Теорема виета для уравнений высших степеней

Формула Виета для многочленов (уравнений) высших степеней

2.5 Формула Виета для многочленов (уравнений) высших степеней

Формулы, выведенные Виетом для квадратных уравнений, верны и для многочленов высших степеней.

В этом случае он имеет разложение на множители вида:

Разделим обе части этого равенства на a0 ≠ 0 и раскроем в первой части скобки. Получим равенство:

x n + (Теорема виета для уравнений высших степеней)x n -1 + … + (Теорема виета для уравнений высших степеней) = x n – (x1 + x2 + … + xn) x n -1 + ( x1x2 + x2x3 + … + xn-1xn)x n -2 + … +(-1) n x1x2 … xn

Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

x1 + x2 + … + xn= — Теорема виета для уравнений высших степеней

x1x2 + x2x3 + … + xn-1xn= Теорема виета для уравнений высших степеней

x1x2 … xn= (-1) n Теорема виета для уравнений высших степеней

Например, для многочленов третей степени

x1 + x2 + x3 = —Теорема виета для уравнений высших степеней

x1x2 + x1x3 + x2x3 = Теорема виета для уравнений высших степеней

x1x2x3 = — Теорема виета для уравнений высших степеней

Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x1 , x2 …, xnданного уравнения, а правые части выражаются через коэффициент многочлена.

2.6 Уравнения, сводимые к квадратным (биквадратные)

К квадратным уравнениям сводятся уравнения четвертой степени:

ax 4 + bx 2 + c = 0,

называемые биквадратными, причем, а ≠ 0.

Достаточно положить в этом уравнении х 2 = y, следовательно,

найдём корни полученного квадратного уравнения

y1,2 = Теорема виета для уравнений высших степеней

Чтобы найти сразу корни х1,x2,x3,x4 , заменим y на x и получим

x² = Теорема виета для уравнений высших степеней

х1,2,3,4 = Теорема виета для уравнений высших степеней.

Если уравнение четвёртой степени имеет х1, то имеет и корень х2 = -х1,

Если имеет х3, то х4 = — х3. Сумма корней такого уравнения равна нулю.

Подставим уравнение в формулу корней биквадратных уравнений:

х1,2,3,4 = Теорема виета для уравнений высших степеней,

х1,2 = Теорема виета для уравнений высших степеней

х3,4 = Теорема виета для уравнений высших степеней

Ответ: х1,2 = ±2; х1,2 = Теорема виета для уравнений высших степеней

2.7 Исследование биквадратных уравнений

Возьмем биквадратное уравнение

ax 4 + bx 2 + c = 0,

где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)

2.8 Формула Кардано

Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:

х = Теорема виета для уравнений высших степеней

Эта формула определяет корни общего уравнения третей степени:

ax 3 + 3bx 2 + 3cx + d = 0.

Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.

Видео:Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4Скачать

Теорема Виета для уравнений высших степеней. Рациональные уравнения Часть 4 из 4

Теорема Виета, формулы Виета

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Видео:Теорема БезуСкачать

Теорема Безу

Формулировка и доказательство теоремы Виета

Формула корней квадратного уравнения a · x 2 + b · x + c = 0 вида x 1 = — b + D 2 · a , x 2 = — b — D 2 · a , где D = b 2 − 4 · a · c , устанавливает соотношения x 1 + x 2 = — b a , x 1 · x 2 = c a . Это подтверждает и теорема Виета.

В квадратном уравнении a · x 2 + b · x + c = 0 , где x 1 и x 2 – корни, сумма корней будет равна соотношению коэффициентов b и a , которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a , т. е. x 1 + x 2 = — b a , x 1 · x 2 = c a .

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны — b a и c a соответственно.

Составим сумму корней x 1 + x 2 = — b + D 2 · a + — b — D 2 · a . Приведем дроби к общему знаменателю — b + D 2 · a + — b — D 2 · a = — b + D + — b — D 2 · a . Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: — b + D + — b — D 2 · a = — b + D — b — D 2 · a = — 2 · b 2 · a . Сократим дробь на: 2 — b a = — b a .

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Для этого нам необходимо составить произведение корней квадратного уравнения: x 1 · x 2 = — b + D 2 · a · — b — D 2 · a .

Вспомним правило умножения дробей и запишем последнее произведение следующим образом: — b + D · — b — D 4 · a 2 .

Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: — b + D · — b — D 4 · a 2 = — b 2 — D 2 4 · a 2 .

Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: — b 2 — D 2 4 · a 2 = b 2 — D 4 · a 2 . Формула D = b 2 − 4 · a · c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b 2 − 4 · a · c :

b 2 — D 4 · a 2 = b 2 — ( b 2 — 4 · a · c ) 4 · a 2

Раскроем скобки, приведем подобные слагаемые и получим: 4 · a · c 4 · a 2 . Если сократить ее на 4 · a , то остается c a . Так мы доказали второе соотношение теоремы Виета для произведения корней.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

x 1 + x 2 = — b + D 2 · a + — b — D 2 · a = — b + D + — b — D 2 · a = — 2 · b 2 · a = — b a , x 1 · x 2 = — b + D 2 · a · — b — D 2 · a = — b + D · — b — D 4 · a 2 = — b 2 — D 2 4 · a 2 = b 2 — D 4 · a 2 = = D = b 2 — 4 · a · c = b 2 — b 2 — 4 · a · c 4 · a 2 = 4 · a · c 4 · a 2 = c a .

При дискриминанте квадратного уравнения равном нулю уравнение будет иметь только один корень. Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня. Действительно, при D = 0 корень квадратного уравнения равен: — b 2 · a , тогда x 1 + x 2 = — b 2 · a + — b 2 · a = — b + ( — b ) 2 · a = — 2 · b 2 · a = — b a и x 1 · x 2 = — b 2 · a · — b 2 · a = — b · — b 4 · a 2 = b 2 4 · a 2 , а так как D = 0 , то есть, b 2 — 4 · a · c = 0 , откуда b 2 = 4 · a · c , то b 2 4 · a 2 = 4 · a · c 4 · a 2 = c a .

Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x 2 + p · x + q = 0 , где старший коэффициент a равен 1 . В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением. Для этого необходимо поделить обе его части на число a , отличное от нуля.

Приведем еще одну формулировку теоремы Виета.

Сумма корней в приведенном квадратном уравнении x 2 + p · x + q = 0 будет равна коэффициенту при x , который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x 1 + x 2 = − p , x 1 · x 2 = q .

Видео:Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

Теорема Виета для многочлена 3 порядка. 10 класс.

Теорема, обратная теореме Виета

Если внимательно посмотреть на вторую формулировку теоремы Виета, то можно увидеть, что для корней x 1 и x 2 приведенного квадратного уравнения x 2 + p · x + q = 0 будут справедливы соотношения x 1 + x 2 = − p , x 1 · x 2 = q . Из этих соотношений x 1 + x 2 = − p , x 1 · x 2 = q следует, что x 1 и x 2 – это корни квадратного уравнения x 2 + p · x + q = 0 . Так мы приходим к утверждению, которое является обратным теореме Виета.

Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.

Если числа x 1 и x 2 таковы, что x 1 + x 2 = − p и x 1 · x 2 = q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 + p · x + q = 0 .

Замена коэффициентов p и q на их выражение через x 1 и x 2 позволяет преобразовать уравнение x 2 + p · x + q = 0 в равносильное ему x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 .

Если в полученное уравнение подставить число x 1 вместо x , то мы получим равенство x 1 2 − ( x 1 + x 2 ) · x 1 + x 1 · x 2 = 0 . Это равенство при любых x 1 и x 2 превращается в верное числовое равенство 0 = 0 , так как x 1 2 − ( x 1 + x 2 ) · x 1 + x 1 · x 2 = x 1 2 − x 1 2 − x 2 · x 1 + x 1 · x 2 = 0 . Это значит, что x 1 – корень уравнения x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 , и что x 1 также является корнем равносильного ему уравнения x 2 + p · x + q = 0 .

Подстановка в уравнение x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 числа x 2 вместо x позволяет получить равенство x 2 2 − ( x 1 + x 2 ) · x 2 + x 1 · x 2 = 0 . Это равенство можно считать верным, так как x 2 2 − ( x 1 + x 2 ) · x 2 + x 1 · x 2 = x 2 2 − x 1 · x 2 − x 2 2 + x 1 · x 2 = 0 . Получается, что x 2 является корнем уравнения x 2 − ( x 1 + x 2 ) · x + x 1 · x 2 = 0 , а значит, и уравнения x 2 + p · x + q = 0 .

Теорема, обратная теореме Виета, доказана.

Видео:Вспоминаем схему Горнера и уравнения высших степенейСкачать

Вспоминаем схему Горнера и уравнения высших степеней

Примеры использования теоремы Виета

Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета. Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения. Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x 1 + x 2 = — b a , x 1 · x 2 = a c .

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Какая из пар чисел 1 ) x 1 = − 5 , x 2 = 3 , или 2 ) x 1 = 1 — 3 , x 2 = 3 + 3 , или 3 ) x 1 = 2 + 7 2 , x 2 = 2 — 7 2 является парой корней квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 ?

Решение

Найдем коэффициенты квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 . Это a = 4 , b = − 16 , c = 9 . В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна — b a , то есть, 16 4 = 4 , а произведение корней должно быть равно c a , то есть, 9 4 .

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

В первом случае x 1 + x 2 = − 5 + 3 = − 2 . Это значение отлично от 4 , следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.

Во втором случае x 1 + x 2 = 1 — 3 + 3 + 3 = 4 . Мы видим, что первое условие выполняется. А вот второе условие нет: x 1 · x 2 = 1 — 3 · 3 + 3 = 3 + 3 — 3 · 3 — 3 = — 2 · 3 . Значение, которое мы получили, отлично от 9 4 . Это значит, что вторая пара чисел не является корнями квадратного уравнения.

Перейдем к рассмотрению третьей пары. Здесь x 1 + x 2 = 2 + 7 2 + 2 — 7 2 = 4 и x 1 · x 2 = 2 + 7 2 · 2 — 7 2 = 2 2 — 7 2 2 = 4 — 7 4 = 16 4 — 7 4 = 9 4 . Выполняются оба условия, а это значит, что x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ: x 1 = 2 + 7 2 , x 2 = 2 — 7 2

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

В качестве примера используем квадратное уравнение x 2 − 5 · x + 6 = 0 . Числа x 1 и x 2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x 1 + x 2 = 5 и x 1 · x 2 = 6 . Подберем такие числа. Это числа 2 и 3 , так как 2 + 3 = 5 и 2 · 3 = 6 . Получается, что 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x 1 + x 2 = — b a , x 1 · x 2 = c a .

Рассмотрим квадратное уравнение 512 · x 2 − 509 · x − 3 = 0 . Необходимо найти корни данного уравнения.

Решение

Первым корнем уравнения является 1 , так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x 1 = 1 .

Теперь найдем второй корень. Для этого можно использовать соотношение x 1 · x 2 = c a . Получается, что 1 · x 2 = − 3 512 , откуда x 2 = — 3 512 .

Ответ: корни заданного в условии задачи квадратного уравнения 1 и — 3 512 .

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x 1 и x 2 . Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Напишите квадратное уравнение, корнями которого являются числа − 11 и 23 .

Решение

Примем, что x 1 = − 11 и x 2 = 23 . Сумма и произведение данных чисел будут равны: x 1 + x 2 = 12 и x 1 · x 2 = − 253 . Это значит, что второй коэффициент — 12 , свободный член − 253.

Составляем уравнение: x 2 − 12 · x − 253 = 0 .

Ответ: x 2 − 12 · x − 253 = 0 .

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:

  • если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак « + » или « — » ;
  • если квадратное уравнение имеет корни и если свободный член q является отрицательным числом, то один корень будет « + » , а второй « — » .

Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?

Решение

По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x 1 · x 2 = − 21 . Это невозможно при положительных x 1 и x 2 .

Ответ: Нет

При каких значениях параметра r квадратное уравнение x 2 + ( r + 2 ) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.

Решение

Начнем с того, что найдем значения каких r , при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D = ( r + 2 ) 2 − 4 · 1 · ( r − 1 ) = r 2 + 4 · r + 4 − 4 · r + 4 = r 2 + 8 . Значение выражения r 2 + 8 положительно при любых действительных r , следовательно, дискриминант будет больше нуля при любых действительных r . Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r .

Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r , при которых свободный член r − 1 отрицателен. Решим линейное неравенство r − 1 0 , получаем r 1 .

Ответ: при r 1 .

Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Формулы Виета

Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.

Для алгебраического уравнения степени n вида a 0 · x n + a 1 · x n — 1 + . . . + a n — 1 · x + a n = 0 считается, что уравнение имеет n действительных корней x 1 , x 2 , … , x n , среди которых могут быть совпадающие:
x 1 + x 2 + x 3 + . . . + x n = — a 1 a 0 , x 1 · x 2 + x 1 · x 3 + . . . + x n — 1 · x n = a 2 a 0 , x 1 · x 2 · x 3 + x 1 · x 2 · x 4 + . . . + x n — 2 · x n — 1 · x n = — a 3 a 0 , . . . x 1 · x 2 · x 3 · . . . · x n = ( — 1 ) n · a n a 0

Получить формулы Виета нам помогают:

  • теорема о разложении многочлена на линейные множители;
  • определение равных многочленов через равенство всех их соответствующих коэффициентов.

Так, многочлен a 0 · x n + a 1 · x n — 1 + . . . + a n — 1 · x + a n и его разложение на линейные множители вида a 0 · ( x — x 1 ) · ( x — x 2 ) · . . . · ( x — x n ) равны.

Если мы раскрываем скобки в последнем произведении и приравниваем соответствующие коэффициенты, то получаем формулы Виета. Приняв n = 2 , мы можем получить формулу Виета для квадратного уравнения: x 1 + x 2 = — a 1 a 0 , x 1 · x 2 = a 2 a 0 .

Формула Виета для кубического уравнения:
x 1 + x 2 + x 3 = — a 1 a 0 , x 1 · x 2 + x 1 · x 3 + x 2 · x 3 = a 2 a 0 , x 1 · x 2 · x 3 = — a 3 a 0

Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.

Видео:11 класс, 3 урок, Уравнения высших степенейСкачать

11 класс, 3 урок, Уравнения высших степеней

Теорема Виета

Видео:8 класс, 35 урок, Уравнения высших степенейСкачать

8 класс, 35 урок, Уравнения высших степеней

Что называют теоремой?

Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

Например, теоремой можно назвать следующее утверждение:

«Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

А затем привести такое доказательство:

Пусть, имеется дробь Теорема виета для уравнений высших степеней. Умнóжим числитель и знаменатель этой дроби на число с . Тогда полýчится дробь Теорема виета для уравнений высших степеней. Докáжем, что дроби Теорема виета для уравнений высших степенейи Теорема виета для уравнений высших степенейравны. То есть докажем, что равенство Теорема виета для уравнений высших степенейявляется верным.

Для доказательства этого равенства воспользуемся основным свойством пропорции:

Теорема виета для уравнений высших степеней

От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

Теорема виета для уравнений высших степеней

Поскольку равенство Теорема виета для уравнений высших степенейявляется пропорцией, а пропорция это равенство двух отношений, то дроби Теорема виета для уравнений высших степенейи Теорема виета для уравнений высших степенейравны. Теорема доказана.

Видео:✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис ТрушинСкачать

✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис Трушин

Теорема Виета

Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

Сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

То есть, если имеется приведённое квадратное уравнение x 2 + bx + c = 0 , а его корнями являются числа x1 и x2 , то справедливы следующие два равенства:

Теорема виета для уравнений высших степеней

Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

Покажем теорему Виета на примере приведённого квадратного уравнения x 2 + 4x + 3 = 0 .

Мы пока не знаем какие корни имеет уравнение x 2 + 4x + 3 = 0 . Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4 , взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4 . Тогда:

Теорема виета для уравнений высших степеней

А произведение корней по теореме Виета будет равно свободному члену. В уравнении x 2 + 4x + 3 = 0 свободным членом является 3 . Тогда:

Теорема виета для уравнений высших степеней

Теперь проверим действительно ли сумма корней равна −4 , и равно ли произведение 3 . Для этого найдём корни уравнения x 2 + 4x + 3 = 0 . А для удобства воспользуемся формулами для чётного второго коэффициента:

Теорема виета для уравнений высших степеней

Корнями уравнения являются числа −1 и −3 . По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x 2 + 4x + 3 = 0 , взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x 2 + 4x + 3 = 0 является 4 . Если взять его с противоположным знаком и приравнять сумму корней x1 + x2 к этому коэффициенту, то получается верное равенство:

Теорема виета для уравнений высших степеней

А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x 2 + 4x + 3 = 0 , то есть числу 3 . Видим, что это условие тоже выполняется:

Теорема виета для уравнений высших степеней

Значит выражение Теорема виета для уравнений высших степенейявляется справедливым.

Рассмотрим квадратное уравнение x 2 − 8x + 15 = 0 . По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8 . Если взять его с противоположным знаком, то получим 8 . Тогда:

Теорема виета для уравнений высших степеней

А произведение корней равно свободному члену. В уравнении x 2 − 8x + 15 = 0 свободным членом является 15 . Тогда:

Теорема виета для уравнений высших степеней

Теперь проверим действительно ли сумма корней равна 8 , и равно ли произведение 15 . Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

Теорема виета для уравнений высших степеней

Видим, что корнями уравнения x 2 − 8x + 15 = 0 являются числа 5 и 3 . Их сумма равна 8 . То есть сумма корней равна второму коэффициенту уравнения x 2 − 8x + 15 = 0 , взятому с противоположным знаком.

А произведение чисел 5 и 3 равно 15 . То есть равно свободному члену уравнения x 2 − 8x + 15 = 0 .

Значит выражение Теорема виета для уравнений высших степенейявляется справедливым.

Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

Например, рассмотрим квадратное уравнение x 2 − 2x + 4 = 0 . Напишем сумму и произведение корней этого уравнения:

Теорема виета для уравнений высших степеней

Но уравнение x 2 − 2x + 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4 . Убедиться в этом можно, вычислив дискриминант:

А значит записывать выражение Теорема виета для уравнений высших степенейне имеет смысла.

Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

Например, запишем для уравнения x 2 − 5x + 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Теорема виета для уравнений высших степеней

Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x1 × x2 = 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство x1 + x2 = 5 , поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству x1 + x2 = 5 , так и равенству x1 × x2 = 6.

Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству x1 + x2 = 5 так и равенству x1 × x2 = 6 . Очевидно, что таковыми являются корни 3 и 2

Теорема виета для уравнений высших степеней

Теорема виета для уравнений высших степеней

Доказательство теоремы Виета

Пусть дано приведённое квадратное уравнение x 2 + bx + c = 0 . Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Теорема виета для уравнений высших степеней

Вспомним формулы корней квадратного уравнения:

Теорема виета для уравнений высших степеней

Найдём сумму корней x1 и x2 . Для этого подставим в выражение x1 + x2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении x 2 + bx + c = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

Теорема виета для уравнений высших степеней

Запишем правую часть в виде дроби с одним знаменателем:

Теорема виета для уравнений высших степеней

Раскроем скобки в числителе и приведём подобные члены:

Теорема виета для уравнений высших степеней

Сократим дробь Теорема виета для уравнений высших степенейна 2 , тогда получим −b

Теорема виета для уравнений высших степеней

Теперь аналогично докажем, что произведение x1 × x2 равно свободному члену c .

Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

Теорема виета для уравнений высших степеней

Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

Теорема виета для уравнений высших степеней

В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a 2 − b 2 . Тогда в числителе полýчится Теорема виета для уравнений высших степенейА знаменатель будет равен 4

Теорема виета для уравнений высших степеней

Теперь в числителе выражение (−b) 2 станет равно b 2 , а выражение Теорема виета для уравнений высших степенейстанет равно просто D

Теорема виета для уравнений высших степеней

Но D равно b 2 − 4ac . Подстáвим это выражение вместо D , не забывая что a = 1 . То есть вместо b 2 − 4ac надо подставить b 2 − 4c

Теорема виета для уравнений высших степеней

В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

Теорема виета для уравнений высших степеней

Сократим получившуюся дробь на 4

Теорема виета для уравнений высших степеней

Таким образом, сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком ( x1 + x2 = −b ), а произведение корней равно свободному члену ( x1 × x2 = c ). Теорема доказана.

Видео:2.2. Рациональные уравнения. Теоремы Виета и Безу. Уравнения высших степеней.Скачать

2.2. Рациональные уравнения. Теоремы Виета и Безу. Уравнения высших степеней.

Теорема, обратная теореме Виета

Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения x 2 + bx + c = 0, то числа x1 и x2 являются корнями уравнения x 2 + bx + c = 0.

Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b , а произведение x1 и x2 равно c . В обратной же теореме это заключение служит утверждением.

Ранее мы решили уравнение x 2 − 5x + 6 = 0 и написали для него такую сумму и произведение корней:

Теорема виета для уравнений высших степеней

А затем подобрали корни 3 и 2 . По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x 2 − 5x + 6 = 0 , взятому с противоположным знаком (числу 5 ), а произведение чисел 3 и 2 равно свободному члену (числу 6 ). Значит числа 3 и 2 являются корнями уравнения x 2 − 5x + 6 = 0 .

Пример 2. Решить квадратное уравнение x 2 − 6x + 8 = 0 по теореме, обратной теореме Виета.

В данном уравнении a = 1 . Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6 , поскольку второй коэффициент исходного уравнения равен −6 . А произведение корней будет равно 8

Теорема виета для уравнений высших степеней

Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству x1 + x2 = 6 , так и равенству x1 × x2 = 8

Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x1 × x2 = 8 нужно найти такие x1 и x2 , произведение которых равно 8.

Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

4 × 2 = 8
1 × 8 = 8

Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x1 × x2 = 8 , но и равенству x1 + x2 = 6 .

Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x1 × x2 = 8 , но не удовлетворяют равенству x1 + x2 = 6 .

Зато значения 4 и 2 подходят как равенству x1 × x2 = 8 , так и равенству x1 + x2 = 6 , поскольку эти значения удовлетворяют обоим равенствам:

Теорема виета для уравнений высших степеней

Значит корнями уравнения x 2 − 6x + 8 = 0 являются числа 4 и 2 .

Теорема виета для уравнений высших степеней

Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n . Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения x 2 + bx + c = 0, то числа m и n являются корнями уравнения x 2 + bx + c = 0

Для начала запишем, что сумма m и n равна −b , а произведение mn равно c

Теорема виета для уравнений высших степеней

Чтобы доказать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 , нужно поочередно подстáвить буквы m и n в это уравнение вместо x , затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Помимо букв m и n нам нужно знать чему равен параметр b . Выразим его из равенства m + n = −b . Легче всего это сделать, умножив обе части этого равенства на −1

Теорема виета для уравнений высших степеней

Теперь всё готово для подстановок. Подстáвим m в уравнение x 2 + bx + c = 0 вместо x , а выражение −m − n подставим вместо b

Теорема виета для уравнений высших степеней

Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения x 2 + bx + c = 0 .

Аналогично докажем, что число n является корнем уравнения x 2 + bx + c = 0 . Подставим вместо x букву n , а вместо c подставим mn , поскольку c = mn .

Теорема виета для уравнений высших степеней

Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

Следовательно, числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Примеры решения уравнений по теореме, обратной теореме Виета

Пример 1. Решить квадратное уравнение x 2 − 4x + 4 = 0 по теореме, обратной теореме Виета.

Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену :

Теорема виета для уравнений высших степеней

В данном примере очевидно, что корнями являются числа 2 и 2 . Потому что их сумма равна 4 и произведение равно 4

Теорема виета для уравнений высших степеней

Значение x1 совпадает с x2 . Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле Теорема виета для уравнений высших степеней

Теорема виета для уравнений высших степеней

Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.

Пример 2. Решить уравнение x 2 + 3x + 2 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Теорема виета для уравнений высших степеней

Теперь подберём значения x1 и x2 . Здесь начинается самое интересное. Произведение корней равно 2 . Число 2 можно получить перемножив 1 и 2 . Но сумма корней x1 + x2 равна отрицательному числу −3 . Значит значения 1 и 2 не подходят.

Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

Если подберём корни с разными знаками, то не будет выполняться равенство x1 × x2 = 2 .

Если подберем положительные корни, то будет выполняться равенство x1 × x2 = 2 , но не будет выполняться равенство x1 + x2 = −3 .

Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

Тогда равенствам будут удовлетворять числа −1 и −2 .

Теорема виета для уравнений высших степеней

Итак, корнями являются числа −1 и −2

Теорема виета для уравнений высших степеней

Пример 3. Решить уравнение x 2 + 16x + 15 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Теорема виета для уравнений высших степеней

Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5) . В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16 , а их произведение равно 15 . Значит корнями уравнения x 2 + 16x + 15 = 0 являются числа −1 и −15

Теорема виета для уравнений высших степеней

Пример 4. Решить уравнение x 2 − 10x − 39 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Теорема виета для уравнений высших степеней

Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3 . Из этих комбинаций больше годится комбинация −3 и 13 , поскольку при перемножении этих чисел получается −39 , а при сложении 10

Теорема виета для уравнений высших степеней

Значит корнями уравнения x 2 − 10x − 39 = 0 являются числа −3 и 13

Теорема виета для уравнений высших степеней

Пример 5. Первый корень уравнения x 2 + bx + 45 = 0 равен 15 . Найти второй корень этого уравнения, а также значение коэффициента b .

По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

При этом один из корней уже известен — это корень 15 .

Тогда второй корень будет равен 3 , потому что число 45 получается, если 15 умножить на 3

Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

Теорема виета для уравнений высших степеней

Теперь определим значение коэффициента b . Для этого напишем сумму корней уравнения:

По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

Теорема виета для уравнений высших степеней

Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15 , а свободный член уравнения x 2 + bx + 45 = 0 равен 45

Теорема виета для уравнений высших степеней

Из этой системы следует найти x2 и b . Выразим эти параметры:

Теорема виета для уравнений высших степеней

Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

Теорема виета для уравнений высших степеней

Теперь из первого равенства мы видим, что −b равно 18

Теорема виета для уравнений высших степеней

Но нас интересует b , а не −b . Следует помнить, что −b это −1b . Чтобы найти b нужно 18 разделить на −1 . Тогда b станет равно −18

Теорема виета для уравнений высших степеней

Этот же результат можно получить если в выражении Теорема виета для уравнений высших степенейумножить первое равенство на −1

Теорема виета для уравнений высших степеней

Теперь возвращаемся к исходному уравнению x 2 + bx + 45 = 0 и подставляем найденное значение b

Теорема виета для уравнений высших степеней

Выполним умножение −18 на x . Получим −18x

Теорема виета для уравнений высших степеней

Теорема виета для уравнений высших степеней

Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8 .

В этом задании корни уже известны. То есть x1 = 2 , x2 = 8 . По ним надо составить квадратное уравнение вида x 2 + bx + c = 0 .

Запишем сумму и произведение корней:

Теорема виета для уравнений высших степеней

По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10 , то в самóм уравнении число 10 должно быть с противоположным знаком. Значит b = −10 .

Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16 .

Значит b = −10 , c = 16 . Отсюда:

Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа Теорема виета для уравнений высших степенейи Теорема виета для уравнений высших степеней.

Запишем сумму и произведение корней:

Теорема виета для уравнений высших степеней

Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

Видео:✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

Когда квадратное уравнение неприведённое

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x 2 .

Если к примеру в квадратном уравнении a x 2 + bx + c = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x 2 , то есть на a

Теорема виета для уравнений высших степеней

Получилось уравнение Теорема виета для уравнений высших степеней, которое является приведённым. В нём второй коэффициент равен Теорема виета для уравнений высших степеней, а свободный член равен Теорема виета для уравнений высших степеней. Тогда сумма и произведение корней будут выглядеть так:

Теорема виета для уравнений высших степеней

Например, решим квадратное уравнение 4x 2 + 5x + 1 = 0 . Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x 2 , то есть на 4

Теорема виета для уравнений высших степеней

Получили приведённое квадратное уравнение. В нём второй коэффициент равен Теорема виета для уравнений высших степеней, а свободный член Теорема виета для уравнений высших степеней. Тогда по теореме Виета имеем:

Теорема виета для уравнений высших степеней

Отсюда методом подбора находим корни −1 и

Теорема виета для уравнений высших степеней

Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.

Пример 2. Решить квадратное уравнение 3x 2 − 7x + 2 = 0

Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x 2

Теорема виета для уравнений высших степеней

Получили уравнение Теорема виета для уравнений высших степеней. Запишем сумму и произведение корней этого уравнения:

Теорема виета для уравнений высших степеней

Отсюда методом подбора находим корни 2 и Теорема виета для уравнений высших степеней

Теорема виета для уравнений высших степеней

Пример 3. Решить квадратное уравнение 2x 2 − 3x − 2 = 0

Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2 . Сделать это можно в уме. Если 2x 2 разделить на 2 , то полýчится x 2

Теорема виета для уравнений высших степеней

Далее если −3x разделить на 2 , то полýчится Теорема виета для уравнений высших степеней. Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде Теорема виета для уравнений высших степеней

Теорема виета для уравнений высших степеней

Далее если −2 разделить на 2 , то полýчится −1

Теорема виета для уравнений высших степеней

Прирáвниваем получившееся выражение к нулю:

Теорема виета для уравнений высших степеней

Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

Теорема виета для уравнений высших степеней

Отсюда методом подбора находим корни 2 и Теорема виета для уравнений высших степеней

📸 Видео

Уравнение четвертой степениСкачать

Уравнение четвертой степени

ПРОДВИНУТАЯ ТЕОРЕМА ВИЕТА #математика #егэ #огэ #уравнение #виета #теорема #подготовкакегэ #shortsСкачать

ПРОДВИНУТАЯ ТЕОРЕМА ВИЕТА #математика #егэ #огэ #уравнение #виета #теорема #подготовкакегэ #shorts

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

Алгебра, 9 класс | Теорема Безу, уравнения высших степенейСкачать

Алгебра, 9 класс | Теорема Безу, уравнения высших степеней

Теорема Виета за 30 сек🦾Скачать

Теорема Виета за 30 сек🦾

Уравнения высших степеней 1 часть (старший коэффициент равен 1)Скачать

Уравнения высших степеней 1 часть (старший коэффициент равен 1)

Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Уравнения высших степеней. Решение уравнений с помощью деления в столбикСкачать

Уравнения высших степеней. Решение уравнений с помощью деления в столбик
Поделиться или сохранить к себе: