее множество).

В нашем курсе мы рассмотрим следующие типы аттракторов:

· устойчивая точка покоя;

· предельный цикл — режим колебаний с постоянными периодом и амплитудой (начиная с размерности системы 2 );

· Области с квазистохастическим поведением траекторий в области аттрактора, например, «странный аттрактор» (начиная с размерности 3 ).

Аналитический метод исследования устойчивости стационарного состояния (метод Ляпунова). Линеаризация системы в окрестности стационарного состояния.

Метод Ляпунова приложим к широкому классу систем различной размерности, точечным системам, которые описываются обыкновенными дифференциальными уравнениями, и распределенным системам, описываемым уравнениями в частных производных, непрерывным и дискретным.

Рассмотрим метод линеаризации Ляпунова для одного автономного дифференциального уравнения первого порядка. Пусть Точки равновесия системы дифференциальных уравнений это — стационарное решение уравнения:

Точки равновесия системы дифференциальных уравнений это (2.1)

Пусть система, первоначально находившаяся в стационарном состоянии, отклонилась от него и перешла в близкую точку с координатой: Точки равновесия системы дифференциальных уравнений это , причем Точки равновесия системы дифференциальных уравнений это Точки равновесия системы дифференциальных уравнений это .

Перейдем в уравнении (2.1) от переменной x к переменной Точки равновесия системы дифференциальных уравнений это , т.е. новой переменной будет отклонение системы от стационарного состояния.

Точки равновесия системы дифференциальных уравнений это.

Учтем, что Точки равновесия системы дифференциальных уравнений это по определению стационарного состояния.

Правую часть разложим в ряд Тейлора в точке Точки равновесия системы дифференциальных уравнений это :

Точки равновесия системы дифференциальных уравнений это

Точки равновесия системы дифференциальных уравнений это

где Точки равновесия системы дифференциальных уравнений это

Отбросим члены порядка 2 и выше. Останется линейное уравнение:

Точки равновесия системы дифференциальных уравнений это (2.4)

которое носит название линеаризованного уравнения или уравнения первого приближения. Интеграл этого уравнения для Точки равновесия системы дифференциальных уравнений это находится сразу:

Точки равновесия системы дифференциальных уравнений это , (2.5)

где Точки равновесия системы дифференциальных уравнений это , с — произвольная постоянная.

Если SYMBOL 108 f «Symbol» s 12 l SYMBOL 60 f «Symbol» s 12 0 , то при Точки равновесия системы дифференциальных уравнений это и, следовательно, первоначальное отклонение SYMBOL 120 f «Symbol» s 12 x от состояния равновесия со временем затухает. Это означает, по определению, что состояние равновесия устойчиво.

Если же SYMBOL 108 f «Symbol» s 12 l SYMBOL 62 f «Symbol» s 12 > 0 , то при Точки равновесия системы дифференциальных уравнений это , и исходное состояние равновесия неустойчиво.

Если SYMBOL 108 f «Symbol» s 12 l =0 , то уравнение первого приближения не может дать ответа на вопрос об устойчивости состояния равновесия системы. Необходимо рассматривать члены более высокого порядка в разложении в ряд Тейлора. Такие случаи мы рассмотрим в лекции 6.

Аналогичные рассуждения проводятся при рассмотрении устойчивости стационарных состояний более сложных динамических систем.

Итак, устойчивость стационарного состояния Точки равновесия системы дифференциальных уравнений это уравнения dx/dt=f(x) определяется знаком производной правой части в стационарной точке.

В случае одного уравнения вопрос об устойчивости состояния равновесия нетрудно решить, рассматривая график функции f(x).

По определению в стационарной точке правая часть уравнения (2.1) ‑ функция f(x) обращается в нуль.

Здесь возможны три случая (рис. 2.4 а, б, в).

1. Вблизи состояния равновесия функция f(x) меняет знак с плюса на минус при возрастании x (рис. 2.4 а).

Отклоним изображающую точку системы в сторону Точки равновесия системы дифференциальных уравнений это . В этой области скорость изменения x dx/dt = f(x) положительна. Следовательно, x увеличивается, т.е. возвращается к Точки равновесия системы дифференциальных уравнений это . При Точки равновесия системы дифференциальных уравнений это скорость изменения величины x уменьшается, т.к. функция f(x) SYMBOL 60 f «Symbol» s 12 0. Следовательно, здесь x уменьшается и опять стремится к Точки равновесия системы дифференциальных уравнений это . Таким образом, отклонения от стационарного состояния в обе стороны затухают. Стационарное состояние устойчиво.

Точки равновесия системы дифференциальных уравнений это

Рис. 2.4. Определение устойчивости стационарного состояния по графику функции f( x)

a – стационарное состояние Точки равновесия системы дифференциальных уравнений это устойчиво;

б, в ‑ стационарное состояние Точки равновесия системы дифференциальных уравнений это неустойчиво

2. Вблизи состояния равновесия функция f ( x) меняет знак с минуса на плюс при возрастании x ( рис. 2.4 б) .

Проведите рассуждения, аналогичные случаю 1. Поместите изображающую точку в область Точки равновесия системы дифференциальных уравнений это . Теперь в область Точки равновесия системы дифференциальных уравнений это .

В обоих случаях изображающая точка удаляется от состояния равновесия. Стационарное состояние неустойчиво.

3. Вблизи состояния равновесия функции f(x) не меняет знак ( рис 2.4 в) .

Поскольку Точки равновесия системы дифференциальных уравнений это , это означает, что изображающая точка, помещенная достаточно близко к состоянию равновесия с одной стороны, будет приближаться к нему, помещенная с другой стороны – удаляться.

Вопрос. Является ли состояние равновесия в случае 3 устойчивым?

Ответ. Нет. По определению устойчивости.

1. Рост колонии микроорганизмов

За время D t прирост численности равен:

где R – число родившихся и S – число умерших за время SYMBOL 68 f «Symbol» s 12 D t особей пропорциональные этому промежутку времени:

Точки равновесия системы дифференциальных уравнений это

В дискретной форме:

Точки равновесия системы дифференциальных уравнений это .

Разделив на SYMBOL 68 f «Symbol» s 12 D t и переходя к пределу при t SYMBOL 174 f «Symbol» s 12 ® 0 , получим дифференциальное уравнение

Точки равновесия системы дифференциальных уравнений это . (2.6)

В простейшем случае, когда рождаемость и смертность пропорциональны численности:

Точки равновесия системы дифференциальных уравнений это ,

Точки равновесия системы дифференциальных уравнений это (2.7)

Разделим переменные и проинтегрируем:

Точки равновесия системы дифференциальных уравнений это

Переходя от логарифмов к значениям переменной x и определяя произвольную постоянную С из начальных условий, получим экспоненциальную форму динамики роста.

Точки равновесия системы дифференциальных уравнений это(2.8)

График функции (2.8) при положительных (размножение) и отрицательных (вымирание) значениях константы скорости роста представлен на рис. 2.5. Роль этой модели в развитии математической биологии и экологии мы обсудим в Лекции 3.

Рис. 2.5. Экспоненциальная форма динамики роста численности колонии микроорганизмов в соответствии с системой уравнений (2.7)

Точки равновесия системы дифференциальных уравнений это Точки равновесия системы дифференциальных уравнений это

2. Вещество переходит в раствор

Пусть количество вещества, переходящего в раствор, пропорционально интервалу времени и разности между максимально возможной концентрацией Р и концентрацией x в данный момент времени: Точки равновесия системы дифференциальных уравнений это .

В форме дифференциального уравнения этот закон выглядит в

Точки равновесия системы дифференциальных уравнений это . (2.9)

Разделим в этом уравнении переменные, и проинтегрируем:

Точки равновесия системы дифференциальных уравнений это (2.10)

Здесь C 1 — произвольная постоянная. Если x (0) = 0,

Точки равновесия системы дифференциальных уравнений это

График этой функции представлен на рис. 2.6. – он представляет собой кривую с насыщением.

Рис. 2.6. Концентрация вещества х в зависимости от времени. График уравнения 2.9.

Точки равновесия системы дифференциальных уравнений это Точки равновесия системы дифференциальных уравнений это

Какие дифференциальные уравнения можно решать аналитически?

Лишь для ограниченных классов дифференциальных уравнений разработаны аналитические методы решения. Подробно они изучаются в курсах дифференциальных уравнений. Отметим основные из них/

1. Уравнения с разделяющимися переменными решаются в интегралах. К ним относятся оба приведенные выше примера.

2. Линейные дифференциальные уравнения (не обязательно автономные).

3. Некоторые специальные виды уравнений.

Решение линейного уравнения

Линейным дифференциальным уравнением 1-го порядка называют уравнение, линейное относительно искомой функции и ее производной. Оно имеет вид:

Точки равновесия системы дифференциальных уравнений это . (2.11)

Здесь A, B, C — заданные непрерывные функции от t.

Пусть в некотором интервале изменения t A SYMBOL 185 f «Symbol» s 12 _ 0 . Тогда на него можно разделить все члены уравнения. При этом получим:

Точки равновесия системы дифференциальных уравнений это . (2.12)

Eсли Q=0 , уравнение (2.12) называется однородным, если Q SYMBOL 185 f «Symbol» s 12 _ 0 – неоднородным.

Решим сначала однородное уравнение.

Точки равновесия системы дифференциальных уравнений это .

Общее решение линейного однородного уравнения имеет вид:

Точки равновесия системы дифференциальных уравнений это . (2.13)

Чтобы найти решение неоднородного уравнения применим метод вариации постоянной. Будем считать С неизвестной функцией t . Подставляя правую часть выражения (2.13) в уравнение (2.12), имеем:

Точки равновесия системы дифференциальных уравнений это

Теперь С находим интегрированием: Точки равновесия системы дифференциальных уравнений это . Здесь С1 – произвольная постоянная.

Итак, общее решение линейного неоднородного уравнения первого порядка:

Точки равновесия системы дифференциальных уравнений это (2.14)

Таким образом, решение уравнения (2.12) представляет собой сумму двух слагаемых:

1) общее решение однородного уравнения (2.13) и

2) частное решение неоднородного уравнения, которое получается из общего решения, если С1 = 0.

Рассмотрим еще один пример, который относится к классическим моделям математической экологии. Логистическое уравнение было предложено Ферхюльстом в 1838 г. Оно имеет вид:

Точки равновесия системы дифференциальных уравнений это . (2.15)

Это уравнение обладает двумя важными свойствами. При малых х численность х возрастает, при больших – приближается к определенному пределу К .

Уравнение (2.15) можно решить аналитически. Ход решения следующий. Произведем разделение переменных:

Точки равновесия системы дифференциальных уравнений это . (2.16)

Представим левую часть в виде суммы и проинтегрируем

Точки равновесия системы дифференциальных уравнений это

Переходя от логарифмов к переменным, получим:

Точки равновесия системы дифференциальных уравнений это (2.17)

Здесь С – произвольная постоянная, которая определяется начальным значением численности x0 :

Точки равновесия системы дифференциальных уравнений это ; Точки равновесия системы дифференциальных уравнений это .

Подставим это значение С в формулу (2.17):

Точки равновесия системы дифференциальных уравнений это .

Отсюда получим решение – зависимость численности от времени:

Точки равновесия системы дифференциальных уравнений это . (2.18)

График функции (2.18) при разных начальных значениях численности популяции представлен на рис. 2.7.

Рис.2.7. Динамика численности в логистической модели 2.18

при разных начальных значениях численности

Точки равновесия системы дифференциальных уравнений это Точки равновесия системы дифференциальных уравнений это

Если начальное значение х0 К/2, кривая роста имеет точку перегиба. Если х0 > К, численность со временем убывает.

В приведенных примерах в правой части уравнений стоят полиномы первой и второй степени. Если в правой части ‑ более сложная нелинейная функция, алгебраическое уравнение для стационарных значений может иметь несколько корней. Какое из этих решений реализуется в этом случае, будет зависеть от начальных условий.

В дальнейшем мы, как правило, не будем искать аналитическое решение для наших моделей. Для более сложных нелинейных уравнений это и невозможно. Однако важные заключения относительно свойств моделей можно сделать и на основании качественного их исследования, в первую очередь путем исследования устойчивости стационарных состояний и типов поведения системы вблизи этих состояний. При этом следует иметь в виду, что с помощью одного автономного дифференциального уравнения могут быть описаны только монотонные изменения переменной, и, следовательно, ни периодические, ни хаотические процессы не могут быть описаны. Для описания более сложного поведения необходимо либо переходить к системам большей размерности (2, 3 порядка и выше), либо вводить время в явном виде в правую часть уравнения. В Лекции 3 мы увидим, что дискретные уравнения и уравнения с запаздыванием могут описать и колебания, и динамический хаос.

Содержание
  1. Точки равновесия системы дифференциальных уравнений это
  2. Digiratory
  3. Лаборатория автоматизации и цифровой обработки сигналов
  4. Устойчивость нелинейных систем
  5. Первый метод Ляпунова
  6. Пример 1.
  7. Шаг 1. Положение равновесия:
  8. Шаг 2. Линеаризация для малых отклонений
  9. Шаг 3. Линеаризованное управление в матричной форме
  10. Шаг 4. Характеристический полином
  11. Шаг 5. Корни характеристического полинома
  12. Заключение об устойчивости системы
  13. Пример 2. Нелинейный осциллятор
  14. Шаг 1. Положение равновесия:
  15. Шаг 2. Линеаризация для малых отклонений
  16. Шаг 3. Линеаризованное управление в матричной форме
  17. Шаг 4. Характеристический полином
  18. Шаг 5. Корни характеристического полинома
  19. Заключение об устойчивости системы
  20. Второй метод Ляпунова
  21. Теорема Ляпунова об устойчивости нелинейных систем
  22. Пример 3. Нелинейный осциллятор
  23. Шаг 1. Функция Ляпунова
  24. Шаг 2. Частные производные
  25. Шаг 3. Производная функции
  26. Заключение об устойчивости системы
  27. Пример 4.
  28. Шаг 1. Функция Ляпунова
  29. Шаг 2. Частные производные
  30. Шаг 3. Производная функции
  31. Заключение об устойчивости системы
  32. 🔍 Видео

Видео:Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Точки равновесия системы дифференциальных уравнений это

Рассмотрим автономную систему второго порядка:
Точки равновесия системы дифференциальных уравнений это
Название автономная система оправдано тем, что решение само управляет своим изменением, поскольку производные dx1 /dt и dx2 /dt зависят только от x1 и x2 и не зависят от t.

Обозначим
Точки равновесия системы дифференциальных уравнений этои Точки равновесия системы дифференциальных уравнений это.
Пусть Точки равновесия системы дифференциальных уравнений это— решение автономной системы второго порядка. Тогда уравнения
Точки равновесия системы дифференциальных уравнений это
задают в параметрической форме кривую на плоскости Точки равновесия системы дифференциальных уравнений это. Эта кривая называется фазовой кривой или фазовой траекторией системы.Плоскость, на которой расположены фазовые траектории называется фазовой плоскостью автономной системы.

Точка Точки равновесия системы дифференциальных уравнений это, в которой правая часть системы обращается в нуль, Точки равновесия системы дифференциальных уравнений это, называется положением равновесия системы. Положение равновесия называют также точкой покоя автономной системы.

Точка покоя Точки равновесия системы дифференциальных уравнений этоназывается устойчивой по Ляпунову, если:
1) существует такое Точки равновесия системы дифференциальных уравнений это, что для Точки равновесия системы дифференциальных уравнений этопри Точки равновесия системы дифференциальных уравнений этосуществует решение задачи Коши с начальным условиям Точки равновесия системы дифференциальных уравнений это;
2) для всякого Точки равновесия системы дифференциальных уравнений этосуществует такое Точки равновесия системы дифференциальных уравнений это, что если Точки равновесия системы дифференциальных уравнений этои Точки равновесия системы дифференциальных уравнений это, то Точки равновесия системы дифференциальных уравнений этопри всех Точки равновесия системы дифференциальных уравнений это.
Устойчивая точка покоя называется асимптотически устойчивой, если
Точки равновесия системы дифференциальных уравнений этопри достаточно малых Точки равновесия системы дифференциальных уравнений это.

Очевидно, что линейная автономная система
Точки равновесия системы дифференциальных уравнений это
имеет единственную точку покоя: x1(t) = 0, x2(t) = 0, при всех Точки равновесия системы дифференциальных уравнений это. При этом характер точки покоя (0, 0) (ее устойчивость, асимптотическую устойчивость, неустойчивость) можно установить по значениям собственных чисел l1 и l2 матрицы системы.
А именно, пусть l1 и l2 — собственные значения матрицыA исследуемой системы:
Точки равновесия системы дифференциальных уравнений это

  • если l1 и l2— действительные отрицательные числа, то точка покоя устойчива и называется устойчивым узлом (пример 1);
  • если l1 и l2 — действительные положительные числа, то точка покоя неустойчива и называется неустойчивым узлом (пример 2);
  • если l1 и l2 — действительные числа, имеющие разные знаки, то точка покоя неустойчива и называется седлом (пример 3);
  • если l1 и l2 — комплексные числа, l1,2 =Rell ± Imll и Rel не превышает нуля, то точка покоя устойчива, точнее, при Rel =0 точка устойчива, но не асимптотически устойчива и называется центром (пример 4), при Rel 0, то точка покоя неустойчива и называется неустойчивым фокусом (пример 6);
  • если l1 = l2 — отличные от нуля действительные числа, то точка покоя — узел специального вида, называемый диакритическим, устойчивым при отрицательных l1 = l2 и неустойчивым при положительных l1 = l2 (пример 7);
  • если l1 = 0 и l2 № 0, то существует прямая, проходящая через начало координат, все точки которой являются точками покоя (пример 8);
  • если l1 = l2 = 0, то все точки плоскости являются точками покоя.

ПРИМЕР 1. Поведение решений в окрестности устойчивого узла.

ПРИМЕР 2. Поведение решений в окрестности неустойчивого узла.

ПРИМЕР 3. Поведение решений в окрестности седла.

ПРИМЕР 4. Поведение решений в окрестности центра.

ПРИМЕР 5. Поведение решений в окрестности устойчивого фокуса.

ПРИМЕР 6. Поведение решений в окрестности неустойчивого фокуса.

ПРИМЕР 7. Поведение решений в окрестности диакритического узла.

ПРИМЕР 8. Вырожденный случай. Прямая, состоящая из точек покоя.

Точки равновесия системы дифференциальных уравнений это

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Видео:Устойчивость 1 ОпределениеСкачать

Устойчивость 1  Определение

Digiratory

Видео:Дифференциальные уравнения 6. Фазовые траектории. Особые точки автономных системСкачать

Дифференциальные уравнения 6. Фазовые траектории. Особые точки автономных систем

Лаборатория автоматизации и цифровой обработки сигналов

Точки равновесия системы дифференциальных уравнений это

Видео:Особые точки 4 ЗадачаСкачать

Особые точки 4  Задача

Устойчивость нелинейных систем

Анализ устойчивости систем является одним из важнейших этапов проектирования систем управления, однако при анализе нелинейных, строго говоря, нет метода отвечающего критериям необходимости и достаточности, а критерии являются, как правило только достаточным (для устойчивости). Исходя из этого, для некоторых систем невозможно однозначно говорить о неустойчивости.

В классической теории управления имеется два основных аналитических метода: первый и второй методы Ляпунова, а также достаточно большое количество модификаций второго метода, как не связанного с линеаризацией.

Рассмотрим применение классических методов Ляпунова.

Видео:Устойчивость положений равновесия. Дифференциальные уравнения, ВШЭ-РЭШ, 2022-04-12.Скачать

Устойчивость положений равновесия. Дифференциальные уравнения, ВШЭ-РЭШ, 2022-04-12.

Первый метод Ляпунова

Позволяет судить об устойчивости положения равновесия по линеаризованным уравнениям. Метод основан на утверждениях:

  • если собственные значения линеаризованной системы имеют отрицательные действительные части (линеаризованная система асимптотически устойчива), то положение равновесия нелинейной системы устойчиво «в малом»;
  • если среди собственных значений линеаризованной системы имеются «правые», то положение равновесия нелинейной системы неустойчиво;
  • если имеются некратные собственные значения на мнимой оси, а остальные — «левые», то в этом критическом случае по линеаризованной модели нельзя судить об устойчивости положения равновесия нелинейной системы.

Таким образом для анализа системы по первому методу Ляпунова необходимо:

  1. Найти положение равновесия системы — движений в системе нет (т.е. скорости и ускорения равны нулю) [ frac <mathrmv_><mathrmt>= ]
  2. Линеаризовать систему в окрестности точки равновесия
  3. Записать полученное линеаризованное дифференциальное уравнение в матричной форме (составить матрицу А)
  4. Составить характеристический полином линеаризованной системы: [ = ]
  5. Найти корни характеристического полинома. По виду корней сделать заключение о характере процессов в системе.

Основными недостатками первого метода Ляпунова являются:

  • Если имеется корень на мнимой оси, то невозможно сказать о поведении процессов в системе.
  • Возможно говорить только об устойчивости «в малом», т.е. при больших отклонениях от положения равновесия система может быть неустойчивой.

Пример 1.

Исследуем систему описываемую дифференциальными уравнениями:

Шаг 1. Положение равновесия:

Для нахождения точек равновесия левые части уравнений приравниваются к 0, что эквивалентно тому, что переменные состояния являются константами, а все их производные равны 0.

Шаг 2. Линеаризация для малых отклонений

Для линеаризации малых отклонений в точке равновесия старшие степени переменных, входящих в уравнения принимаются равными нулю.

Шаг 3. Линеаризованное управление в матричной форме

Преобразуем полученную линейную систему уравнений в матричный вид.

Шаг 4. Характеристический полином

Шаг 5. Корни характеристического полинома

Приравниваем характеристический полином к 0 и находим корни уравнения.

Заключение об устойчивости системы

в данном примере при линеаризации система имеет два корня с отрицательной вещественной частью, т.е. мы можем сказать, что система устойчива «в малом» (при больших отклонениях система может быть неустойчива).

Подтвердим теоретический вывод компьютерным моделированием (построением фазового портрета)

Точки равновесия системы дифференциальных уравнений это

При этом, при начальных условиях, находящиеся дальше от точки равновесия, система становится неустойчивойТочки равновесия системы дифференциальных уравнений это

Пример 2. Нелинейный осциллятор

В качестве второго примера рассмотрим нелинейный осцилятор описываемый системой дифференциальных уравнений:

Аналогично первому примеру выполняем последовательность шагов

Шаг 1. Положение равновесия:

Шаг 2. Линеаризация для малых отклонений

Шаг 3. Линеаризованное управление в матричной форме

Шаг 4. Характеристический полином

Шаг 5. Корни характеристического полинома

Заключение об устойчивости системы

Рассматриваемая система является критическим случаем о ее устойчивости невозможно судить по линеаризованным уравнениям, применяемым в первом методе Ляпунова.

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Второй метод Ляпунова

Второй метод Ляпунова не связан с линеаризацией системы, поэтому также называется прямым методом.

Для начала необходимо ввести понятия знакоопределенной, знакопостоянной и знакопеременной функций. Пусть имеется функция нескольких переменных:

Функция (V ) называется знакоопределенной в некоторой области, если она во всех точках этой области вокруг начала координат сохраняет один и тот же знак и нигде не обращается в нуль, кроме только самого начала координат

[ left ( Vleft ( bar right )=0 right ) ]

Функция (V ) называется знакопостоянной, если она сохраняет один и тот же знак, но может обращаться в нуль не только в начале координат, но и в других точках данной области.

Функция (V ) называется знакопеременной, если она в данной области вокруг начала координат может иметь разные знаки.

Теорема Ляпунова об устойчивости нелинейных систем

Если при заданных в форме

уравнениях системы n-го порядка можно подобрать такую знакоопределенную функцию Ляпунова

чтобы ее производная по времени

тоже была знакоопределенной (или знакопостоянной), но имела знак противоположный знаку (V), то данная система устойчива.

Для упрощения скажем, что функция Ляпунова должна быть положительной знакоопределенной функцией. Тогда условия теоремы Ляпунова будут выглядеть следующим образом:

Для устойчивости положения равновесия достаточно существования дифференцируемой функции

называемой функцией Ляпунова, удовлетворяющей в окрестности начала координат следующим условиям:

  1. (Vleft ( v_, v_,…, v_right ) geq 0) причем (V=0) лишь при следующем условии, означающем что функция (V) имеет строгий минимум в начале координат. [ bar= begin v_ \ vdots \ v_ end = bar ]
  2. Производная функции по времени [ frac <mathrmVleft ( bar right )><mathrmt>=sum_^frac<partial v_>frac <mathrmv_><mathrmt>=begin frac<partial v_> & frac<partial v_> & cdots & frac<partial v_>endbeginfrac <mathrmv_><mathrmt>\ frac <mathrmv_><mathrmt>\ vdots \ frac <mathrmv_><mathrmt>end ] в силу дифференциального уравнения (frac <mathrmbar><mathrmt>=barleft ( bar right ) ) является отрицательной знакопостоянной функцией, т.е. [ frac <mathrmVleft ( bar right )><mathrmt>=gradbarcdot frac <mathrmbar><mathrmt>=gradbarcdot barleft ( bar right )leq 0 ] при (tgeq t_)

Таким образом, условия:

  1. (frac <mathrmVleft ( bar right )><mathrmt>leq 0) и функция (Vleft ( v_, v_,…, v_right ) ) является положительной знакоопределенной — это является достаточным условием устойчивости
  2. (frac <mathrmVleft ( bar right )><mathrmt> ) — отрицательно определенная — это является достаточным условием асимптотической устойчивости.
  3. (left | v right |rightarrow infty : frac <mathrmVleft ( bar right )><mathrmt>rightarrow infty ) — достаточное условие устойчивости «в целом».

Для анализа системы по второму методу Ляпунова необходимо:

  1. Выбрать функцию Ляпунова от n переменных, где n- порядок системы.
  2. Найти частные производные по переменным.
  3. Вычислить производную функции по времени (frac <mathrmVleft ( bar right )><mathrmt>). Проанализировать полученный знак производной.

Из-за того, что второй метод Ляпунова не связан с линеаризацией, он считается универсальным. Однако он имеет ряд недостатков:

  • Нет общих требований по выбору функции V
  • Достаточный характер утверждения (если условия не выполняются, то об устойчивости ничего сказать нельзя, а можно посоветовать подобрать другую функцию (V ))

Пример 3. Нелинейный осциллятор

Проанализируем систему из примера (2).

Шаг 1. Функция Ляпунова

Для начала необходимо выбрать функцию Ляпунова от 2-х переменных (т.к. два вектора состояния):

Шаг 2. Частные производные

Шаг 3. Производная функции

Подставим в выражение значения исходя из ДУ:

Заключение об устойчивости системы

Исследовав систему первым методом Ляпунова мы не смогли сделать конкретный вывод об устойчивости системы, что позволил нам сделать второй метод Ляпунова. В результате мы можем сделать вывод, что система является асимптотически устойчивой.

Аналогично проверим с помощью моделирования:

Точки равновесия системы дифференциальных уравнений это

Пример 4.

Рассмотрим систему, описываемую следующей системой дифференциальных уравнений:

Очевидно, что применение первого метода Ляпунова невозможно, т.к. матрица А состоит из нулей, а, следовательно, собственные значения равны нулю. Поэтому применим второй метод Ляпунова:

Шаг 1. Функция Ляпунова

Выбор функции Ляпунова второго порядка

Шаг 2. Частные производные

Шаг 3. Производная функции

При (a=3) имеет место асимптотическая устойчивость.

Заключение об устойчивости системы

Система является устойчивой.

Фазовый портрет системы выглядит следующим образом:

🔍 Видео

Математика это не ИсламСкачать

Математика это не Ислам

ОДУ. 4 Системы дифференциальных уравненийСкачать

ОДУ. 4 Системы дифференциальных уравнений

Дифференциальные уравнения 3. Автономные системыСкачать

Дифференциальные уравнения 3. Автономные системы

Особые точки 1 Узел, седло, дикритический узелСкачать

Особые точки 1  Узел, седло, дикритический узел

Дифференциальное уравнение Эйлера. Основное уравнение гидростатикиСкачать

Дифференциальное уравнение Эйлера. Основное уравнение гидростатики

Урок 5 - Дифференциальные уравнения, системы диффуровСкачать

Урок 5 - Дифференциальные уравнения, системы диффуров

Лекция №9 по ДУ. Исследование положения равновесия. Бишаев А. М.Скачать

Лекция №9 по ДУ. Исследование положения равновесия. Бишаев А. М.

Дифференциальные уравнения движения точкиСкачать

Дифференциальные уравнения движения точки

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятияСкачать

Дифференциальные уравнения, 1 урок, Дифференциальные уравнения. Основные понятия

Устойчивость 5 Устойчивость по первому приближению Теорема ПримерыСкачать

Устойчивость 5  Устойчивость по первому приближению  Теорема  Примеры

Лекция №10 по ДУ. Устойчивость нулевого положения равновесия. Бишаев А. М.Скачать

Лекция №10 по ДУ. Устойчивость нулевого положения равновесия. Бишаев А. М.

Размышляю над Хаосом и Равновесием - ДиффурыСкачать

Размышляю над Хаосом и Равновесием - Диффуры
Поделиться или сохранить к себе: