Теория сравнений по модулю уравнения

Видео:✓ Сравнение по модулю. Арифметика остатков | Ботай со мной #034 | Борис ТрушинСкачать

✓ Сравнение по модулю. Арифметика остатков | Ботай со мной #034 | Борис Трушин

Конспект «теория сравнения по модулю»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Муниципальное бюджетное общеобразовательное учреждение

Семлевская средняя общеобразовательная школа №1

Вяземского района Смоленской области

Научно-исследовательская работа по теме
«Теория сравнения по модулю»

Подготовила
ученица 9 класса: Попова Анастасия

Преподаватель: Перцева С.М.

Понятие модуля числа известно каждому, а вот что означает понятие сравнение по модулю, знают далеко не все. Тема моей работы «Теория сравнения по модулю». Я обратилась к этой теме, так как она недостаточно полно изложена в действующих учебниках математики, а задачи по этой теме предлагаются как на олимпиадах, так и на вступительных экзаменах в вузы.

Цель работы : разобраться с понятием «сравнение по модулю», развить умение применять знания в решении практических заданий .

1) Изучить краткий исторический обзор возникновения теории;

2) Дать определение сравнения по модулю;

3) Изучить свойства сравнения по модулю;

4) Рассмотреть операции со сравнениями;

5) Применить знания для решения практических заданий.

1)Теоретический анализ и обобщение научной литературы;
2)Математический расчет;

1.Историческая справка . Предпосылкой к созданию теории сравнений стало восстановление сочинений Диофанта, которые были выпущены в подлиннике и с латинским переводом, благодаря Баше де Мезириаку, в 1621. Их изучение привело Ферма́ к открытиям, которые по значению существенно опередили свое время. Этой же темой независимо от Ферма занимался Лейбниц. Позже изучение вопросов теории сравнений, было продолжено Эйлером. Утвердившуюся в математике символику предложил Гаусс. Он же впервые использовал сравнения по модулю в своей книге «Арифметические исследования» в 1801 году. Гаусс преобразовал все накопленные до него сведения, связанные с операциями сравнения по модулю, в стройную теорию, которая и была впервые изложена в этой книге.

Теорию сравнения по модулю называют модульной арифметикой. В математике модульная арифметика — система арифметики для целых чисел, где числа «обертывают вокруг» после достижения определенной стоимости — модуль . Знакомое использование модульной арифметики находится в 12-часовых часах , в которых день разделен на два 12-часовых периода. Если время будет 7:00 теперь, то 8 часов спустя это будет 3:00. Обычное дополнение предложило бы, чтобы более позднее время было 7 + 8 = 15, но это не ответ, потому что время часов «обертывает вокруг» каждые 12 часов; в 12-часовое время нет никаких «15 часов». Аналогично, если запуски часов в 12:00 (полдень) и 21 час протекут, то время будет 9:00 на следующий день, а не 33:00. Так как число часа начинается после того, как оно достигает 12, это — арифметический модуль 12. Согласно определению ниже, 12 подходящее не только 12 самому, но также и 0, таким образом, время, названное «12:00», можно было также назвать «0:00», так как 12 подходящее 0 модулям 12.

Если два целых числа Теория сравнений по модулю уравненияи Теория сравнений по модулю уравненияпри делении на Теория сравнений по модулю уравнениядают одинаковые остатки, то они называются сравнимыми по модулю числа Теория сравнений по модулю уравнения.

Сравнимость чисел Теория сравнений по модулю уравненияи Теория сравнений по модулю уравнениязаписывается в виде формулы ( сравнения ):

Теория сравнений по модулю уравнения

Число Теория сравнений по модулю уравненияназывается модулем сравнения.

Определение сравнимости чисел Теория сравнений по модулю уравненияи Теория сравнений по модулю уравненияпо модулю Теория сравнений по модулю уравненияравносильно любому из следующих утверждений:

Разность чисел Теория сравнений по модулю уравненияи Теория сравнений по модулю уравненияделится на Теория сравнений по модулю уравнениябез остатка; Теория сравнений по модулю уравнения

Число Теория сравнений по модулю уравненияможет быть представлено в виде Теория сравнений по модулю уравнения, где Теория сравнений по модулю уравнения— некоторое целое число.

Например : 32 и −10 сравнимы по модулю 7, так как оба числа при делении на 7 дают остаток 4:

Теория сравнений по модулю уравнения

Также, 32 и −10 сравнимы по модулю 7, так как их разность 42 делится на 7, и к тому же имеет место представление:

Видео:Теория чисел. 6. Методы решения сравнений 1 й степениСкачать

Теория чисел.  6.  Методы решения сравнений 1 й степени

Сравнение чисел по модулю

Определение 1. Если два числа 1 ) a и b при делении на p дают один и тот же остаток r, то такие числа называются равноостаточными или сравнимыми по модулю p.

Утверждение 1. Пусть p какое нибудь положительное число. Тогда всякое число a всегда и притом единственным способом может быть представлено в виде

a=sp+r,(1)

где s — число, и r одно из чисел 0,1, . p−1.

1 ) В данной статье под словом число будем понимать целое число.

Действительно. Если s получит значение от −∞ до +∞, то числа sp представляют собой совокупность всех чисел, кратных p. Рассмотрим числа между sp и (s+1)p=sp+p. Так как p целое положительное число, то между sp и sp+p находятся числа

Теория сравнений по модулю уравненияТеория сравнений по модулю уравнения

Но эти числа можно получить задав r равным 0, 1, 2. p−1. Следовательно sp+r=a получит всевозможные целые значения.

Покажем, что это представление единственно. Предположим, что p можно представить двумя способами a=sp+r и a=s1p+r1. Тогда

Теория сравнений по модулю уравнения
Теория сравнений по модулю уравнения(2)

Так как r1 принимает один из чисел 0,1, . p−1, то абсолютное значение r1r меньше p. Но из (2) следует, что r1r кратно p. Следовательно r1=r и s1=s.

Число r называется вычетом числа a по модулю p (другими словами, число r называется остатком от деления числа a на p).

Утверждение 2. Если два числа a и b сравнимы по модулю p, то a−b делится на p.

Действительно. Если два числа a и b сравнимы по модулю p, то они при делении на p имеют один и тот же остаток p. Тогда

Теория сравнений по модулю уравнения

где s и s1 некоторые целые числа.

Разность этих чисел

Теория сравнений по модулю уравнения(3)

делится на p, т.к. правая часть уравнения (3) делится на p.

Утверждение 3. Если разность двух чисел делится на p, то эти числа сравнимы по модулю p.

Доказательство. Обозначим через r и r1 остатки от деления a и b на p. Тогда

Теория сравнений по модулю уравнения
Теория сравнений по модулю уравнения

По утверждению a−b делится на p. Следовательно rr1 тоже делится на p. Но т.к. r и r1 числа 0,1. p−1, то абсолютное значение |rr1| Свойство 1. Для любого a и p всегда

a≡a mod (p).

Свойство 2. Если два числа a и c сравнимы с числом b по модулю p , то a и c сравнимы между собой по тому же модулю, т.е. если

a≡b mod (p), b≡c mod (p).
a≡c mod (p).

Действительно. Из условия свойства 2 следует a−b и b−c делятся на p. Тогда их сумма a−b+(b−c)=a−c также делится на p.

a≡b mod (p) и m≡n mod (p),
a+m≡b+n mod (p) и a−m≡b−n mod (p).

Действительно. Так как a−b и m−n делятся на p, то

(a−b)+ (m−n)=(a+m)−(b+n) ,
(a−b)−(m−n)=(a−m)−(b−n)

также делятся на p.

Это свойство можно распространить на какое угодно число сравнений, имеющих один и тот же модуль.

a≡b mod (p) и m≡n mod (p),
am≡bn mod (p).

Действительно.Так как a−b делится на p, то (a−b)m также делится на p, следовательно

am≡bm mod (p).

Далее m−n делится на p, следовательно b(m−n)=bm−bn также делится на p, значит

bm≡bn mod (p).

Таким образом два числа am и bn сравнимы по модулю с одним и тем же числом bm, следовательно они сравнимы между собой (свойство 2).

a≡b mod (p).
a k ≡b k mod (p).

где k некоторое неотрицательное целое число.

Действительно. Имеем a≡b mod (p). Из свойства 4 следует

a·a≡b·b mod (p).
a·a·a≡b·b·b mod (p).
.
a k ≡b k mod (p).

Все свойства 1-5 представить в следующем утверждении:

Утверждение 4. Пусть f(x1, x2, x3, . ) целая рациональная функция с целыми коэффициентами и пусть

a1b1, a2b2, a3b3, . mod (p).
f(a1, a2, a3, . )≡f(b1, b2, b3, . ) mod (p).

При делении все обстоит иначе. Из сравнения

am≡bm mod (p)

не всегда следует сравнение

a≡b mod (p).

Утверждение 5. Пусть

am≡bm mod (p),
a≡b mod (p/λ),

Доказательство. Пусть λ наибольший общий делитель чисел m и p. Тогда

m=m1λ и k=k1λ.

Так как m(a−b) делится на k, то

Теория сравнений по модулю уравнения

имеет нулевой остаток. Тогда

Теория сравнений по модулю уравненияТеория сравнений по модулю уравнения.
Теория сравнений по модулю уравнения

имеет нулевой остаток, т.е. m1(a−b) делится на k1. Но числа m1 и k1 числа взаимно простые. Следовательно a−b делится на k1=k/λ и, тогда, a≡b mod (p/λ).

Утверждение 6. Если

a≡b mod (p)

и m является один из делителей числа p, то

a≡b mod (m).

Действительно. a−b делится на p. p делится на m. Следовательно a−b делится на m.

Утверждение 7. Если

a≡b mod (p), a≡b mod (q), a≡b mod (s)
a≡b mod (h),

где h наименьшее общее кратное чисел p,q,s.

Действительно. Разность a≡b должна быть числом, кратным p,q,s. и, следовательно должна быть кратным h.

В частном случае, если модули p,q,s взаимно простые числа, то

a≡b mod (h),

Заметим, что можно допустить сравнения по отрицательным модулям, т.е. сравнение a≡b mod (p) означает и в этом случае, что разность a−b делится на p. Все свойства сравнений остаются в силе и для отрицательных модулей.

Видео:Сравнение по модулю (Теория и примеры)Скачать

Сравнение по модулю (Теория и примеры)

Решение сравнений и их приложения.

Теория сравнений по модулю уравнения

Решение сравнений и их приложения

Видео:Теория чисел. 4. Сравнения. Свойства сравненийСкачать

Теория чисел.  4.  Сравнения. Свойства сравнений

Скачать:

ВложениеРазмер
reshenie_sravnenii_i_ih_prilozheniya.docx131.78 КБ

Видео:Решение сравнений первой степениСкачать

Решение сравнений первой степени

Предварительный просмотр:

Решение сравнений и их приложения.

Глава1. Общие вопросы теории сравнений

§1. Сравнение по модулю

§2. Свойства сравнений

  1. Свойства сравнений, не зависящие от модуля
  2. Свойства сравнений, зависящие от модуля

§3. Система вычетов

  1. Полная система вычетов
  2. Приведённая система вычетов

§4. Теорема Эйлера и Ферма

  1. Функция Эйлера
  2. Теорема Эйлера и Ферма

Глава2. Теория сравнений с переменной

§1. Основные понятия, связанные с решением сравнений

  1. Корни сравнений
  2. Равносильность сравнений
  3. Теорема Вильсона

§2. Сравнения первой степени и их решения

  1. Метод подбора
  2. Способы Эйлера
  3. Метод алгоритма Евклида
  4. Метод цепных дробей

§3. Системы сравнений 1-ой степени с одним неизвестным

§4. Деление сравнений высших степеней

§5. Первообразные корни и индексы

  1. Порядок класса вычетов
  2. Первообразные корни по простому модулю
  3. Индексы по простому модулю

Глава3. Приложение теории сравнений

§1. Признаки делимости

§2. Проверка результатов арифметических действий

§3. Обращение обыкновенной дроби в конечную

десятичную систематическую дробь

В нашей жизни часто приходится сталкиваться с целыми числами и задачами связанными с ними. В данной дипломной работе я рассматриваю теорию сравнения целых чисел.

Два целых числа, разность которых кратна данному натуральному числу m называются сравнимыми по модулю m.

Слово «модуль» происходит от латинского modulus, что по–русски означает «мера», «величина».

Утверждение «а сравнимо с b по модулю m» обычно записывают в виде a b (mod m) и называют сравнением.

Определение сравнения было сформулировано в книге К. Гаусса «Арифметические исследования». Эту работу, написанную на латинском языке начали печатать в 1797 году, но книга вышла в свет лишь 1801 году из-за того, что процесс книгопечатания в то время был чрезвычайно трудоёмким и длительным. Первый раздел книги Гаусса так и называется: «О сравнении чисел вообще».

Сравнениями очень удобно пользоваться в тех случаях, когда достаточно знать в каких – либо исследованиях числа с точностью до кратных некоторого числа.

Например, если нас интересует, на какую цифру оканчивается куб целого числа a, то нам достаточно знать a лишь с точностью до кратных чисел 10 и можно пользоваться сравнениями по модулю 10.

Целью данной работы является рассмотрение теории сравнений и исследование основных методов решения сравнений с неизвестными, а также изучение применения теории сравнений к школьной математике.

Дипломная работа состоит из трёх глав, причём каждая глава разбита на параграфы, а параграфы на пункты.

В первой главе изложены общие вопросы теории сравнений. Здесь рассматриваются понятие сравнения по модулю, свойства сравнений, полная и приведённая система вычетов, функция Эйлера, теорема Эйлера и Ферма.

Вторая глава посвящена теории сравнений с неизвестной. В ней излагаются основные понятия, связанные с решением сравнений, рассматриваются способы решения сравнений первой степени ( метод подбора, способ Эйлера, метод алгоритма Евклида, метод цепных дробей, с помощью индексов), систем сравнений первой степени с одной неизвестной, сравнений высших степеней и др.

Третья глава содержит некоторые приложения теории чисел к школьной математике. Рассмотрены признаки делимости, проверка результатов действий, обращение обыкновенных дробей в систематические десятичные дроби.

Изложение теоретического материала сопровождается большим количеством примеров, раскрывающих суть вводимых понятий и определений.

🎥 Видео

Т.чисел 9. Система сравнений Метод подстановкиСкачать

Т.чисел 9. Система сравнений  Метод подстановки

Сравнения по модулю: решение задач №1 | Vasily mathsСкачать

Сравнения по модулю: решение задач №1 | Vasily maths

Т.чисел 10. Система сравнений. Два метода решенияСкачать

Т.чисел 10. Система сравнений.  Два метода решения

СРАВНЕНИЕ ПО МОДУЛЮ 😉 #shorts #егэ #огэ #математика #профильныйегэСкачать

СРАВНЕНИЕ ПО МОДУЛЮ 😉 #shorts #егэ #огэ #математика #профильныйегэ

ПРостой стрим. Олимпиадная теория чисел в течение 12 часов!Скачать

ПРостой стрим. Олимпиадная теория чисел в течение 12 часов!

Т.чисел 8. Система сравнений. Китайская теорема об остаткахСкачать

Т.чисел 8. Система сравнений. Китайская теорема об остатках

Модуль числа. 6 класс.Скачать

Модуль числа. 6 класс.

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Теория чисел. 7. Решаем сравнения 1 й степениСкачать

Теория чисел.  7.  Решаем сравнения 1 й степени

Теория чисел. Сравнение первой степени. Метод подходящих дробейСкачать

Теория чисел. Сравнение первой степени. Метод подходящих дробей

Арифметика остатковСкачать

Арифметика остатков

Доказываем сравнение по модулю 37 | Теория чисел | КАК РЕШАТЬ?Скачать

Доказываем сравнение по модулю 37 | Теория чисел | КАК РЕШАТЬ?

Малая теорема Ферма и теорема Эйлера | Ботай со мной #037 | Борис Трушин !Скачать

Малая теорема Ферма и теорема Эйлера | Ботай со мной #037 | Борис Трушин !

МодульСкачать

Модуль

Признаки делимости | Сравнение по модулю | Ботай со мной #035 | Борис Трушин !Скачать

Признаки делимости | Сравнение по модулю | Ботай со мной #035 | Борис Трушин !
Поделиться или сохранить к себе: