Точка пересечения прямых через их уравнения онлайн

Онлайн калькулятор. Точка пересечения прямых

Предлагаю вам воспользоваться онлайн калькулятором для вычисления координат точки пересечения прямых.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление координат точки пересечения двух прямых и закрепить пройденный материал.

Видео:Пересечения прямых, лучей, отрезковСкачать

Пересечения прямых, лучей, отрезков

Найти точку пересечения прямых

Точка пересечения прямых через их уравнения онлайн

Уравнение 1-ой прямой:

Уравнение 2-ой прямой:

Ввод данных в калькулятор для вычисления координат точки пересечения прямых

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора вычисления координат точки пересечения прямых

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Координаты точки пересечения двух прямых

Точка пересечения прямых через их уравнения онлайн

Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

Точка пересечения прямых на плоскости онлайн

С помощю этого онлайн калькулятора можно найти точку пересечения прямых на плоскости. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых («канонический», «параметрический» или «общий»), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.Скачать

№976. Найдите координаты точки пересечения прямых 4x + 3y-6 = 0 и 2х+у-4 = 0.

Точка пересечения прямых на плоскости − теория, примеры и решения

  • Содержание
  • 1. Точка пересечения прямых, заданных в общем виде.
  • 2. Точка пересечения прямых, заданных в каноническом виде.
  • 3. Точка пересечения прямых, заданных в параметрическом виде.
  • 4. Точка пересечения прямых, заданных в разных видах.
  • 5. Примеры нахождения точки пересечения прямых на плоскости.

1. Точка пересечения прямых, заданных в общем виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

L1: A1x+B1y+C1=0,(1)
L2: A2x+B2y+C2=0(2)

Для нахождения точки пересечения прямых (1) и (2) нужно решить систему линейных уравнений (1) и (2) относительно переменных x,y. Для этого запишем систему (1),(2) в матричном виде:

Точка пересечения прямых через их уравнения онлайн(3)

Построим расширенную матрицу:

Точка пересечения прямых через их уравнения онлайн(4)

Приведем (4) к верхнему диагональному виду. Пусть A1≠0 . Тогда сложим строку 2 со строкой 1, умноженной на −A2/A1:

Точка пересечения прямых через их уравнения онлайн(5)
Точка пересечения прямых через их уравнения онлайн

Если B’2=0 и С’2=0, то система линейных уравнений имеет множество решений. Следовательно прямые L1 и L2 совпадают. Если B’2=0 и С’2≠0, то система несовместна и, следовательно прямые параллельны и не имеют общей точки. Если же B’2≠0, то система линейных уравнений имеет единственное решение. Из второго уравнения находим y: y=С’2/B’2 и подставляя полученное значение в первое уравнение находим x: x=(−С1B1y)/A1. Получили точку пересечения прямых L1 и L2: M(x, y).

Подробнее о решении систем линейных уравнений посмотрите на странице метод Гаусса онлайн.

2. Точка пересечения прямых, заданных в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

Точка пересечения прямых через их уравнения онлайн(6)
Точка пересечения прямых через их уравнения онлайн(7)

Приведем уравнение L1 к общему виду. Сделаем перекрестное умножение в уравнении (6):

p1(xx1)=m1(yy1)

Откроем скобки и сделаем преобразования:

p1xm1yp1x1+m1y1=0
A1x+B1y+C1=0(8)

Аналогичным методом получим общее уравнение прямой (7):

A2x+B2y+C2=0(9)

Терерь можно найти точку пересечения прямых L1 и L2 методом, описанным в параграфе 1.

3. Точка пересечения прямых, заданных в параметрическом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:

Точка пересечения прямых через их уравнения онлайн(10)
Точка пересечения прямых через их уравнения онлайн(11)

Приведем уравнение прямой L1 к каноническому виду. Для этого из уравнений (10) найдем параметр t:

Точка пересечения прямых через их уравнения онлайн(12)

Из уравнений (12) следует:

Точка пересечения прямых через их уравнения онлайн

Аналогичным образом можно найти каноническое уравнение прямой L2:

Точка пересечения прямых через их уравнения онлайн

Как найти точку пересечения прямых, заданных в каноническом виде описано выше.

4. Точка пересечения прямых, заданных в разных видах.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

L1: A1x+B1y+C1=0,(13)
Точка пересечения прямых через их уравнения онлайн(14)
A1(x2+mt)+B1(y2+pt)+C1=0,(15)
A1x2+A1mt+B1y2+B1pt+C1=0,
Точка пересечения прямых через их уравнения онлайн(16)

Если числитель и знаменатель в (16) одновременно равны нулю, то любое значение t удовлетворяет уравнению (15), следовательно прямые L1 и L2 совпадают. Если знаменатель равен нулю а числитель отличен от нуля, то прямые L1 и L2 не пересекаются, т.е. они параллельны.

Пусть знаменатель не равен нулю. Подставляя полученное значение t в (14), получим координаты точки пересечения прямых L1 и L2.

5. Примеры нахождения точки пересечения прямых на плоскости.

Пример 1. Найти точку пересечения прямых L1 и L2:

L1: 2x+y+4=0,(17)
L2: x−3y+2=0.(18)

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (17) и (18). Представим уравнения в матричном виде:

Точка пересечения прямых через их уравнения онлайн(19)

Решим систему линейных уравнений отностительно x, y. Для этого воспользуемся методом Гаусса. Получим:

Точка пересечения прямых через их уравнения онлайн

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Пример 2. Найти точку пересечения прямых L1 и L2:

L1: 2x+3y+4=0,(20)
Точка пересечения прямых через их уравнения онлайн(21)

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (20) и (21). Представим уравнения в матричном виде:

Точка пересечения прямых через их уравнения онлайн(22)

Для решения (22) воспользуемся методом Гаусса. Получим:

Точка пересечения прямых через их уравнения онлайн

где λ− произвольное действительное число.

Имеем больше одного решения. Это означает, что прямые L1 и L2 совпадают.

Пример 3. Найти точку пересечения прямых L1 и L2:

L1: −5x+y+9=0,(23)
L2: −10x+2y−3=0,(24)

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (23) и (24). Представим уравнения в матричном виде:

Точка пересечения прямых через их уравнения онлайн(25)

Применив метод Гаусса получим, что система (25) несовместна. Следовательно эти прямые не пересекаются, т.е. они параллельны.

Ответ. Прямые L1 и L2 не имеют общую точку, т.е. они параллельны.

Пример 4. Найти точку пересечения прямых L1 и L2:

Точка пересечения прямых через их уравнения онлайн(26)
L2: x+2y−9=0,(27)

Приведем, сначала, уравнение прямой (26) к общему виду:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (28) и (27). Представим уравнения в матричном виде:

Точка пересечения прямых через их уравнения онлайн(29)

Решим систему линейных уравнений отностительно x, y:

Точка пересечения прямых через их уравнения онлайн

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Видео:Точки пересечения графиков линейных функций. 7 класс.ОбразовательныйСкачать

Точки пересечения графиков линейных функций. 7 класс.Образовательный

Пересечение прямых

Для разыскания точки пересечения прямых

Эта система, как правило, дает единственное решение, и мы получим искомую точку.

Исключение возможно лишь при равенстве отношений

т.е. в случае параллельности данных прямых.

Если данные прямые параллельны и не совпадают, то система не имеет решений, а если совпадают, то решений бесконечно много.

Видео:Найти координаты точки пересечения прямыхСкачать

Найти координаты точки пересечения прямых

Пересечение прямых, примеры

Найти точки пересечения прямых

Решая систему уравнений, находим

Прямые пересекаются в точке (1; -1).

параллельны и не совпадают, так как отношения 2:1 и (-7):(-3,5) равны между собой, но не равны отношению 12:10.

Данная система уравнений не имеет решения.

совпадают, так как отношения 3:6, 2:4 и (-6):(-12) равны друг другу.

Второе уравнение получается из первого умножением на 2.

Данная система имеет бесчисленное множество решений.

📺 Видео

6 класс, 23 урок, Пересечение прямыхСкачать

6 класс, 23 урок, Пересечение прямых

ПЕРЕСЕЧЕНИЕ прямых | ТОЧКА пересечения | Линейные функцииСкачать

ПЕРЕСЕЧЕНИЕ прямых | ТОЧКА пересечения | Линейные функции

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Найти точку пересечения прямой и плоскостиСкачать

Найти точку пересечения прямой и плоскости

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Точки пересечения графика линейной функции с координатными осями. Практическая часть. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. Практическая часть. 7 класс.

Отрезок, луч, прямаяСкачать

Отрезок, луч, прямая

Как найти точку пересечения двух прямых в пространстве?Скачать

Как найти точку пересечения двух прямых в пространстве?

Алгебра 7 класс. 12 октября. Находим точку пересечения графиков!Скачать

Алгебра 7 класс. 12 октября. Находим точку пересечения графиков!

Нахождение координат точек пересечения графика функции с осями координатСкачать

Нахождение координат точек пересечения графика функции с осями координат

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Определение точки пересечения окружности с прямойСкачать

Определение точки пересечения окружности с прямой

Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика
Поделиться или сохранить к себе: