Теорема пеано о существовании решения дифференциальных уравнений

Типовая работа. Примеры решения задач

Напомним известные теоремы Пикара и Пеано о существовании и единственности решения данной задачи (задачи Коши).

Теорема ПЕАНО утверждает, что решение задачи Коши существует в некоторой окрестности точки Хо, если функция f(x,Y) непрерывна в окрестности точки (X0,Y0).

Теорема ПИКАРА гласит, что если не только функция f(x,Y), но и ее частная производная f’у(x,Y) также непрерывна в окрестности точки (Х0,У0), то решение задачи Коши единственно на некотором отрезке, содержащем точку Х0.

Доказательство теоремы Пикара следует из общего принципа сжимающих отображений, оно весьма непросто, но обладает существенным преимуществом -оно конструктивно. Причем последовательность функций Yn(x), которая строится в нем, сходится к решению равномерно на отрезке со скоростью геометрической прогрессии. В методе Пикара последовательность функций Yn(x) строится по рекуррентной формуле:

Теорема пеано о существовании решения дифференциальных уравненийпри n= 0,1,2.

а за нулевое приближение берется константа Y0: Y0 (х) º Y0.

Для того, чтобы стало понятно происхождение этой рекуррентной формулы, заметим, что интегральное уравнение

Теорема пеано о существовании решения дифференциальных уравнений

эквивалентно исходной задаче Коши, поскольку любая функция Y(х), являющаяся его решением, удовлетворяет начальному условию Y(Хо)=Yо и уравнению Y'(х)=f(x,Y(х)) и наоборот.

Вопрос: Почему это действительно так?

Пример 4.1 Применим метод Пикара для решения уравнения Y’=Y с начальным условием Y(0)=1. Такая задача эквивалентна поиску решения интегрального уравнения Y=1+ ò Y(t)dt.

В качестве начального приближения берем функцию Yо=1.

Тогда Y1=1+ ò Yо(t)dt= 1+ ò dt= 1+x.

Далее, Y2= 1+ ò Y1(t)dt= 1+ ò (1+t)dt= 1+x+x2/2.

Y3= 1+ ò Y2(t)dt= 1+ ò (1+t+t2/2)dt= 1+x+x2/2+x3/6.

Можно убедиться, что Yn= 1+х+x2/2+ . +xn/n!.

Упражнение 4.1.Доказать последнее равенство строго, используя принцип математической индукции.

Упражнение 4.2.В примере 4.1 найти точное решение Y(Х) и оценить скорость равномерной сходимости Yn(x) -> Y(Х) на отрезке [0,1].

В целом, приближенные методы решения обыкновенных дифференциальных уравнений можно разбить на 3 типа:

аналитические, позволяющие получить приближенное решение Y(х) в виде формулы,

графические, дающие возможность приближенного построения графика решения Y(х),т.е. интегральной кривой,

численные, в результате применения которых получается таблица приближенных значений функции Y(х),

хотя такое деление и несколько условно.

Теорема Декарта. Число положительных корней алгебраического уравнения (1.3) с учетом их кратностей равно числу перемен знаков в системе коэффициентов

Теорема пеано о существовании решения дифференциальных уравнений, Теорема пеано о существовании решения дифференциальных уравнений, …, Теорема пеано о существовании решения дифференциальных уравнений(1.14)

(где коэффициенты, равные нулю, не учитываются), или меньше этого числа на четное число.

Теорема Декарта представляет собой применение теоремы Бюдана–Фурье к интервалу Теорема пеано о существовании решения дифференциальных уравнений.

Следствие. Если коэффициенты уравнения (1.3) отличны от нуля, то число отрицательных корней этого уравнения, с учетом их кратностей, равно числу постоянств знака в системе (1.14) его коэффициентов или меньше этого числа на четное число. (Доказательство этого утверждения следует из применения теоремы Декарта к полиному Теорема пеано о существовании решения дифференциальных уравнений).

Укажем также признак вещественности всех корней полинома Теорема пеано о существовании решения дифференциальных уравнений.

Теорема Гюа. Если уравнение (1.3) имеет действительные коэффициенты и все корни его действительны, то квадрат каждого не крайнего коэффициента этого уравнения больше произведения двух его соседних коэффициентов, т.е. выполнены неравенства

Теорема пеано о существовании решения дифференциальных уравненийТеорема пеано о существовании решения дифференциальных уравнений.

Следствие. Если при каком-нибудь k выполнено неравенство

Теорема пеано о существовании решения дифференциальных уравнений,

то уравнение (1.3) имеет по меньшей мере одну пару комплексных корней.

Видео:Существование и единственность Теорема и задачи ДзСкачать

Существование и единственность  Теорема и задачи  Дз

Теорема Коши существования и единственности решения дифференциального уравнения первого порядка

Теорема пеано о существовании решения дифференциальных уравнений

Впервые существование решения дифференциального уравнения было доказано Коши. Приводимое ниже доказательство основано на методе последовательных приближений, который принадлежит Пикару. Этот метод имеет самостоятельное значение, поскольку позволяет получить приближенное решение дифференциального уравнения.

Видео:Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 13.4. Существов. и единств. решения ДУСкачать

Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 13.4. Существов. и единств. решения ДУ

Формулировка теоремы

Пусть дано дифференциальное уравнение первого порядка:
(1)
с начальным условием
(1.1) .
Пусть – непрерывная функция двух переменных в замкнутой области :

и, следовательно, ограничена некоторым положительным значением :
(2) .
И пусть функция удовлетворяет условию Липшица:
(3) ,
.
Тогда существует единственное решение уравнения (1):
,
удовлетворяющее начальному условию , определенное и непрерывное для значений в интервале:
,
где есть наименьшее из двух чисел и .

Условие Липшица

Рассмотрим условие Липшица. Оно имеет вид:
(3) ,
где – положительное число;
, и – любые значения из области :
, , .

Смысл условия Липшица легко понять, если записать его в виде:
(3.1) .
При некотором фиксированном значении переменной , функция является функцией от переменной : . Пусть мы имеем график этой функции. Возьмем две точки, принадлежащие , на этом графике и проведем через них прямую. Тогда угол между прямой и осью ограничен некоторым значением , которое меньше . При таком ограничении график не имеет вертикальных касательных и скачков. А в тех точках, где существует частная производная , она ограничена:
.

Если в области функция имеет непрерывную частную производную , то в этой области выполняется условие Липшица (3).
Для доказательства заметим, что поскольку частная производная непрерывна в замкнутой области, то она ограничена:
.
По теореме Лагранжа о конечных приращениях, имеем:
,
где частные производные вычисляются в некоторой точке , в которой переменная принадлежат интервалу между и :
.
Тогда:
.

Видео:Дифференциальные уравнения. Теоретический билет 7. Теорема ПеаноСкачать

Дифференциальные уравнения. Теоретический билет 7. Теорема Пеано

Доказательство существования решения

Приведем исходное уравнение (1) с начальным условием (1.1) к интегральному уравнению. Левая и правая части (1) являются функциями от . Заменим на :
.
Интегрируем это уравнение по от до :
;
Подставим начальное условие . В результате получим интегральное уравнение:
(4) .

Покажем, что интегральное уравнение (4) эквивалентно дифференциальному уравнению (1) с начальным условием (1.1). Для этого нужно показать, что из (1) и (1.1) следует (4) и из (4) следует (1) и (1.1). То, что из (1) и (1.1) следует (4) мы уже показали. Осталось показать, что из (4) следует (1) и (1.1). Для этого подставим в (4) . Получим начальное условие (1.1). Продифференцировав обе части уравнения (4) по , получаем уравнение (1).

Далее мы пытаемся найти решение уравнения (4) с помощью последовательных приближений. Для этого определяем ряд функций от переменной по формулам:
(5.1) ;
(5.2) ;
(5.3) ;
.
(5.n) .
Мы предполагаем, что при , стремится к решению уравнения (4):
(6) ,
где – решение уравнения (4). Если мы докажем это, то мы докажем существование решения.

Доказательство существования решения будем проводить в два этапа:
1> вначале докажем, что предел (6) существует;
2) затем докажем, что удовлетворяет уравнению (4):
.

1) Доказательство существования предела yn при n стремящемся к бесконечности

Сведем последовательные приближения (5.1) – (5.n) к сумме ряда. Для этого пишем:

.
Таким образом нам нужно доказать, что ряд
(7)
сходится при .

Сначала покажем, что при , последовательные приближения принадлежат интервалу .
Действительно, при имеем:
.
Поскольку есть наименьшее из двух чисел и , то и
.

Далее, поскольку принадлежит интервалу , то . Тогда, аналогично предыдущему,
.
Отсюда
.

Далее, по индукции, поскольку принадлежат интервалу , то и
.
Отсюда
.

Итак, мы доказали, что последовательные приближения принадлежат интервалу
.
Теперь мы можем оценить члены ряда (7), применяя условие Липшица.

Для первого члена имеем:
;
(8.1) .
Для второго члена применяем условие Липшица и оценку (8.1):

;
(8.2) .
Для третьего члена применяем, аналогично, условие Липшица и оценку (8.2):

;
(8.3) .

Далее применим метод индукции. Пусть
(8.n) .
Тогда

;
(8.n+1) .
Итак, поскольку (8.n) справедливо для и из (8.n) следует (8.n+1), то (8.n) выполняется для любых .

Запишем ряд (7) в виде:
(7.1) ,
где .
Применим (8.n) и заменим наибольшим допустимым значением :
.
Тогда каждый член ряда (7.1) ограничен по модулю членом ряда
(9) .
Исследуем ряд (9) на сходимость. Применим признак Даламбера:
.
Итак, ряд (9) сходится. Поскольку все члены ряда (7.1), начиная со второго, по абсолютной величине меньше членов сходящегося ряда (9), то, в силу критерия Вейерштрасса, ряд (7.1) сходится равномерно для всех , удовлетворяющих условию . Поскольку интеграл есть непрерывная функция от верхнего предела, то каждый член ряда (7.1) есть непрерывная функция от . Поэтому предел
(10)
существует и является непрерывной функцией от .

2) Доказательство того, что Y является решением (4)

Рассмотрим уравнение (5.n):
(5.n) .
Докажем, что при , это уравнение стремится к уравнению
(11) .

В силу (10) левая часть уравнения (5.n) стремится к .

Теперь покажем, что
.

Перепишем правую часть (5.n):
.
Далее заметим, что поскольку все принадлежат закрытому интервалу , то и принадлежит этому интервалу, . Поэтому мы можем применить условие Липшица.

Оценим абсолютную величину последнего члена:

.
Поскольку, при , стремится к равномерно, то для любого положительного числа можно указать такое натуральное число , что для всех ,
.
Тогда
.
Поскольку произвольно, то

Поэтому
.
То есть при уравнение
(5.n)
принимает вид
(11) .

Видео:Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2

Доказательство единственности решения

Предположим, что уравнение
(4)
имеет два решения и , различающиеся в некоторой точке , принадлежащей интервалу .
Рассмотрим функцию
.
Будем считать, что . В противном случае поменяем местами и .
Поскольку и непрерывны, то и непрерывная функция. Поэтому она отлична от нуля в некотором интервале, содержащем точку :
при .
Поскольку , то . То есть точка не принадлежит этому интервалу.

Если , то преобразуем (4) следующим образом:
,
где
.
Если переобозначить постоянные
,
то получим задачу (4), для которой
;
при ,
где – некоторое число, не превосходящее .

Если , то поступаем аналогично:
,
Переобозначим постоянные:
.
Получаем задачу (4), для которой
;
при ,
где – некоторое число, не меньшее .

Итак, мы имеем:
;
при ( или при ).
Далее возьмем произвольное положительное число ( или ) и рассмотрим закрытый интервал ( или ). Поскольку функция непрерывна, то она достигает наибольшего значения в одной из точек этого интервала:
( или ).

Сделаем оценку, применяя уравнение (4) и условие Липшица:

;
.
Поскольку , то разделим на :
.
Возникает противоречие, поскольку при это неравенство не выполняется.

Следовательно, не может иметь отличных от нуля значений. Поэтому . Что и требовалось доказать.

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.

Автор: Олег Одинцов . Опубликовано: 04-06-2016 Изменено: 20-06-2016

📹 Видео

3. Условия существования и единственности решения задачи КошиСкачать

3. Условия существования и единственности решения задачи Коши

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

№3. Обобщенно-однородные уравнения. Теоремы Коши, Пеано, Осгуда.Скачать

№3. Обобщенно-однородные уравнения. Теоремы Коши, Пеано, Осгуда.

Асташова И. В. - Дифференциальные уравнения I - Теорема существования и единственности Пикара - 1Скачать

Асташова И. В. - Дифференциальные уравнения I - Теорема существования и единственности Пикара - 1

Теорема Пикара для задачи КошиСкачать

Теорема Пикара для задачи Коши

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Асташова И. В. - Дифференциальные уравнения I - Теорема о продолжении решенияСкачать

Асташова И. В. - Дифференциальные уравнения I - Теорема о продолжении решения

6. Особые решения ДУ первого порядкаСкачать

6. Особые решения ДУ первого порядка

Р.В. Шамин. Дифференциальные уравнения - лекция № 02Скачать

Р.В. Шамин. Дифференциальные уравнения - лекция № 02

Видеоурок "Дифференциальные уравнения. Задача Коши"Скачать

Видеоурок "Дифференциальные уравнения. Задача Коши"

Спецкурс по диффурам 8 (02.11.23) — ОПРЕДЕЛЕНИЯ И ТЕОРЕМА ПЕАНОСкачать

Спецкурс по диффурам 8 (02.11.23) — ОПРЕДЕЛЕНИЯ И ТЕОРЕМА ПЕАНО

Вся суть мат. анализа за 3 мин 14 сек!Скачать

Вся суть мат. анализа за 3 мин 14 сек!
Поделиться или сохранить к себе: