Видео:Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Теорема единственности для внутренней и внешней задач электродинамики.
Уравнения Максвелла являются дифференциальными уравнениями в частных производных, поэтому они допускают множество решений. Из общефизических соображений, очевидно, что если полностью повторять условия опытов, то будем получать одно и то же распространение электромагнитного поля. Для обеспечения единственности решения электродинамических задач электромагнитное поле должно удовлетворять не только уравнениям Максвелла, но также должно удовлетворять ряду дополнительных условий. Они называются условиями единственности решения уравнений Максвелла. Выводы и доказательства формулируются теоремой единственности. Теорема единственности отдельно формулируется двух основных видов задач:
для внутренней и внешней задач электродинамики.
Требуется определить распределение электромагнитного поля внутри поверхности S (внутренняя задача). Определим распространение электромагнитного поля в пространстве, внешнем по отношению к объему V, ограниченному поверхностью S. ( ). Расчет цепей при наличии взаимной индуктивности Рассмотрение данного вопроса начнём с простейших способов соединения двух индуктивно связанных катушек: параллельного и последовательного.
4.9. Единственность решения внутренних задач.
Внутренние задачи электродинамики имеют единственное решение, если выполняется одно из следующих условий:
1.Если в каждой точке М поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: — «Е» задача.
2. Если в каждой точке M поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: — «Н» задача.
3. Если на части поверхности S в каждой точке задана проекция вектора на плоскость, касательную к S в этой точке, а на другой части плоскости задана проекция вектора касательная к S в точке М:
4. Если в каждой точке поверхности S задано соотношение между проекциями векторов и на плоскость, касательную к S в точке М.
4.10. Условия единственности внешних задач электродинамики.
Для обеспечения единственности решения внешних задач электродинамики необходимо выполнение одного из условий 1-4, плюс к этому должно выполнятся одно из условий, описывающее поведение электромагнитного поля при бесконечно удаленных точках (при r ® ¥ ).
1. Принцип предельного поглощения ( ) требует, чтобы эта зависимость была , т.е. каждая из составляющих поля должна убывать с увеличением расстояния быстрее, чем . В реальных средах имеются пусть очень малые, но конечные по величине потери, т.е. . Поэтому, в бесконечно удаленных точках, электромагнитное поле равно нулю.
2. Если в среде отсутствуют потери и принцип предельного поглощения не применим, в этом случае векторы электромагнитного поля должны удовлетворять следующим соотношениям:
Физически эти условия означают, что электромагнитные волны при r ® ¥ имеют вид сферических волн, расходящихся от источника электромагнитного поля.
Видео:Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 13.4. Существов. и единств. решения ДУСкачать

максвелла уравнения
МАКСВЕЛЛА УРАВНЕНИЯ
1. Краткая история
2. Каноническая форма
3. Максвелла уравнения в интегральной форме
4. Общая характеристика Максвелла уравнений
5. Максвелла уравнения для комплексных амплитуд
6. Алгебраические Максвелла уравнения
7. Материальные уравнения
8. Граничные условия
9. Двойственная симметрия Максвелла уравнений
10. Максвелла уравнения в четырёхмерном представлении
11. Лоренц-инвариантность Максвелла уравнений
12. Лагранжиан для электромагнитного поля
13. Единственность решений Максвелла уравнений
14. Классификация приближений Максвелла уравнений
15. Максвелла уравнения в различных системах единиц
Максвелла уравнения — ур-ния, к-рым подчиняется (в пределах применимости классической ыакроскопич. электродинамики, см. Электродинамика классическая), электромагнитное поле в вакууме и сплошных средах.
1. Краткая история
Установлению M. у. предшествовал ряд открытий законов взаимодействий заряженных, намагниченных и токонесущих тел (в частности, законов Кулона, Био — Савара, Ампера). В 1831 M. Фарадей (M. Faraday) открыл закон эл—магн. индукции и примерно в то же время ввёл понятие электрич. и магн. полей как самостоят, физ. субстанций. Опираясь на фарадеевское представление о поле и введя ток смещения, равнозначный по своему магн. действию обычному электрич. току, Дж. К. Максвелл (J. С. Maxwell, 1864) сформулировал систему ур-ний, названную впоследствии ур-ниями Максвелла. M. у. функционально связывают электрич. и магн. поля с зарядами и токами и охватывают собой все известные закономерности макроэлектромагнетизма. Впервые о M. у. было доложено на заседании Лондонского Королевского общества 27 окт. 18(34. Первоначально Максвелл прибегал к вспомогат. механич. моделям «эфира», но уже в «Трактате об электричестве и магнетизме» (1873) эл—магн. поле рассматривалось как самостоят, физ. объект. Физ. основа M. у.- принцип близкодействия, утверждающий, что передача эл—магн. возмущений от точки к точке происходит с конечной скоростью (в вакууме со скоростью света с). Он противопоставлялся ньютоновскому принципу дальнодействия, сводящемуся к мгновенной передаче воздействий на любое расстояние 
2. Каноническая форма
Канонич. форма записи, принятая ныне, принадлежит Г. Герцу (H. Hertz) и О. Хевисайду (О. Heaviside) и основана на использовании не кватернионных, а векторных полей: напряжённости электрического поля E, напряжённости магнитного поля H, векторов электрической индукции D и магнитной индукции В. M. у. связывают их между собой, с плотностью электрического заряда
Здесь использована Гаусса система единиц (о записи M. у. в др. системах см. в разделе 15). Входящие в (1) — (4) величины E, D, j являются истинными, или полярными, векторами (а величина r — истинным скаляром), поля H к В — псевдовекторами, или аксиальными векторами. Все эти величины предполагаются непрерывными (вместе со всеми производными) ф-циями времени t и координат 
3. Максвелла уравнения в интегральной форме
Используя Гаусса — Остроградского формулу и С такса формулу, ур-ниям (1) — (4) можно придать форму интегральных:
Криволинейные интегралы в (1a), (2a) берутся по произвольному замкнутому контуру (их наз. циркуляция-ми векторных полей), а стоящие в правых частях поверхностные интегралы — по поверхностям, ограниченным этими контурами (опирающимся на них), причём направление циркуляции (направление элемента контура


M. у. в форме (1a) — (4a) предназначаются не только для изучения топологич. свойств эл—магн. полей, но и являются удобным аппаратом решения конкретных задач электродинамики в системах с достаточно высокой симметрией или с априорно известными распределениями полей. Кроме того, в матем. отношении эта система ур-ний содержательнее системы (1) — (4), поскольку пригодна для описания разрывных, нодиффе-ренцируемых распределений полей. Но в отношении физ. пределов применимости обе системы ур-ний равнозначны, т. к. любые скачки полей в макроэлектродинамике должны рассматриваться как пределы микромасштабно плавных переходов, с тем чтобы внутри них сохранялась возможность усреднения ур-ний Лоренца — Максвелла. С этими оговорками резкие скачки можно описывать и в рамках M. у. (1) — (4), прибегая к аппарату обобщённых функций.
Наконец, M. у. в интегральной форме облегчают физ. интерпретацию MH. эл—магн. явлений и поэтому нагляднее сопоставляются с теми экспериментально установленными законами, к-рым они обязаны своим происхождением. Так, ур-ние (1a) есть обобщение Био — Савара закона (с добавлением к току 
Ур-ние (2a) выражает закон индукции Фарадея; иногда его правую часть переобозначают через «магн. ток смещения»
где

где 
4. Общая характеристика Максвелла уравнений
Совокупность M. у. (1) — (4) составляет систему из восьми (двух векторных и двух скалярных) линейных дифференц. ур-ний 1-го порядка для четырёх векторов 



или в интегральной форме:
Это ур-ние непрерывности для тока, содержащее в себе закон сохранения заряда для замкнутых изолнров. областей
Ур-ния (1) — (4) распадаются на два самостоят, «блока»: ур-ния (1) и (4), содержащие векторы 





Система M. у. (1) — (4) не является полной: по существу, она связывает 4 векторные величины двумя векторными ур-ниями. Её замыкание осуществляется путём добавления соотношений, связывающих векторы 1-го «блока»

5. Максвелла уравнения для комплексных амплитуд
В силу линейности системы (1) — (4) для её решений справедлив суперпозиции принцип .Часто оказывается удобным фурье-представление общего решения (1) — (4) как ф-ции времени (см. Фурье преобразование). Записывая временной фактор в виде 

Система (1б) — (4б) в нек-ром смысле удобнее (1) — (4), ибо упрощает применение к эл—динамич. системам, обладающим временной дисперсией (см. раздел 7), т. е. зависимостью параметров от частоты
6. Алгебраические Максвелла уравнения
Если распространить (в силу линейности M. у.) фурье-разложение и на зависимость полей от пространственных координат, т. е. представить общее решение ур-ний (1) — (4) в виде суперпозиции плоских волн типа 

Такое сведение M. у. к набору ур-ний для осцилляторов (осцилляторов поля) составляет важный этап перехода к квантовой электродинамике, где эл—магн. поле рассматривается как совокупность фотонов, характеризуемых энергиями 

7. Материальные уравнения
В макроэлектродинамике материальные связи, характеризующие эл—магн. свойства сред, вводятся феноменологически; они находятся либо непосредственно из эксперимента, либо на основании модельных представлений. Существуют два способа описания: в одном векторы E и H считаются исходными и материальные ур-ния задаются в виде D = D(E , H) и В = В( Е,Н), в другом — за исходные берутся векторы 2-го «блока» E и В, и соответствующие материальные связи представляются иначе: D = D(E,В), H= H(E, В). Оба описания совпадают для вакуума, где материальные уравнения вырождаются в равенства D = E и B = H.
Рассмотрим простейшую модель среды, характеризуемую мгновенным, локальным поляризац. откликом на появляющиеся в ней поля E и H. Под действием поля E в такой среде возникает электрич. поляризация 

Материальные ур-ния для таких сред имеют вид
При этом индуцированные в среде электрич. заряды наз. связанными или поляризац. зарядами с плотностью 

Эти понятия были перенесены и на магн. поля, что можно выразить в виде системы ур-ний, аналогичной
и только потом выяснилось, что истинными источниками намагничивания среды оказались электрич. токи 
тогда как следовало бы принять беззарядовые ур-ния
что равносильно замыканию исходных M. у. (1) — (4) с помощью материальных связей
Из (6) и (7a) следует, что 2-й вариант представления материальных соотношений, в к-ром постулируются в качестве исходных векторы E и B, физически предпочтительнее.
В модели Лоренца — Максвелла усреднение микрополя Нмикро, произведённое с учётом вклада со стороны индуциров. полей, приводит к ур-ниям (9) и соответственно = В. Однако обычно параметры сред вводятся с помощью ур-ний (7), что облегчает двойственную симметризацию ф-л (подробнее см. в разделе 9). Напр., скалярные восприимчивости сред (c e , c m ) определяются соотношениями
Простейшие модели сред характеризуются пост, значениями

Классификация разл. сред ооычно основывается на материальных ур-ниях типа (10) и их обобщениях. Если проницаемости e и m не зависят от полей, то M. у. (1) — (4) вместе с материальными ур-ниями (10) остаются линейными, поэтому о таких средах говорят как о линейных средах. При наличии зависимостей



Значение индуциров. поляризации Р е , напр, в момент г, может определяться, вообще говоря, значениями полей во все предыдущие моменты времени, т. е.
что при преобразовании Фурье по времени приводит к зависимости 




В проводящих средах входящая в M. у. (1) — (5) плотность тока 



где 




В общем случае вид материальных ур-ний зависит также и от системы отсчёта, в к-рой эти ур-ния рассматривают. Так, если в неподвижной системе К среда характеризуется простейшими ур-ниями (10), то в инер-циальной системе К’ , движущейся относительно К с пост, скоростью и, появляется анизотропия:
где индексы

что можно трактовать как наличие временной и пространственной дисперсии. Исследование процессов с материальными связями типа (12) составляет предмет электродинамики движущихся сред. Заметим, что хотя характеристики е и m удобно симметризуют материальные ур-ния, их введение не является непременным условием замыкания M. у. Соответствующей перенормировкой допустимо свести описание магн. поля к одно-векторному, т. е. сделать 

8. Граничные условия
Поскольку M. у. справедливы для любых (в рамках применимости макроэлектродинамики) неоднородных сред, то в областях резкого изменения их параметров иногда можно игнорировать тонкую структуру распределения полей в переходном слое и ограничиться «сшиванием» полей по разные стороны от него, заменяя тем самым переходный слой матем. поверхностью — границей, лишённой толщины. Если внутри переходной области имелись заряды с объёмной плотностью


Применение M. у. и ур-ния непрерывности приводит к следующим граничным условиям:
Здесь индексы 1 и 2 характеризуют поля по разные стороны от границы, а
Иногда граничные условия (1г) — (5г) порождают краевые условия, т. е. задают не правила перехода через границу, а сами поля на ней. Напр., внутри идеального проводника 






9. Двойственная симметрия Максвелла уравнений
Двойственная симметрия M. у. имеет место для любой формы их записи. Она состоит в инвариантности M. у. относительно линейных преобразований нолей, производимых по след, правилам:
Здесь








Таким сведением задач с заданными
Принцип перестановочной двойственности является представителем класса дискретных преобразований (см. Симметрия ),оставляющих инвариантными M. у. Такого же сорта преобразованиями являются, в частности, операция обращения времени
последовательно осуществляемые комбинации операций
10. Максвелла уравнения в четырёхмерном представлении
Придавая времени t смысл четвёртой координаты и представляя её чисто мнимой величиной 
где
аналогично вводят 4-вектор магн. тока.
В этих обозначениях M. у. допускают компактное 4-мерное представление:
Взаимной заменой векторов поля и индукции в ф-лах (13),
через к-рые также могут быть записаны M. у.:
Любая пара тензорных ур-ний, содержащая в правых частях оба 4-тока (электрич. и мат.), тождественна системе M. у. Чаще используют пару ур-ний (15 а), (18), при этом материальные ур-ния сводятся к функциональной связи между тензорами 

Из антисимметрии тензоров поля, индукции и M. у. в форме (17) — (18) следует равенство нулю 4-дивергенций 4-токов:
к-рое представляет собой 4-мерную запись ур-ний непрерывности для электрич. (магн.) зарядов. T. о., 4-векторы токов являются чисто вихревыми, и соотношения (17), (18) можно рассматривать как их представление в виде 4-роторов соответствующих тензоров. Наряду с представленным здесь вариантом часто используется также 4-мерное описание, в к-ром временная координата (обычно с индексом О) берётся действительной, но 4-мерному пространству приписывается гипербодич. сигнатура 
11. Лоренц-инвариантность Максвелла уравнений
Все экспериментально регистрируемые эл—динамич. явления удовлетворяют относительности принципу .Вид M. у. сохраняется при линейных преобразованиях, оставляющих неизменным интервал 







Релятивистски-ковариантная запись M. у. позволяет легко находить инвариантные комбинации полей, токов и потенциалов (4-скаляров или инвариантов Лоренца группы), сохраняющихся, в частности, при переходе от одной инерциальной системы отсчёта к другой. Во-первых, это чисто полевые инварианты (см. Инварианты электромагнитного поля ).Во-вторых, это токовые (источниковые) инварианты:
В-третьих, это потенциальные инварианты:
где



12. Лагранжиан для электромагнитного поля
M. у. могут быть получены из наименьшего действия принципа, т. е. их можно совместить с Эйлера — Лаг-ранжа уравнениями, обеспечивающими вариационную акстремальность ф-ции действия:
здесь 
В результате лагранжиан принимает вид инвариантной комбинации полей, потенциалов и источников:
А ур-ния Эйлера — Лагранжа для нек-рой обобщённой координаты 
Для 

13. Единственность решений Максвелла уравнений
Различают теоремы единственности для стационарных и нестационарных процессов. Условия единственности нестационарных решений извлекаются из Пойн-тинга теоремы, где источники считаются заданными ф-циями координат и времени. Если бы они порождали два разл. поля, то разность этих полей в вакууме (или в любой линейной материальной среде) вследствие принципа суперпозиции была бы решением однородных M. у. Для обращения этой разности в нуль и, следовательно, получения единств, решения достаточно удовлетворить след, трём условиям. 1) На поверхности S, окружающей область V, где ищется поле, должны быть заданы тангенциальные составляющие поля Е тан или поля Н тан либо соотношения между ними импедансного типа: 


В стационарных режимах нач. условия выпадают, и теоремы единственности формулируются непосредственно для установившихся решений. Так, в электростатике достаточно задать все источники r e ст , все полные заряды на изолиров. проводниках или их потенциалы, чтобы при соответствующих условиях на бесконечности (нужное спадание поля) решение было бы единственным. Аналогичные теоремы устанавливаются для магнитостатики и электродинамики пост, токов в проводящих средах.
Особо выделяется случай синусоидальных во времени процессов, для к-рых формулируют след, признаки, достаточные для получения единств, решения: 1) задание источников 
14. Классификация приближений Максвелла уравнений
Классификация приближений M. у. обычно основывается на безразмерных параметрах, определяющих и критерии подобия для эл—магн. полей. В вакууме таким параметром является отношение 


а) а = 0 — статич. приближение, статика.
Система M. у. распадается на три.
Материальная связь в простейшем случае имеет вид 



Видео:Билеты №32, 33 "Уравнения Максвелла"Скачать

Тема 11. Электродинамические потенциалы. Основные теоремы и принципы электродинамики
Постановка задач в электродинамике. Скалярный и векторный электродинамические потенциалы. Уравнения Даламбера для электродинамических потенциалов. Уравнения Пуассона и Лапласа. Связь электродинамических потенциалов с векторами ЭМП. Решение неоднородных уравнений Даламбера для электродинамических потенциалов. Запаздывающие потенциалы.
Применение электродинамических потенциалов в анализе ЭМП.
Основные теоремы и принципы в теории гармонических полей. Магнитные токи и заряды. Принцип перестановочной двойственности уравнений Максвелла. Теорема единственности для внешней и внутренней задач электродинамики. Принцип эквивалентности. Различные формулировки принципа эквивалентности. Лемма Лоренца. Сопряженная лемма. Теорема взаимности.
Указания к теме
Необходимо выучить определения скалярного и векторного потенциалов, обратить внимание на их связь с векторами и энергией ЭМП, а также на применение в анализе ЭМП; уяснить понятие запаздывающего потенциала.
Пользуясь теоремой Пойнтинга о балансе энергии, можно определить дополнительные условия, наложение которых сообщает решениям уравнений Максвелла физическую определенность (единственность).
Следует выучить формулировки теорем единственности и взаимности, принципов эквивалентности и двойственности, обратить внимание на их место в теории ЭМП.
Основные сведения
При решении задач излучения необходимо решать систему уравнений Максвелла при наличии сторонних источников ЭМП. Введение электродинамических потенциалов позволяет упростить расчет ЭМП излучающих систем. Из условия соленоидальности магнитного поля (2.8) можно записать:


где введенную функцию 
Подстановка выражения (11.1) в (2.6) позволяет связать 



Из условия потенциальности электростатического поля


где введенную функцию j называют скалярным потенциалом (в случае электростатического поля функция jявляется скалярным электрическим потенциалом)[1, 11].
Векторы ЭМП можно выразить через 


Волновые уравнения для электродинамических потенциалов.Подставляя выражение (11.4) в систему уравнений Максвелла для однородной среды при наличии сторонних источников ЭМП, получаем

Удобно выбрать div 

Условие (11.6) называют калибровкой Лоренца. В случае равенства нулю правой части (11.6) получается калибровка Кулона [1–3, 11].
С учетом выражения (11.6) из системы уравнений Максвелла получаются неоднородные волновые уравнения для потенциалов 


После решения уравнений (11.7) и (11.8) для конкретных исходных данных векторы 


В случае стационарного магнитного поля 
При решении задач излучения с целью уменьшения числа неизвестных иногда вводят вектор Герца 




В классической электродинамике 



Электродинамические потенциалы в безграничном пространстве.Решение уравнений (11.7) и (11.8) в безграничном пространстве упрощается. В пространстве вне точечного источника rст = 0.
Для точечного заряда в ССК и ЦСК решение имеет вид [1–4]

При v®¥ (мгновенное распространение действия ЭМП) из уравнений (11.8) получается уравнение С. Пуассона [1, 6, 11] : 
При точках незаряженной области (r = 0) уравнение Пуассона (11.15) переходит в уравнение П. Лапласа [6, 11] : 
Волновое уравнение для векторного потенциала имеет вид [1–3, 11]

Полученные решения (11.10) и (11.11) отражают конечность скорости распространения ЭМП от своих источников. В точке наблюдения значения электродинамических потенциалов (а значит, и векторов ЭМП) определяются значением не в текущий момент времени t, а в предшествующий момент t – r/v. Поэтому решения (11.10) и (11.11) называют запаздывающими потенциалами. Время запаздывания r/v как раз показывает, какое время требуется ЭМВ, чтобы пройти расстояние r с конечной скоростью v [11].
Сравнивая уравнения (11.10) и (11.11) с (5.5) и (5.6), можно сделать вывод, что полученные решения имеют характер сферических волн.

Внешняя задача электродинамики заключается в решении уравнений Максвелла для неограниченного пространства вне области V, ограниченной замкнутой поверхностью S , при наличии источников ЭМП. Примеры внешней задачи – определение ЭМП антенны в свободном пространстве при известном распределении тока в антенне, решение задач дифракции.
При постановке задач электродинамики необходимо ввести начальные и граничные условия, сообщающие этим задачам физическую определенность [1]. Векторы ЭМП не могут иметь произвольную зависимость от координат и времени. Например, есть ограничения на скорость убывания амплитуд 

Из закона сохранения энергии следует [1], что в пространстве без потерь каждый из векторов 



Условия (11.12) эквивалентны условиям излучения Зоммерфельда


Знак при вторых слагаемых в уравнениях (11.13) определяет, что условия записаны для ЭМВ, которая расходится (удаляется) от источника [1, 5]. При наличии потерь в пространстве, которые учитываются коэффициентом затухания a, векторы ЭМП убывают быстрее – пропорционально exp(–ar)/r.
Существуют принципы и теоремы электродинамики, которые позволяют существенно упростить решение задач электродинамики и теории антенн.
Теорема единственности решений уравнений Максвелла.Методы решения уравнений ЭМП могут быть различными, поэтому необходимо доказать, что решение, полученное любым методом, является единственным. В учебных пособиях [1, 12] приведено доказательство того, что если при решении уравнений Максвелла при определенных начальных и граничных условиях получены значения векторов ЭМП ( 

Принцип двойственности. Для решения задач теории ЭМП удобно ввести понятия магнитных токов и зарядов. Как отмечалось ранее, эти величины являются фиктивными и вводятся как эквивалент действия электрических токов.
При наличии магнитных источников уравнения Максвелла (2.20)–(2.21) уступают место следующим [1, 13]:








где 



Сопоставляя уравнения Максвелла и выражения (11.14)–(11.15), нетрудно убедиться, что одни полностью переходят в другие при следующей замене:





















Следует отметить, что размерности эквивалентных величин несколько отличаются от обычных в системе СИ. Оказывается, что 

Таким образом, если найдено ЭМП заданных электрических источников, то достаточно сделать замену (11.16) в готовом решении задачи, и это непосредственно приведет к выражению ЭМП излучения магнитных источников.

Лемма Лоренца. Пусть в некоторой линейной среде имеется два электрических источника, характеризуемых функциями плотности стороннего электрического тока 


Интегрируя уравнение (11.17) по области V, ограниченной поверхностью S, охватывающей источники ЭМП, с учетом теоремы Остроградского – Гаусса (2.11) получим

Соотношения (11.17) и (11.18) – это соответственно дифференциальная и интегральная формулировки леммы Лоренца, устанавливающей важные связи между полями двух источников.
В случае свободного пространства в дальней зоне источников (S®∞) левая часть соотношения (11.18) стремится к нулю [1, 5, 6], а это приводит к таким соотношениям:


Принцип взаимности разделенных источников. В случае, когда источники разделены в пространстве, первый источник расположен в области V1, а второй – в области V2 (рис. 11.2), соотношения (11.19) принимают форму

Интеграл справа можно истолковать как некоторую характеристику взаимодействия ЭМП первого источника с ЭМП второго; аналогичный смысл имеет интеграл слева. Очевидно, что характеристики такого рода равны независимо от типа источников и изотропных сред, в которых они расположены.
Соотношение (11.20) выражает принцип взаимности, подразумевая пространственно разделенные источники и их поля.
Для двух линейных токов из выражения (11.20) следует [1]

где 



Равенство (11.21) можно представить в другой форме:


где 

Принцип взаимности проявляется в том, что э. д. с., наводимая на первом элементе заданным током второго, оказывается такой же, как и э. д. с. на втором элементе при равном токе первого [1].
Э. д. с., наводимая в приемной антенне в зависимости от ее ориентации, изменяется по тому же закону, что и ЭМП в дальней зоне, создаваемое этой антенной в режиме передачи. То есть направленность действия антенны при приеме и передаче одинакова. В теории антенн принцип взаимности позволяет использовать характеристику направленности передающей антенны (ДН) при использовании этой антенны в качестве приемной, а также использовать измеренную характеристику ДН приемной антенны и в режиме передачи.
Среды, устройства и системы, в которых выполняется принцип взаимности, называют взаимными [1].
Список рекомендуемой литературы:[1, гл. 11, 15, с. 55–59, 83–90; 2, с. 75–78, 123–126, 132–139, 150–152; 3, гл. 11, с. 51–55; 4, с. 47–50; 5, с. 21–24, 52–55, 223–239; 6, с. 128–138, 172, 205–212; 7, с. 63–67, 244–279; 8, с. 18–25, 57–61; 9, с. 60–61, 143–154, 157–159; 10, с. 68–70; 11, с. 61–75, 121–125; 12, с. 63–65, 94–98, 106–132; 13, с. 134–140, 150–155, 165–168, 238–241; 32, с. 13–17; 34, с. 5–10; 35, с. 11–13; 36, с. 9–12].
Контрольные вопросы и задания
1. Дайте определение электродинамическим потенциалам ЭМП.
2. Что дает введение электродинамических потенциалов?
3. Почему потенциалы называют «запаздывающими»?
4. Существует ли связь электродинамических потенциалов с энергией ЭМП?
5. С помощью какого из электродинамических потенциалов можно охарактеризовать потенциальную энергию зарядов в электростатическом поле?
6. Какой потенциал связан с потенциальной энергией токов в случае стационарного магнитного поля?
7. Каково место электродинамических потенциалов в теории ЭМП и теории антенн?
8. Укажите условия калибровки волновых уравнений для электродинамических потенциалов. Зачем нужны условия калибровки?
9. Можно ли скалярный потенциал назвать «электростатическим»?
10. Существуют ли магнитные токи и заряды?
11. Дайте определение внешней и внутренней задач электродинамики.
12. В чем смысл принципа двойственности?
13. Назовите формулировку теоремы единственности. Какие требования предъявляются к функциям, описывающим ЭМП для выполнения теоремы единственности?
14. Дайте формулировку принципа эквивалентности.
15. В чем заключается смысл теоремы взаимности?
🌟 Видео
Существование и единственность Теорема и задачи ДзСкачать

О чем говорят уравнения Максвелла? Видео 1/2Скачать

3 14 Уравнения МаксвеллаСкачать

ЧК_МИФ /ЛИКБЕЗ/ 3_3_5_1 СИСТЕМА УРАВНЕНИЙ МАКСВЕЛЛА. ПРИМЕРЫ (минимум теории)Скачать

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

Уравнения Максвелла 2021Скачать

3 Уравнения Максвелла в дифференциальной формеСкачать

6.1 Решение уравнений Максвелла с заданным сторонним электрическим током методом ЭД потенциаловСкачать

3. Условия существования и единственности решения задачи КошиСкачать

3.3. Решение системы уравнений Максвелла в присутствии границСкачать

Система уравнений Максвелла. Связь интегральной и дифференциальной формы уравнений.Скачать

Уравнения Максвелла и соответствующие уравнения Волновой МоделиСкачать

Вывод уравнений МаксвеллаСкачать

Как распознать талантливого математикаСкачать

Лекция №14 "Электричество и магнетизм" (Попов П.В.): Уравнения МаксвеллаСкачать

6. Особые решения ДУ первого порядкаСкачать

Как решают уравнения в России и США!?Скачать














































