Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
- Описание презентации по отдельным слайдам:
- Краткое описание документа:
- Уравнения с одной переменной
- Определение уравнения. Корни уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Равносильность уравнений
- Линейные уравнения
- Пример 1.
- Пример 2.
- Квадратные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Рациональные уравнения
- Пример:
- Решение уравнения р(х) = 0 методом разложения его левой части на множители
- Пример 1.
- Пример 2.
- Решение уравнений методом введения новой переменной
- Пример 1.
- Пример 2.
- Биквадратные уравнения
- Пример:
- Решение задач с помощью составления уравнений
- Иррациональные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Показательные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Логарифмические уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Примеры решения показательно-логарифмических уравнений
- Пример 1.
- Пример 2.
- Пример 3.
- Равносильность уравнений
- Просмотр содержимого документа «Равносильность уравнений»
- 🔥 Видео
Описание презентации по отдельным слайдам:
Государственное бюджетное учреждение среднего профессионального образования «Дзержинский технический колледж» Равносильность уравнений. Линейные уравнения. Автор: Белянина М. И. преподаватель математики
Основные определения Уравнением называется два алгебраичес-ких выражения, соединенные знаком равенства (=). Корнем уравнения называется такое значение переменной, при котором это равенство достигается. Решить уравнение – значит найти все его корни или показать, что корней нет.
Линейное уравнение с одним неизвестным (общий вид) ах + b = 0 а, b – любые действительные числа Линейные уравнения — не самая сложная тема школьной математики. Но есть там свои фишки, которые могут озадачить даже подготовленного ученика. Разберёмся? 2х + 7 = 0. Здесь а=2, b=7 0,1х — 2,3 = 0 Здесь а=0,1, b=-2,3 12х + 1/2 = 0 Здесь а=12, b=1/2 И так далее.
ах + b = 0 Ничего сложного, правда? Особенно, если не замечать слова: «где а и b – любые действительные числа». А если заметить, да неосторожно задуматься? Ведь, если а=0, b=0 (любые же числа можно?), то получается забавное выражение: 0=0 Но и это ещё не всё! Если, скажем, а=0, а b=5, получается совсем уж что-то несусветное: 5=0 А ведь из этих странных выражений ещё и икс найти надо! Которого нету вообще. И, что удивительно, этот икс очень просто находится. Мы научимся это делать.
Всё решение линейных уравнений состоит из тождественных преобразований уравнений. Кстати, эти преобразования (целых два!) лежат в основе решений всех уравнений математики. Другими словами, решение любого уравнения начинается с этих самых преобразований. В случае линейных уравнений, оно (решение) на этих преобразованиях и заканчивается полноценным ответом.
При решении уравнений используют теоремы о равносильности, которые мы рассмотрим на примере линейных уравнений. Равносильными называются уравнения, множества корней которых совпадают. Равносильными также считаются уравнения, которые не имеют корней. Другими словами, два уравнения равносильны, если корни одного уравнения являются корнями второго и наоборот.
Теорема 1. Если к обеим частям уравнения прибавить одно и то же число, то полученное уравнение будет равносильно исходному. ах + b = 0 Прибавим о обеим частям уравнения число (-b) ах + b + (-b) = 0 + (-b) В левой части уравнения b + (-b) сократятся. ах = -b Получили следствие, которым вы всегда пользовались: Если в уравнении перенести любой член из одной части в другую, изменив его знак на противоположный, то получится уравнение, равносильное данному Теорема 2. Если обе части уравнения умножить на одно и то же число, не равное нулю, то полученное уравнение будет равносильно исходному. ах = -b Умножим обе части уравнения на 1/a (а≠0) ах ∙⅟а = -b ∙⅟а В левой части а∙⅟а=1, поэтому получим х = -b /а
Для решения линейных уравнений надо: Слагаемые, зависящие от х, перенести в одну часть уравнения, числа – в другую часть. Привести подобные члены в каждой части уравнения. Найти неизвестную (переменную) х.
Для начала рассмотрим самый простой пример. х — 3 = 2 — 4х Это линейное уравнение. Схема тут простая. Собрать всё, что с иксами в левой части равенства, всё, что без иксов (числа) — в правой. Для этого нужно перенести -4х в левую часть, со сменой знака, разумеется, а -3 в правую. Это и есть применение теоремы 1 (вернее, следствия из неё). Получим: х + 4х = 2 + 3 Приводим подобные, считаем: 5х = 5 Что нам не хватает для полного счастья? Пятёрка перед х в левой части мешает. Избавляемся от пятёрки с помощью второй теоремы о равносильности. А именно — делим обе части уравнения на 5. Получаем готовый ответ: х = 1
Решим что-нибудь посолиднее. Что вам больше всего не нравится в этом уравнении? 95 человек из 100 ответят: дроби! Ответ правильный. Вот и давайте от них избавимся, если, конечно, в вашем арсенале имеется теорема 2 о равносильности уравнений. Умножим обе части на 12, т.е. на общий знаменатель. Не забываем, что умножать надо каждую часть целиком. Вот как выглядит первый шаг: Раскрываем скобки: Не пример, а сплошное удовольствие! Вот теперь вспоминаем заклинание из младших классов: с иксом – влево, без икса – вправо ( но мы-то помним, что это следствие из теоремы 1!) Приводим подобные: 25х = 4 И делим обе части на 25, т.е. снова применяем теорему 2 Вот и всё. Ответ: х=0,16
Берём на заметку: чтобы привести исходное замороченное уравнение к приятному виду, мы использовали две (всего две!) теоремы о равносильности – перенос влево-вправо со сменой знака и умножение-деление уравнения на одно и то же число. Это универсальный способ! Работать таким образом мы будем с любыми уравнениями! Как видим, принцип решения линейных уравнений простой. Берём уравнение и упрощаем его с помощью теорем о равносильности до получения ответа. Основные проблемы здесь в вычислениях, а не в принципе решения. Но. Встречаются в процессе решения самых элементарных линейных уравнений такие сюрпризы, что могут и в сильный ступор вогнать. ) К счастью, таких сюрпризов может быть только два. Назовём их особыми случаями.
Особые случаи при решении линейных уравнений. Сюрприз первый. Предположим, попалось вам элементарнейшее уравнение: 2х+3=5х+5 — 3х — 2 Слегка скучая, переносим с иксом влево, без икса — вправо. 2х-5х+3х=5-2-3 Считаем, и. опа!! Получаем: 0=0 Само по себе это равенство не вызывает возражений. Нуль действительно равен нулю. Но икс-то пропал! А мы обязаны записать в ответе, чему равен икс. Иначе, решение не считается, да. ) Тупик? Спокойствие! В таких сомнительных случаях спасают самые общие правила. Что значит решить уравнение? Это значит, найти все значения икс, которые при подстановке в исходное уравнение, дадут нам верное равенство. Но верное равенство у нас уже получилось! 0=0, куда уж вернее?! Остаётся сообразить, при каких икс это получается. Какие значения икс можно подставлять в исходное уравнение, если эти иксы всё равно сокращаются в полный ноль? Ну же? Да. Иксы можно подставлять любые! Какие хотите. Хоть 5, хоть 0,05, хоть -220. Они всё равно сократятся. Если не верите — можете проверить. Подставляйте любые значения икс в исходное уравнение и посчитайте. Всё время будет получаться чистая правда: 0=0, 2=2, -7,1=-7,1 и так далее. Вот вам и ответ: х — любое число.
Сюрприз второй. Возьмём то же линейное уравнение и изменим в нём всего одно число. Вот такое будем решать: 2х + 1 = 5х + 5 — 3х — 2 После тех же самых преобразований мы получим нечто интригующее: 0 = 2 Вот так: решали линейное уравнение, получили странное равенство. Говоря математическим языком, мы получили неверное равенство. А говоря простым языком, неправда это. Бред. Но тем, не менее, этот бред — вполне веское основание для правильного решения уравнения.) Какие значения икс при подстановке в исходное уравнение дадут нам верное равенство? Да никакие! Нет таких иксов. Чего ни подставляй, всё сократится, останется бред. Вот вам и ответ: решений нет.
Ответы даны в беспорядке: 2,5; нет решений; 51; 17. Получилось?! Поздравляю! Теперь, когда мы разобрались со всеми подводными камнями в линейных уравнениях, имеет смысл их порешать.
Краткое описание документа:
В данной презентации рассматриваются принципиальные вопросы, связанные с решением уравнений: что такое равносильные уравнения; какие преобразования уравнений являются равносильными, как эти преобразования использовались ранее. Эти вопросы обсуждаются в курсе алгебры, начиная с 8-го класса. Завершая изучение школьного курса, целесообразно как бы заново переосмыслить общие идеи и методы.
В презентации описывается применение теорем о равносильности на примере решения линейных уравнений, рассматриваются все возможные случаи, в том числе наличия бесконечного множества корней и их отсутствия.
Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать
Уравнения с одной переменной
Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Содержание:
Определение уравнения. Корни уравнения
Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.
Решить уравнение — это значит найти все его корни или доказать, что их нет.
Пример 1.
Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.
Пример 2.
Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.
Пример 3.
Уравнение не имеет действительных корней.
Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение имеет два мнимых корня: (см. п. 47). Всюду ниже речь идет только о действительных корнях уравнений.
Равносильность уравнений
Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.
Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения — ни одно из них не имеет корней.
Уравнения неравносильны, так как первое имеет только один корень 6, тогда как второе имеет два корня: 6 и — 6.
В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.
Теорема 1.
Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Например, уравнение равносильно уравнению
Теорема 2.
Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Например, уравнение равносильно уравнению (обе части первого уравнения мы умножили на 3).
Линейные уравнения
Линейным уравнением с одной переменной х называют уравнение вида
где — действительные числа; называют коэффициентом при переменной, — свободным членом.
Для линейного уравнения могут представиться три случая:
1) ; в этом случае корень уравнения равен ;
2) ; в этом случае уравнение принимает вид , что верно при любом х, т. е. корнем уравнения служит любое действительное число;
3) ; в этом случае уравнение принимает вид , оно не имеет корней.
Многие уравнения в результате преобразований сводятся к линейным.
Пример 1.
Решить уравнение
Решение:
По теореме 1 (см. п. 135), данное уравнение равносильно уравнению . Если разделить обе части этого уравнения на коэффициент при х, то по теореме 2 получим равносильное данному уравнение . Итак, — корень уравнения.
Пример 2.
Решение:
Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим
Квадратные уравнения
где — действительные числа, причем , называют квадратным уравнением. Если , то квадратное уравнение называют приведенным, если , то неприведенным. Коэффициенты имеют следующие названия: — первый коэффициент, — второй коэффициент, с — свободный член. Корни уравнения находят по формуле
Выражение называют дискриминантом квадратного уравнения (1). Если D О, то уравнение имеет два действительных корня.
В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение , можно переписать формулу (2) в виде Если , то формулу (2) можно упростить:
Формула (3) особенно удобна, если — целое число, т. е. коэффициент — четное число.
Пример 1.
Решение:
Здесь . Имеем:
Так как , то уравнение имеет два корня, которые найдем по формуле (2):
Итак, — корни заданного уравнения.
Пример 2.
Решить уравнение
Решение:
Здесь По формуле (3) находим т. е. х = 3 — единственный корень уравнения.
Пример 3.
Решить уравнение
Решение:
Здесь Так как D 0, откуда х>3, и 5 — х > 0, откуда х 5, тогда как для уравнения (2) областью определения служит вся числовая прямая. Поэтому найденное значение х = 4, являющееся корнем уравнения (2), может оказаться посторонним корнем для уравнения (1). В данном случае именно это и происходит, поскольку х = 4 не принадлежит области определения уравнения (1) (не удовлетворяет неравенству х > 5). Итак, х = 4 — посторонний корень, т. е. заданное уравнение не имеет корней.
Рациональные уравнения
Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.
Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.
Чтобы решить рациональное уравнение, нужно:
1) найти общий знаменатель всех имеющихся дробей;
2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;
3) решить полученное целое уравнение;
4) исключить из его корней те, которые обращают в нуль общий знаменатель.
Пример:
Решение:
Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:
Из уравнения находим (см. п. 137). Осталось проверить, обращают ли найденные корни выражение 2х(2 — х) в нуль, т. е. проверить выполнение условия Замечаем, что 2 не удовлетворяет этому условию, а 4 удовлетворяет. Значит, х = 4 — единственный корень уравнения.
Решение уравнения р(х) = 0 методом разложения его левой части на множители
Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени . Предположим, что удалось разложить многочлен на множители:, где — многочлены более низкой степени, чем . Тогда уравнение р(х) = 0 принимает вид . Если — корень уравнения а потому хотя бы одно из чисел равно нулю.
Значит, — корень хотя бы одного из уравнений
Верно и обратное: если — корень хотя бы одного из уравнений то — корень уравнения т. е. уравнения р (х) = 0.
Итак, если , где — многочлены, то вместо уравнения р(х) = 0 нужно решить совокупность уравнений Все найденные корни этих уравнений, и только они, будут корнями уравнения р(х) = 0.
Пример 1.
Решить уравнение
Решение:
Разложим на множители левую часть уравнения. Имеем откуда
Значит, либо х + 2 = 0, либо . Из первого уравнения находим х = — 2, второе уравнение не имеет корней. Итак, получили ответ: -2.
Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть но среди выражений есть выражения более сложного вида, чем многочлены (например, иррациональные, логарифмические и т. д.). Среди корней уравнений могут быть посторонние для уравнения р(х) = 0.
Пример 2.
Решить уравнение
Решение:
Имеем ; значит, либо , либо .Из уравнения находим х = 0, из уравнения находим .
Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение . Это посторонний корень.
Итак, уравнение имеет два корня: 3; 0.
Решение уравнений методом введения новой переменной
Суть этого метода поясним на примерах.
Пример 1.
Решение:
Положив , получим уравнение
откуда находим . Теперь задача сводится к решению совокупности уравнений
Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.
Из второго квадратного уравнения находим . Это корни заданного уравнения.
Пример 2.
Решение:
Положим , тогда
и уравнение примет вид
Решив это уравнение (см. п. 145), получим
Но . Значит, нам остается решить совокупность уравнений
Из первого уравнения находим , ; из второго уравнения получаем Тем самым найдены четыре корня заданного уравнения.
Биквадратные уравнения
Биквадратным уравнением называют уравнение вида
Биквадратное уравнение решается методом введения новой переменной: положив , придем к квадратному уравнению
Пример:
Решить уравнение .
Решение:
Положив , получим квадратное уравнение , откуда находим . Теперь задача сводится к решению совокупности уравнений Первое уравнение не имеет действительных корней, из второго находим Это — корни заданного биквадратного уравнения.
Решение задач с помощью составления уравнений
С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.
1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.
2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).
3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.
4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.
Задача 1.
Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?
Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить т груза, а на самом деле грузили т груза, что на 0,5 т меньше, чем предполагалось. В результате мы приходим к уравнению
Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.
Задача 2.
Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.
Решение:
Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит ч, а время, за которое лодка пройдет обратный путь, составит ч. Так как путь туда и обратно лодка проходит за 6 ч 15 мин, т. е. ч, приходим к уравнению
решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.
Задача 3.
Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.
Решение:
Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем
Решив это уравнение, найдем
Второй корень не подходит по смыслу задачи.
Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.
Задача 4.
Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?
Решение:
Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна , а часть работы, выполняемая вторым рабочим за 1 ч, равна Согласно условию, они, работая вместе, выполнили всю работу за 6 ч. Доля работы, выполненная за 6 ч первым рабочим, есть , а доля работы, выполненная за 6 ч вторым рабочим, есть Так как вместе они выполнили всю работу, т. е. доля выполненной работы равна 1, получаем уравнение
решив которое, найдем х = 10.
Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.
Задача 5.
Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?
Решение:
Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится л кислоты (концентрация раствора). Во второй раз из сосуда вылили х л смеси, в этом количестве смеси содержалось л кислоты. Таким образом, в первый раз было вылито х л кислоты, во второй л кислоты, а всего
за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению
Решив это уравнение, найдем два корня: и . Ясно, что значение 90 не удовлетворяет условию задачи.
Итак, в первый раз было вылито 18 л кислоты.
Задача 6.
Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?
Решение:
Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было . Так как масса меди и в имевшемся, и в новом сплаве одна и та же, приходим к уравнению
Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.
Задача 7.
Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?
Решение:
Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению
0,05х + 0,4 (140 — х) = 0,3 * 140,
из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.
Иррациональные уравнения
Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения
Используются два основных метода решения иррациональных уравнений:
1) метод возведения обеих частей уравнения в одну и ту же степень;
2) метод введения новых переменных (см. п. 147).
Метод возведения обеих частей уравнения в одну
и ту же степень состоит в следующем:
а) преобразуют заданное иррациональное уравнение к виду
б) возводят обе части полученного уравнения в п-ю степень:
в) учитывая, что , получают уравнение
г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.
Пример 1.
Решить уравнение
Решение:
Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.
Проверка:
Подставив 67 вместо х в данное уравнение, получим , т. е. 2 = 2 — верное равенство.
Ответ: 67.
Пример 2.
Решение:
Преобразуем уравнение к виду
и возведем обе части его в квадрат. Получим
Еще раз возведем обе части уравнения в квадрат:
откуда
Проверка:
1) При х = 5 имеем
— верное равенство.
Таким образом, х = 5 является корнем заданного уравнения.
2) При х = 197 имеем Таким образом, х = 197 — посторонний корень.
Ответ: 5.
Пример 3.
Решение:
Применим метод введения новой переменной.
Положим и мы получаем уравнение , откуда находим
Теперь задача свелась к решению совокупности уравнений
Возведя обе части уравнения в пятую степень, получим х — 2 = 32, откуда х = 34.
Уравнение не имеет корней, поскольку под знаком возведения в дробную степень может содержаться только неотрицательное число, а любая степень неотрицательного числа неотрицательна.
Ответ: 34.
Показательные уравнения
Показательное уравнение вида
где равносильно уравнению f(х) = g(x).
Имеются два основных метода решения показательных уравнений:
1) метод уравнивания показателей, т. е. преобразование заданного уравнения к виду а затем к виду f(х) = g(x);
2) метод введения новой переменной.
Пример 1.
Решить уравнение
Решение:
Данное уравнение равносильно уравнению откуда находим Решив это квадратное уравнение, получим
Пример 2.
Решение:
Приведем все степени к одному основанию . Получим уравнение которое преобразуем к виду Уравнение равносильно уравнению х = 2х — 3, откуда находим х = 3.
Пример 3.
Решить уравнение
Решение:
Применим метод введения новой переменной. Так как ,то данное уравнение можно переписать в виде
Введем новую переменную, положив Получим квадратное уравнение с корнями Теперь задача сводится к решению совокупности уравнений
Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как при любых значениях х.
Ответ: 2.
Логарифмические уравнения
Чтобы решить логарифмическое уравнение вида
где нужно:
1) решить уравнение f(x) = g(x);
2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).
Имеются два основных метода решения логарифмических уравнений:
1) метод, заключающийся в преобразовании уравнения к виду затем к виду f(x) = g(x);
2) метод введения новой переменной.
Пример 1.
Решение:
Перейдем от заданного уравнения к уравнению и решим его. Имеем Проверку найденных значений х выполним с помощью неравенств Число -3 этим неравенствам удовлетворяет, а число 4 — нет. Значит, 4 — посторонний корень.
Ответ: -3.
Пример 2.
Решение:
Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду
Из последнего уравнения находим
Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств
Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.
Ответ: -1.
Пример 3.
Решение:
Так как заданное уравнение можно переписать следующим образом:
Введем новую переменную, положив Получим
Но ; из уравнения находим х = 4.
Ответ: 4.
Примеры решения показательно-логарифмических уравнений
Пример 1.
Решение:
Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение
равносильное уравнению (1). Далее имеем
Полагая получим уравнение , откуда Остается решить совокупность уравнений Из этой совокупности получим — корни уравнения (1).
Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению
Пример 2.
(2)
Решение:
Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду
Полагая , получим уравнение корнями которого являются
Теперь задача сводится к решению совокупности уравнений
Так как , а -1 0 и мы получаем
если , то D = 0 и мы получаем , т. е. (поскольку ) .
Итак, если то действительных корней нет; если = 1, то ; если ,то ; если и , то
Пример 3.
При каких значениях параметра уравнение
имеет два различных отрицательных корня?
Решение:
Так как уравнение должно иметь два различных действительных корня его дискриминант должен быть положительным. Имеем
Значит, должно выполняться неравенство
По теореме Виета для заданного уравнения имеем
Так как, по условию, , то и
В итоге мы приходим к системе неравенств (см. п. 177):
Из первого неравенства системы находим (см. п. 180, 183) ; из второго ; из третьего . С помощью координатной прямой (рис. 1.107) находим, что либо , либо
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать
Равносильность уравнений
Презентация к уроку по теме «Равносильность уравнений»
Просмотр содержимого документа
«Равносильность уравнений»
Определение 1. Два уравнения с одной переменной
Иными словами, два уравнения называют равносильными , если они имеют одинаковые корни или если оба уравнения не имеют корней.
Например , уравнения х 2 — 4 = 0 и (х + 2)(2 x — 4) = 0 равносильны, оба они имеют по два корня: 2 и -2. Равносильны и уравнения х 2 +1=0и √ x =-3, поскольку оба они не имеют корней.
Определение 2. Если каждый корень уравнения
является в то же время корнем уравнения
то уравнение (2) называют следствием уравнения (1).
Например , уравнение х — 2 = 3 имеет корень х = 5, а уравнение (х — 2) 2 = 9 имеет два корня: х 1 = 5, х 2 = -1. Корень уравнения х — 2 = 3 является одним из корней уравнения (х — 2) 2 = 9. Значит, уравнение (х — 2) 2 = 9 — следствие уравнения х — 2 = 3.
Достаточно очевидным является следующее утверждение.
Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого .
В итоге можно сказать, что решение уравнения, как правило, осуществляется в три этапа.
Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3) → (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.
Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.
Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.
0, a ≠1) равносильно уравнению f ( x ) = g (х). » width=»640″
Теоремы о равносильности уравнений
- «Спокойные теоремы» гарантируют равносильность преобразований без каких-либо дополнительных условий, их использование не причиняет решающему никаких неприятностей.
Теорема 1 . Е сли какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.
Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.
Теорема 3. Показательное уравнение а f ( x ) = а g ( x ) (где а 0, a ≠1) равносильно уравнению f ( x ) = g (х).
Прежде чем формулировать теоремы 4—6, напомним еще об одном понятии, связанном с уравнениями.
Определение 3. Областью определения уравнения f (х) = g (х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения
0 и a ≠1, X — решение системы неравенств f (х) О, g (х) 0 Тогда уравнение log a f ( x ) = log a g ( x ) равносильно на множестве X уравнению f ( x ) = g (х) » width=»640″
« Беспокойные теоремы » работают лишь при определенных условиях, а значит, могут доставить некоторые неприятности при решении уравнений.
Теорема 4. Если обе части уравнения f ( x ) = g (х) умножить на одно и то же выражение h (х), которое:
а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f ( x ) = g (х)
б) нигде в этой области не обращается в 0, то получится уравнение
Следствием теоремы 4 является еще одно «спокойное» утверждение: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Теорема 5 . Если обе части уравнения f ( x ) = g (х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение ( f ( x )) n =( g ( x )) n равносильное данному в его ОДЗ.
Теорема 6. Пусть а0 и a ≠1, X — решение системы неравенств
Преобразование данного уравнения в уравнение – следствие. Проверка корней.
Если в процессе решения уравнения применяем теоремы 4-6, не проверив выполнения ограничительных условий, то получим уравнение-следствие.
Умножим обе части на (х – 2):
(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень ⇒ проверка!
Потенцируем 2х – 4 = 3х – 5; х = 1, но при этом значении уравнение не имеет смысла ⇒ искать ОДЗ или проверка.
(2) (3) — (4) — . и находят корни последнего (самого простого) уравнения указанной цепочки. Последовательно получаем: 100(2х + 5) = 1296 – 216х + 9х ² 9х ² — 416х + 796 = 0 х ₁ = 2; х₂ = 398/9 Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными. Третий этап — проверка. Подставим поочередно каждое из найденных значений переменной в исходное уравнение. х₂ = 398/9 — посторонний корень. Ответ: х = 2 » width=»640″
Решение. Первый этап — технический. На этом этапе, как мы отмечали выше, осуществляют преобразования заданного уравнения по схеме (1) — (2) (3) — (4) — . и находят корни последнего (самого простого) уравнения указанной цепочки.
100(2х + 5) = 1296 – 216х + 9х ²
9х ² — 416х + 796 = 0
Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.
Третий этап — проверка. Подставим поочередно каждое из найденных значений переменной в исходное уравнение.
х₂ = 398/9 — посторонний корень.
Решение. Первый этап . Воспользуемся правилом «сумма логарифмов равна логарифму произведения». Оно позволяет заменить выражение ln (х + 4) + ln (2х + 3) выражением
ln (х + 4)(2х + 3). Тогда заданное уравнение можно переписать в виде:
Второй этап . В процессе решения произошло расширение ОДЗ уравнения, значит, обязательна проверка.
Третий этап . Поскольку, кроме расширения ОДЗ уравнения, никаких других неравносильных преобразований в процессе решения уравнения не было, проверку можно выполнить по ОДЗ исходного уравнения. Она задается системой неравенств
Значение х = -1 удовлетворяет этой системе неравенств, а значение х = -5,5 не удовлетворяет уже первому неравенству, это посторонний корень.
О потере корней
Укажем две причины потери корней при решении уравнений:
1. Деление обеих частей уравнения на одно и то же выражение h (х) (кроме тех случаев, когда точно известно, что всюду в области определения уравнения выполняется условие h (х) ≠ 0);
2. Сужение ОДЗ в процессе решения уравнения.
С первой причиной бороться нетрудно: приучайте себя переходить от уравнения f (х ) h (х) = g <х ) h <х) к уравнению h ( x )( f ( x ) – g ( x ))=0 ( а не к уравнению f ( x )= g ( x ) ). Может быть, даже есть смысл вообще запретить себе деление обеих частей уравнения на одно и то же выражение, содержащее переменную.
Со второй причиной бороться сложнее. Рассмотрим, например, уравнение lg х 2 = 4 и решим его двумя способами.
Первый способ . Воспользовавшись определением логарифма, находим:
Обратите внимание: при втором способе произошла потеря корня — «потерялся» корень х = -100. Причина в том, что вместо правильной формулы lg х 2 = 2 lg l х l мы воспользовались непра вильной формулой
lg х 2 = 2 lg х, сужающей область определения выражения, из нее «выпал» открытый луч (-∞; 0), где как раз и находится «потерявшийся» при втором способе решения корень уравнения.
Вывод: применяя при решении уравнения какую-либо формулу (особенно тригонометрическую), следите за тем, чтобы области допустимых значений переменной для правой и левой частей
🔥 Видео
Дробно-рациональные уравнения. 8 класс.Скачать
Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать
11 класс, 26 урок, Равносильность уравненийСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать
КАК РЕШАТЬ УРАВНЕНИЯ ЛЕГКО / ПРОСТОЕ ОБЪЯСНЕНИЕ / уравнение начальная школа #простыеуравненияСкачать
Как решать дробно-рациональные уравнения? | МатематикаСкачать
Как решают уравнения в России и СШАСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
РАВНОСИЛЬНЫЕ УРАВНЕНИЯ И ИХ СВОЙСТВА. Видеоурок | АЛГЕБРА 7 классСкачать
Равносильность уравнений. Уравнение – следствие | Алгебра 11 класс #24 | ИнфоурокСкачать
РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать
СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Равносильные преобразования в уравнениях. ПравилаСкачать
лучший учебник по математике (начальная школа), ошибки начальной школы в математике - Л. А. ЯсюковаСкачать