Типы уравнений в начальных классах

2.1 Виды уравнений, решаемых в начальном классе. Их связь с изученным материалом

Наглядные средства обучения являются необходимым компонентом учебно-методических комплексов, в которые чаще всего входит учебник, тетрадь с печатной основой и методические указания для учителя.

Каждое средство наглядности отличается и той специфической функцией, которую оно может выполнять в учебном процессе, обеспечивающем его высокую эффективность. Важным элементом учебного оборудования должны стать комплекты средств вариативной наглядности. Они позволяют во время урока быстро создавать, изменять, разные ситуации с использованием наглядных пособий. Для этого используются наборы иллюстративных материалов или меловых рисунков, чертежей и записей. К числу таких средств относятся магнитная доска и фланелеграф, дидактические возможности которых во многом одинаковы.

В связи с различными дидактическими функциями и возможностями средств наглядности требуется их комплексное применение на уроке. Только в этом случае будет достигнута максимальная эффективность в решении каждой познавательной задачи урока. Комплексное применение различных средств наглядности объясняется тем, что оно обеспечивает совместную работу на уроках различных анализаторов.

Вместе с тем многообразие средств наглядности оправдано лишь в тех случаях, когда требуется раскрыть различные стороны изучаемого явления или предмета, а каждое из этих сторон более убедительно и полно может быть отражена лишь с помощью определенного вида наглядности. Нельзя не согласиться с Ю.К. Бабанским в том, что «чрезмерное увлечение наглядностью ведет к затормаживанию развития абстрактного мышления, без которого невозможно эффективное познание окружающей действительности. Обильное применение наглядности часто рассеивает внимание учащихся, отвлекает от познания главных идей темы, особенно когда речь идет об учащихся не с наглядно-образной, а со словесно-логической памятью”

Описание методики работы над построением и решением уравнений необходимо начинать с рассмотрения различных определений уравнения.

В школьной энциклопедии уравнение определено как «два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестным. Решить уравнение — значит найти все те значения неизвестных (корни или решения уравнения), при которых оно обращается в верное равенство или установить, что таких значений нет”. Там же дано определение уравнения как «аналитической записи задачи о разыскивании значений аргументов, при которых значения двух функций равны”.

Понятно, что под аналитической записью и понимается запись равенства, левая или правая части которого содержат неизвестную (неизвестные) букву (или число). Именно буквенное выражение определяет функцию от входящих в него букв, заданную на допустимых числовых значениях.

Введение записи задачи (о нахождении неизвестной величины) с помощью уравнения начинается с конкретной задачи. Способы составления и решения уравнений опираются на отношение целого и его частей, а не на 6 правил нахождения неизвестных при сложении, вычитании, умножении, делении.

Для того чтобы найти способ решения уравнения, достаточно определить сначала по схеме, а позже и сразу по формуле, чем является неизвестная величина: частью или целым. Если известная величина является целым, то для ее нахождения нужно сложить, а если она часть, то из целого нужно вычесть известные части. Таким образом, ребенку не нужно запоминать правила нахождения неизвестного слагаемого, уменьшаемого и вычитаемого.

Успешность ребенка, его навык при решении уравнений будут зависеть от того, может ли ребенок переходить от описания отношения между величинами с помощью схемы к описанию с помощью формулы и наоборот. Именно этот переход от уравнения как одного из вида формул к схеме и определения с помощью схемы характера (часть или целое) неизвестной величины являются теми основными умениями, которые дают возможность решать любые уравнения, содержащие действия сложения и вычитания.

Другими словами, дети должны понять, что для правильного выбора способа решения уравнения, а значит, и задачи нужно уметь видеть отношение целого и частей в чем и поможет схема. Схема здесь выступает в качестве средства решения уравнения, а уравнение, в свою очередь, как средство решения задачи. Поэтому большинство заданий ориентировано на составление уравнений по заданной схеме и на решение текстовых задач путем составления схемы и с ее помощью составления уравнения, позволяющего найти решение задачи.

В начальной школе в процессе работы над уравнениями закрепляются правила о взаимосвязи части и целого, сторон прямоугольника с его площадью, формируются вычислительные навыки и понимание связи между компонентами действий, закрепляется порядок действий и формируются умения решать текстовые задачи, идет работа над развитием правильной математической речи. На уроках закрепления уравнения позволяют разнообразить виды заданий.

Изучение уравнений начинается с подготовительного этапа уже в 1 — м классе, когда дети, действуя с предметами, решают такие «задачи» ? + =

Затем учащиеся переходят к действиям над числами и выполняют задания, связанные с нахождением неизвестного числа в окошке, например:

Ў + 2 = 7 5 + Ў = 7

7 — Ў = 2 Ў — 5 = 2

Дети находят числа либо подбором, либо на основе знаний состава числа. На данном этапе учителю необходимо включать в устные упражнения следующие задания:

Сколько надо вычесть их 3, чтобы получилось 2?

Сколько надо прибавить к 2, чтобы получилось 4?

На втором этапе учащиеся знакомятся с понятиями «уравнение» и «корень уравнения» (термин «корень» вводится в речевую практику, но внимание на нем не акцентируется).

В течение восьми уроков дети учатся решать уравнения с неизвестным слагаемым, уменьшаемым, вычитаемым. Названия компонентов арифметических действий были введены в речевую практику учащихся и использовались для чтения равенств и выражений, пока правило нахождения неизвестного компонента в уравнениях не заучиваются. Уравнения решаются на основе взаимосвязи между частью и целым. При изучении данной темы дети должны научиться находить в уравнениях компоненты, соответствующие целому (сумма, уменьшаемое), и компоненты, соответствующие его частям (слагаемое, вычитаемое, разность). При решении уравнений детям нужно будет вспомнить лишь два известных правила:

Целое равно сумме частей.

Чтобы найти часть, надо из целого вычесть другую часть.

Изучение уравнений в начальных классах традиционной школы происходит в несколько этапов. Программой традиционной школы предусмотрено знакомство детей с уравнениями первой степени с одной неизвестной. Большое значение в плане подготовки к введению уравнений имеют упражнения на подбор пропущенного числа в равенствах, деформированных примерах, вида 4+Ђ=5, 4-Ђ=2, Ђ-7=3, и т.п. в процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным может быть не только сумма или разность, но и одно из слагаемых (уменьшаемое или вычитаемое). До 2 класса неизвестное число обозначается, как правило, так: *. Теперь же для обозначения неизвестного числа используют буквы латинского алфавита. Равенство вида 4 + х = 5 называют уравнением. Равенство, где есть буква, называют уравнением.

На первом этапе уравнения решают на основе состава числа. Учитель знакомит с понятием неизвестного, понятием уравнение, показывает разные формы чтения, учит записывать уравнения по диктовку, разбирает понятия «решить уравнение”, «что называется корнем”, «что есть решение уравнения”, учит проверять решенные уравнения.

На втором этапе решение уравнений происходит с использованием зависимости между компонентами. В этом случае при нахождении неизвестного числа можно пользоваться приемом замены данного уравнения равнозначным ему уравнением. Опорой перехода может быть граф. Приведу примеры уравнений и замены их равнозначными уравнениями с опорой на графы.

После того как учащиеся научатся решать простейшие уравнения, включаются более сложные уравнения видов: 48 — х = 16 + 9, а — (60 — 14) = 27, 51 — (х + 15) = 20, решение которых выполняется также на основе взаимосвязи между результатами и компонентами арифметических действий, ведется подготовка к решению задач способом составления уравнений. Для решения таких уравнений необходимы знания порядка действий в выражении, а также умения выполнять простейшие преобразования выражений. Уравнения указанных видов вводятся постепенно. Сначала простейшие уравнения усложняются тем, что их правая часть задается не числом, а выражением. Далее включаются уравнения, в которых известный компонент задан выражением. Полезно учить читать эти уравнения с названием компонентов. Наконец, приступают к решению таких уравнений, где один из компонентов является выражением, включающим неизвестное число, например: 60 — (х + 7) = 25, (12 — х) + 10 = 18.

При решении уравнений такого вида приходится использовать дважды правила нахождения неизвестных компонентов.

Обучение решению таких уравнений требует длительных упражнений в анализе выражений и хорошего знания правил нахождения неизвестных компонентов. На первых порах полезны упражнения в пояснении решенных уравнений. Кроме того, следует чаще решать такие уравнения с предварительным выяснением, что неизвестно и какие правила надо вспомнить, чтобы решить данное уравнение. Такая работа предупреждает ошибки и способствует овладению умением решать уравнения.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Как решать уравнения: от простого к сложному 2-4 класс

Уравнение — равенство, содержащее букву латинского алфавита, значение которой нужно найти.

Решить уравнение — значит подобрать такое число, при котором равенство становится верным.

Любые уравнения решаются на основе зависимости между компонентами. Простые уравнения учащиеся начальной школы начинают решать уже 2 классе. По мере взросления, усложняются и уравнения, переходя от простых к сложным уравнениям в 4 классе начальной школы.

Простые уравнения во 2 классе решают на основе взаимосвязей между компонентами при сложении или вы­читании. Важно соблюдать алгоритм решения уравнения.

Решение уравнения

Объяснение

чтобы найти первое сла­гаемое, нужно из сум­мы вычесть второе сла­гаемое.

Вычисляю: 35 — 7 = 28

Проверяю: 28 + 7 = 35

чтобы найти уменьшаемое, нужно к разности прибавить вычитаемое.

Вычисляю: 20 + 13 = 33

Проверяю: 33 — 13 = 20

чтобы найти вычитаемое, нужно из уменьшаемого вычесть раз­ность

Вычисляю: 46 — 42 = 4

Проверяю: 46 — 4 = 42

Простые уравнения вида х • 6 = 72, х : 8 = 12, 64 : х = 16 решают на основе взаимосвязей между результатами и компонентами действий.

Решение уравнения

Объяснение

1) Читаю уравнение: произ­ведение х и 6 равно 72.

2) Вспоминаю правило: что­бы найти неизвестный множитель, надо произведение разделить на известный множитель.

3) Вычисляю: х = 72 : 6

4) Проверяю: 12 • 6 = 72

1) Читаю уравнение: частное х и 8 равно 12.

2) Вспоминаю правило: чтобы найти неизвестное делимое, надо частное умножить на делитель.

3) Вычисляю: х = 12 • 8

4) Проверяю: 96 : 8 = 12

1) Читаю уравнение: частное 64 и х равно 16.

2) Вспоминаю правило: чтобы найти неизвестный делитель, надо делимое разде­лить на частное.

3) Вычисляю: х = 64 : 16

4) Проверяю: 64 : 4 = 16

Сложные уравнения в начальной школе состоят из нескольких арифметических действий. Алгоритм решения заключается в превращение сложного уравнения в простое.

Уравнения на нахождение неизвестного слагаемого

1)Вычисляю значение выражения в правой части уравнения: 12 • 4 = 48.

2) В уравнении х + 13 = 48 неизвестно первое слагаемое.

3) Вспоминаю правило: чтобы найти неизвест­ное слагаемое, нужно из суммы вычесть из­вестное слагаемое.

4) Вычисляю: х = 48 — 13

5) Проверяю: 35 + 13 = 12 • 4

Уравнения на нахождение неизвестного уменьшаемого

1) Вычисляю значение выражения в правой части уравнения: 51 : 17 = 3.

2) В уравнении х — 24 = 3 неизвестно умень­шаемое.

3) Вспоминаю правило: чтобы найти неизвест­ное уменьшаемое, нужно к разности приба­вить вычитаемое.

4) Вычисляю: х = 24 + 3

5) Проверяю: 27 — 24 = 51 : 17

Уравнения на нахождение неизвестного вычитаемого

640 — х = 180 + 120

640 — 340 = 180 + 120

1) Вычисляю значение выражения в правой части уравнения: 180 + 120 = 300.

2) В уравнении 640 – х = 300 неизвестно вычи­таемое.

3) Вспоминаю правило: чтобы найти вычитаемое, нужно из уменьшаемого вычесть раз­ность.

4) Вычисляю: х = 649 – 300

5) Проверяю: 640 — 340 = 180+120

Уравнения на нахождение неизвестного множителя

5 • 77 = 131 + 254

1) Вычисляю значение выражения в правой части уравнения: 131 + 254 = 385.

2) В уравнении 5 • х = 385 неизвестен второй множитель.

3) Вспоминаю правило: чтобы найти неизвест­ный множитель, нужно произведение разделить на известный множитель.

4) Вычисляю: х = 385 : 5

5) Проверяю: 5 • 77 = 131 + 254

Уравнения на нахождение неизвестного делимого

64 000 : 8 = 800 • 10

1) Вычисляю значение выражения в правой части.

2) Вспоминаю правило: чтобы найти делимое, нужно частное умножить на делитель.

Уравнения на нахождение неизвестного делителя

1) Вычисляю значение выражения вправой части.

2) Вспоминаю правило: чтобы найти неизвестный делитель, нужно делимоеразделить на частное.

Как решать сложные уравнения в 4 классе подробно рассмотрено в статье по ссылке.

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Теоретические основы формирования понятия уравнения в начальной школе; методика введения понятия уравнение на примере разных УМК
статья по математике (2 класс)

В настоящее время сложно представить школьный курс математики без понятия уравнение. Большинство задач сводятся к решению и применению различных видов уравнений. При этом уравнения, являются одним из средств моделирования явлений из окружающего нас мира и знакомство с ними, а также они являются существенной частью математического образования.

Понятие уравнение относится к важнейшим общематематическим понятиям. Именно поэтому затруднительно предложить его определение, одновременно и строгое, и доступное для учащихся, приступающих к овладению школьным курсом математики.

В словаре по педагогике под редакцией В.А. Мижерикова, дается следующее определение понятию уравнения – это два выражения, которые соединены знаком равенства и в них входят одна или несколько переменных, называемых неизвестными.

Е.А. Крапивина, говорит о том, что уравнение, представляет собой равенство, содержащее в себе неизвестное число, значение которого нужно найти.

И.А. Моргунова, указывает на то, что понятие уравнение, является равенством, которое выполняется только при некоторых значениях входящих в него букв. Буквы, которые входят в состав уравнения, могут быть неравноправными: одни могут принимать все свои допустимые значения, а другие, значения которых требуется отыскать, называют неизвестными данного уравнения (как правило, их обозначают последними буквами латинского алфавита x, y, z, u, v, w).

Рассмотрев множество определений понятия уравнение можно сделать вывод, что уравнение – это вид равенства с неизвестной величиной, которая чаще всего обозначается латинской буквой. При этом числовое значение данной буквы, позволяющее получить верное равенство, называется корнем уравнения.

В школьном курсе математики термин «уравнение» называют «выражение» или «предложение с переменной».

Можно выделить основные признаки понятия уравнение:

— содержит букву, значение которой неизвестно и его надо найти

Понятие «решить уравнение», является центральным.

Решение уравнения представляет собой преобразование исходного уравнения к более простому уравнению, способ решения которого уже известен.

Решить уравнение – значит найти все значения неизвестных, при которых оно обращается в верное равенство, или установить, что таких значений нет.

Например, установим, является ли уравнением с одним неизвестным равенство х+0=х. Если требуется найти это неизвестное число, то рассматриваемое утверждение является уравнением. Если же рассматривать это равенство, как буквенную запись правила: при сложении любого числа с нулем получается то же самое число, то утверждение не является уравнением.

У уравнения х+0=х сколько угодно решений: любое число х является его решением. У уравнения a+3=4+a нет решений, а у уравнения a+3=4 одно решение: a=1

В определении понятия уравнение используется один из двух терминов: «переменная» или «неизвестное». Переменная — это величина, характеризующаяся множеством значений, которое она может принимать.

И.А. Моргунова, говорит о том, что уравнения имеют важное теоретическое значение, а также служат в практических целях. Большинство задач о пространственных формах и количественных отношениях реального

мира сводится к решению различных видов уравнений.

По мнению А.В. Самойловой, знакомить учащихся в начальной школе с понятием уравнения надо как можно раньше и в процессе их решения осуществлять работу по усвоению детьми правил о взаимосвязи

компонентов и результатов действий.

Математические понятия, в свою очередь, являются важнейшей неотъемлемой частью науки и учебного предмета математики. В начальном курсе математики учитель старается знакомить младших школьников с большинством понятий наглядно, путём созерцания конкретных примеров или практического оперирования ими, опираясь при этом на жизненный опыт учащихся.

В.А. Далингер, считает, что внимание должно быть направлено на умение определять понятия, а не на их заучивание. Следует правильно донести до учащихся, что научные понятия изменчивы: определение понятия – это лишь один из начальных этапов его формирования, а затем происходит процесс, который представляет собой развитие понятий, который характеризуется как постепенное уточнение и усвоение содержания и объёма понятия, его связей и отношений с другими понятиями.

Как отмечает Г.Г. Кочеткова, формирование понятия, является длительным и сложным процессом, которому следует уделять достаточное внимание в образовательном процессе. Важным этапом при формировании понятий, является усвоение его существенных признаков. Словесное определение понятия должно быть итогом работы по усвоению существенных признаков. Следует отметить, что бывает так, когда даётся словесное определение понятия, и оно сразу же используется в дальнейшей работе. Преувеличение роли при словесном определении, является одной из причин пробелов в знаниях учащихся.

Совершенно иного мнения придерживается П. Я. Гальперин, который считает, что формирование понятия не следует растягивать во времени, что это можно осуществить в один приём, когда содержание нового понятия усваивается одновременно, в полном объеме и правильном соотношении признаков, сразу применяется на всем диапазоне намеченного обобщения.

Развитие математических понятий происходит от простого к сложному, или от конкретного к обобщенному. Развитие понятий может происходить поэтапно, при этом на новом уровне обобщения, углубляющем или расширяющем содержание развиваемого понятия.

В процессе усвоения научных знаний младшие школьники сталкиваются с разными видами понятий. Формирование понятия уравнения в начальной школе подготавливает младших школьников к более успешному изучению математики в дальнейшем.

Умение решать уравнения представляет большую сложность для младших школьников. Изучение уравнений в начальных классах обладает пропедевтическим характером. В этой связи крайне важной является подготовка детей в начальных классах к более глубокому изучению уравнений в старшей школе. В начальных классах в ходе работы над уравнениями проводится закрепление правил о взаимосвязи части и целого, сторон прямоугольника и его площади, формирование вычислительных навыков и понимания связи между элементами действий, закрепление порядка действий и формирование умения решать текстовые задачи, осуществляется работа над формированием правильной математической речи. На уроках закрепления уравнения способствуют разнообразию видов заданий.

В начальных классах рассматриваются уравнения только с одной переменной.

Виды уравнений, рассматриваемых в начальных классах:

I. Простые уравнения: х – 4=6

II. Усложненные уравнения:

1. Уравнения, в которых переменная находится в правой части: 6= x-4

2. Уравнения, в которых правая часть представляет числовое выражение: х-4=36:6

3. Уравнения, в которых числовое выражение находится в обеих частях: х-(16:4)=4+2

4. Уравнения, в которых неизвестное входит в состав выражения с переменной: (х+5)-4=6

5. Уравнения, представленные комбинацией уравнений (1-4) (х+5)-4*2=36:6

6. Уравнения, в которых неизвестное находится в обеих частях 2*х-8=х+5 (только в программе Аргинской)

Проанализировав разные учебно-методические комплексы можно сделать вывод о том, что знакомство учащихся с уравнениями обычно начинается на уроках математики во 2 классе.

Автор развивающего обучения Д.Б. Эльконин, предлагают знакомить учащихся с понятием уравнение с самого начала обучения математики, но при этом, не используя взаимосвязи между компонентами и результатами арифметических действий.

🔥 Видео

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

1 Как решать уравнения всех видов Решите уравнение Виды уравнений МАТЕМАТИКА ОНЛАЙНСкачать

1 Как решать уравнения всех видов Решите уравнение Виды уравнений МАТЕМАТИКА ОНЛАЙН

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Простые уравнения. Как решать простые уравнения?Скачать

Простые уравнения. Как решать простые уравнения?

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать

РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯ

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Повторяем решение уравнений. Полезно всем! Вебинар | МатематикаСкачать

Повторяем решение уравнений. Полезно всем! Вебинар | Математика

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Уравнение. 5 класс.Скачать

Уравнение. 5 класс.

Уравнение с модулемСкачать

Уравнение с модулем

Уравнения. 5 классСкачать

Уравнения. 5 класс

3 класс. Математика. УравнениеСкачать

3 класс. Математика. Уравнение

МАТЕМАТИКА 2 КЛАСС: ВИДЕО УРОК 22 - РЕШЕНИЕ УРАВНЕНИЙ | ДИСТАНЦИОННОЕ ОБРАЗОВАНИЕСкачать

МАТЕМАТИКА 2 КЛАСС: ВИДЕО УРОК 22 - РЕШЕНИЕ УРАВНЕНИЙ | ДИСТАНЦИОННОЕ ОБРАЗОВАНИЕ

УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать

УРАВНЕНИЕ  4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ  РЕШАЕМ УРАВНЕНИЯ #уравнение
Поделиться или сохранить к себе: