тест по алгебре (7 класс) на тему
Материал представляет зачетную работу по указанной теме.
- Скачать:
- Предварительный просмотр:
- Тест с ответами: “Система линейных уравнений”
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
- Немного теории.
- Решение систем линейных уравнений. Способ подстановки
- Решение систем линейных уравнений способом сложения
- 🔍 Видео
Видео:Система уравнений. Тема1 Система линейных уравнений.Скачать
Скачать:
Вложение | Размер |
---|---|
testsistema_lin._ur._7kl.-konkurs.docx | 19.62 КБ |
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Предварительный просмотр:
Тест по теме «Системы линейных уравнений с двумя переменными» (алгебра, 7класс).
А1. Выберите линейное уравнение с двумя переменными:
а) 2х+4у 2 = 20 б) ху+6 = 26 в) (х+4)(у-3) = 5 г) 3х-у = 18
А2.Найдите решение уравнения 2х+3у =2:
А3. Выразите переменную х через переменную у из уравнения 5у -2х = -15:
а) х = -15-5у б) х = 2,5у+7,5 в) х = -2,5у+7,5 г) х = 2,5у-7,5
А4. Абсцисса точки, принадлежащей графику уравнения 2х-3у =-7, равна 4. Найдите ординату этой точки.
А5. Пара чисел (-4;-1) является решением уравнения ах+3у-5= 0, если а равно:
а) 2 б) 0,5 в) -2 г) 0
А6. Решением системы служит пара:
В1. Координаты точки пересечения графика уравнения -5х+3у = 9 и оси абсцисс являются решением системы:
В2. Выясните, сколько решений имеет система:
а) единственное б) бесконечно много в) ни одного г) два
В3. Подберите к данному уравнению 2х + 3у = -11 такое уравнение, чтобы решением получившейся системы была пара (2; -5)
а) 3х – у = 14 б) у – 5х = -20 в) 7х+4у = 6 г) –х – 4у = 18
С1. Система имеет бесконечно много решений при а равном:
Тест по теме «Системы линейных уравнений с двумя переменными» (алгебра, 7класс).
А1. Выберите линейное уравнение с двумя переменными:
а) 2х 2 -4у = 20 б) 3ху = 18 в) х-4у = 26 г) (5х-4)(у+8) = 5
А2. Найдите решение уравнения: 4х-3у = 5
а) (1;2) б) (-2;1) в) (-1;2) г) (2;1)
А3. Выразите переменную х через переменную у из уравнения -6у +3х = 24
а) х = 8-3у б) х = 3у+8 в) х = 2у+8 г) х =-4-2у
А4. Ордината точки, принадлежащей графику уравнения 6х+2у = 2, равна 4. Найдите абсциссу этой точки.
а)-11 б) 1 в)-1 г) 11
А5.Пара чисел (-4;-1) является решением уравнения 4х+ау+5 = 0, если а равно:
а) 11 б) 21 в) -21 г) -11
А6. Решением системы служит пара:
В1.Координаты точки пересечения графика уравнения -5х+3у = 9 и оси ординат являются решением системы:
В2. Выясните, сколько решений имеет система:
а) единственное б) бесконечно много в) ни одного г) два
В3. . Подберите к данному уравнению 4х –2у = -18 такое уравнение, чтобы решением получившейся системы была пара (-2; 5)
а) 2х + у = 14 б) 2х – 3у = -19 в) у – 4х = 24 г) –х +3у = 18
С1. Система имеет бесконечно много решений при а равном:
Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Тест с ответами: “Система линейных уравнений”
1. Укажите пару чисел, которая является решением системы уравнений y + 2x = 7 и 3x – 5y = 4:
а) (3; 1) +
б) (1; -0.2)
в) (1; 3)
2. Выберите линейное уравнение с двумя переменными:
а) 3ху = 18
б) х – 4у = 26 +
в) (5х – 4) (у + = 5
3. Способом подставки найдите решение (х0, у0) системы уравнений у – 2х = 1 и 12х – у = 9. Вычислите у0 – х0:
а) 0
б) -2
в) 2 +
4. Подберите к данному уравнению 2х + 3у = -11 такое уравнение, чтобы решением получившейся системы была пара (2; -5):
а) –х – 4у = 18 +
б) у – 5х = -20
в) 3х – у = 14
5. Найдите решение (х0; у0) системы уравнений 7х – 2у = 0 и 3х + 6у = 24. Вычислите х0 + 2у0:
а) -6
б) 0
в) 8 +
6. Сколько решений имеет система 6х − 4у = 12 и −2у + 3х = 6:
а) ни одного
б) бесконечно много +
в) один
7. Способом сложения найдите решение (х0, у0), системы уравнений х – у = 2 и х + у = -6. Вычислите х0 + 3у0:
а) 14
б) 10
в) -14 +
8. Решением системы х + у = 1 и 2х − у = −10 служит пара:
а) (-3; 4) +
б) (3; -4)
в) (4; -3)
9. Угловой коэффициент прямой y + 2x + 3 является:
а) -3
б) 2
в) -2 +
10. Пара чисел (-4; -1) является решением уравнения ах + 3у – 5 = 0,если а равно:
а) -4
б) 4 +
в) -5
11. Решите систему уравнений способом подстановки 3x – 2y = -5 и x + 2y = 2. Ответ ввести разность x-y:
а) 2
б) -2 +
в) 7
12. Абсцисса точки, принадлежащей графику уравнения 2х – 3у = -7, равна 4. Найдите ординату этой точки:
а) -5
б) 5 +
в) 0
13. Найдите абсциссу точки пересечения прямых y = 2x + 3 и -1/3x + 24:
а) 9 +
б) 7
в) 3
14. Выразите переменную х через переменную у из уравнения 5у – 2х = -15:
а) х = -15 – 5у
б) х= -2,5у + 7,5
в) х = 2,5у + 7,5 +
15. Укажите пару чисел, являющуюся решением уравнения 2x+4y=-3:
а) (-0,5; -0,5) +
б) (-2; 1)
в) (1; -2)
16. Найдите решение уравнения 2х + 3у = 2:
а) (5; -4)
б) (-5; 4) +
в) (-5; -4)
17. Подберите к данному уравнению 4х –2у = -18 такое уравнение, чтобы решением получившейся системы была пара (-2; 5):
а) у –4х = 24
б) –х +3у = 18
в) 2х –3у = -19 +
18. Выберите линейное уравнение с двумя переменными:
а) ху + 6 = 26
б) 3х – у = 18 +
в) (х + 4) (у – 3) = 5
19. Выясните, сколько решений имеет система 3х + 5у = 12 и −2у + 3х = 6:
а) ни одного
б) бесконечно много
в) одно +
20. Система уравнений, каждое уравнение в которой является линейным – алгебраическим уравнением первой степени:
а) система криволинейных уравнений
б) система линейных уравнений +
в) система линейно-простых уравнений
21. Решением системы х − у = 2 и 3х − у = 10 служит пара:
а) (4; 2) +
б) (2;-4)
в) (-2; 4)
22. Одна из классических задач линейной алгебры, во многом определившая её объекты и методы:
а) теория систем линейных алгебраических уравнений
б) решение систем линейных алгебраических уравнений +
в) сравнение систем линейных алгебраических уравнений
23. Пара чисел (-4;-1) является решением уравнения 4х + ау + 5 = 0, если а равно:
а) -21
б) 11
в) -11 +
24. Система, у которой количество уравнений совпадает с числом неизвестных (m = n):
а) кубическая система линейных уравнений
б) квадратная система линейных уравнений +
в) сложная система линейных уравнений
25. Ордината точки, принадлежащей графику уравнения 6х + 2у = 2, равна 4. Найдите абсциссу этой точки:
а) 1
б) -11
в) -1 +
26. Система, у которой число неизвестных больше числа уравнений является:
а) неопределенной
б) недоопределённой +
в) переопределённой
27. Выразите переменную х через переменную у из уравнения -6у + 3х = 24:
а) х = 2у + 8 +
б) х = -4 – 2у
в) х = 8 – 3у
28. Если уравнений больше, чем неизвестных, то система является:
а) недоопределённой
б) неопределенной
в) переопределённой +
29. Найдите решение уравнения: 4х – 3у = 5:
а) (2; 1) +
б) (1;2)
в) (-2; 1)
30. Такие методы дают алгоритм, по которому можно найти точное решение систем линейных алгебраических уравнений:
а) дифференциальные
б) прямые +
в) искаженные
Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Системы уравнений Тема5 Решения задач составлением системы уравнений.Скачать
Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.
С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: ( x, y, z, a, b, c, o, p, q ) и т.д.
При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2
В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)
Решить систему уравнений
Видео:Матричный метод решения систем уравненийСкачать
Немного теории.
Видео:Решение системы уравнений методом Крамера 2x2Скачать
Решение систем линейных уравнений. Способ подстановки
Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 cdot 1 Rightarrow y=4 $$
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Решение систем линейных уравнений способом сложения
Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ left< begin 3x=33 \ x-3y=38 end right. $$
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
( -3y=27 Rightarrow y=-9 )
Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
🔍 Видео
Задание 22 Система линейных уравнений 7 классСкачать
2 22 Решение системы линейных уравнений методом Гаусса (един.реш.)Скачать
Системы уравнений Тема3 С истемы ур-й в которых одно ур-е 1ой степени а другие 2ой и более высокой.Скачать
Система уравнений Тема2 Исследование решений системных уравнений.Скачать
Математика это не ИсламСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
2022 08 22 СистемыЛинейныхУравнений МетодАлгебраическогоСложенияСкачать
Система уравнений Тема4 Системы уравнений, в которых оба уравнения второй и более высокой степени.Скачать
Решение систем линейных уравнений способом подстановки.Скачать
Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать
Решение систем линейных уравнений методом подстановки (видеоурок) - 7 класс алгебраСкачать
Решение системы линейных уравнений графическим методом. Практическая часть. 7 класс.Скачать