Видео:Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать
Теорема единственности для внутренней и внешней задач электродинамики.
Уравнения Максвелла являются дифференциальными уравнениями в частных производных, поэтому они допускают множество решений. Из общефизических соображений, очевидно, что если полностью повторять условия опытов, то будем получать одно и то же распространение электромагнитного поля. Для обеспечения единственности решения электродинамических задач электромагнитное поле должно удовлетворять не только уравнениям Максвелла, но также должно удовлетворять ряду дополнительных условий. Они называются условиями единственности решения уравнений Максвелла. Выводы и доказательства формулируются теоремой единственности. Теорема единственности отдельно формулируется двух основных видов задач:
для внутренней и внешней задач электродинамики.
Требуется определить распределение электромагнитного поля внутри поверхности S (внутренняя задача). Определим распространение электромагнитного поля в пространстве, внешнем по отношению к объему V, ограниченному поверхностью S. ( ). Расчет цепей при наличии взаимной индуктивности Рассмотрение данного вопроса начнём с простейших способов соединения двух индуктивно связанных катушек: параллельного и последовательного.
4.9. Единственность решения внутренних задач.
Внутренние задачи электродинамики имеют единственное решение, если выполняется одно из следующих условий:
1.Если в каждой точке М поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: — «Е» задача.
2. Если в каждой точке M поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: — «Н» задача.
3. Если на части поверхности S в каждой точке задана проекция вектора на плоскость, касательную к S в этой точке, а на другой части плоскости задана проекция вектора касательная к S в точке М:
4. Если в каждой точке поверхности S задано соотношение между проекциями векторов и на плоскость, касательную к S в точке М.
4.10. Условия единственности внешних задач электродинамики.
Для обеспечения единственности решения внешних задач электродинамики необходимо выполнение одного из условий 1-4, плюс к этому должно выполнятся одно из условий, описывающее поведение электромагнитного поля при бесконечно удаленных точках (при r ® ¥ ).
1. Принцип предельного поглощения ( ) требует, чтобы эта зависимость была , т.е. каждая из составляющих поля должна убывать с увеличением расстояния быстрее, чем . В реальных средах имеются пусть очень малые, но конечные по величине потери, т.е. . Поэтому, в бесконечно удаленных точках, электромагнитное поле равно нулю.
2. Если в среде отсутствуют потери и принцип предельного поглощения не применим, в этом случае векторы электромагнитного поля должны удовлетворять следующим соотношениям:
Физически эти условия означают, что электромагнитные волны при r ® ¥ имеют вид сферических волн, расходящихся от источника электромагнитного поля.
Видео:Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 13.4. Существов. и единств. решения ДУСкачать
максвелла уравнения
МАКСВЕЛЛА УРАВНЕНИЯ
1. Краткая история
2. Каноническая форма
3. Максвелла уравнения в интегральной форме
4. Общая характеристика Максвелла уравнений
5. Максвелла уравнения для комплексных амплитуд
6. Алгебраические Максвелла уравнения
7. Материальные уравнения
8. Граничные условия
9. Двойственная симметрия Максвелла уравнений
10. Максвелла уравнения в четырёхмерном представлении
11. Лоренц-инвариантность Максвелла уравнений
12. Лагранжиан для электромагнитного поля
13. Единственность решений Максвелла уравнений
14. Классификация приближений Максвелла уравнений
15. Максвелла уравнения в различных системах единиц
Максвелла уравнения — ур-ния, к-рым подчиняется (в пределах применимости классической ыакроскопич. электродинамики, см. Электродинамика классическая), электромагнитное поле в вакууме и сплошных средах.
1. Краткая история
Установлению M. у. предшествовал ряд открытий законов взаимодействий заряженных, намагниченных и токонесущих тел (в частности, законов Кулона, Био — Савара, Ампера). В 1831 M. Фарадей (M. Faraday) открыл закон эл—магн. индукции и примерно в то же время ввёл понятие электрич. и магн. полей как самостоят, физ. субстанций. Опираясь на фарадеевское представление о поле и введя ток смещения, равнозначный по своему магн. действию обычному электрич. току, Дж. К. Максвелл (J. С. Maxwell, 1864) сформулировал систему ур-ний, названную впоследствии ур-ниями Максвелла. M. у. функционально связывают электрич. и магн. поля с зарядами и токами и охватывают собой все известные закономерности макроэлектромагнетизма. Впервые о M. у. было доложено на заседании Лондонского Королевского общества 27 окт. 18(34. Первоначально Максвелл прибегал к вспомогат. механич. моделям «эфира», но уже в «Трактате об электричестве и магнетизме» (1873) эл—магн. поле рассматривалось как самостоят, физ. объект. Физ. основа M. у.- принцип близкодействия, утверждающий, что передача эл—магн. возмущений от точки к точке происходит с конечной скоростью (в вакууме со скоростью света с). Он противопоставлялся ньютоновскому принципу дальнодействия, сводящемуся к мгновенной передаче воздействий на любое расстояние Матем. аппаратом теории Максвелла послужил векторный анализ, представленный в инвариантной форме через кватернионы Гамильтона. Сам Максвелл считал, что его заслуга состоит лишь в матем. оформлении идей Фарадея.
2. Каноническая форма
Канонич. форма записи, принятая ныне, принадлежит Г. Герцу (H. Hertz) и О. Хевисайду (О. Heaviside) и основана на использовании не кватернионных, а векторных полей: напряжённости электрического поля E, напряжённости магнитного поля H, векторов электрической индукции D и магнитной индукции В. M. у. связывают их между собой, с плотностью электрического заряда и плотностью электрического тока J, к-рые рассматриваются как источники:
Здесь использована Гаусса система единиц (о записи M. у. в др. системах см. в разделе 15). Входящие в (1) — (4) величины E, D, j являются истинными, или полярными, векторами (а величина r — истинным скаляром), поля H к В — псевдовекторами, или аксиальными векторами. Все эти величины предполагаются непрерывными (вместе со всеми производными) ф-циями времени t и координат Следовательно, в ур-ниях (1) — (4) не учитывается ни дискретная структура электрич. зарядов и токов, ни квантовый характер самих полей. Учёт дискретности истинных источников может быть произведён даже в доквантовом (классич.) приближении с помощью Лоренца — Максвелла уравнений.
3. Максвелла уравнения в интегральной форме
Используя Гаусса — Остроградского формулу и С такса формулу, ур-ниям (1) — (4) можно придать форму интегральных:
Криволинейные интегралы в (1a), (2a) берутся по произвольному замкнутому контуру (их наз. циркуляция-ми векторных полей), а стоящие в правых частях поверхностные интегралы — по поверхностям, ограниченным этими контурами (опирающимся на них), причём направление циркуляции (направление элемента контура) связано с направлением нормали к S (вектор) правовинтовым соотношением (если в качестве исходного выбрано пространство с правыми системами координат). В интегралах по замкнутым поверхностям (S) в (3а), (4а) направление вектора элемента площади совпадает с наружной нормалью к поверхности; V — объём, ограниченный замкнутой поверхностью S.
M. у. в форме (1a) — (4a) предназначаются не только для изучения топологич. свойств эл—магн. полей, но и являются удобным аппаратом решения конкретных задач электродинамики в системах с достаточно высокой симметрией или с априорно известными распределениями полей. Кроме того, в матем. отношении эта система ур-ний содержательнее системы (1) — (4), поскольку пригодна для описания разрывных, нодиффе-ренцируемых распределений полей. Но в отношении физ. пределов применимости обе системы ур-ний равнозначны, т. к. любые скачки полей в макроэлектродинамике должны рассматриваться как пределы микромасштабно плавных переходов, с тем чтобы внутри них сохранялась возможность усреднения ур-ний Лоренца — Максвелла. С этими оговорками резкие скачки можно описывать и в рамках M. у. (1) — (4), прибегая к аппарату обобщённых функций.
Наконец, M. у. в интегральной форме облегчают физ. интерпретацию MH. эл—магн. явлений и поэтому нагляднее сопоставляются с теми экспериментально установленными законами, к-рым они обязаны своим происхождением. Так, ур-ние (1a) есть обобщение Био — Савара закона (с добавлением к току максвелловского смещения тока).
Ур-ние (2a) выражает закон индукции Фарадея; иногда его правую часть переобозначают через «магн. ток смещения»
где— плотность «магн. тока смещения», Ф В — магн. поток. Ур-ние (За) связывают с именем Гаусса , установившим соленоидальность поля В, обусловленную отсутствием истинных магн. зарядов. Впрочем вопрос о существовании магнитных монополей пока остаётся открытым. Но соответствующее обобщение M. у. произведено (Хевисайд, 1885) на основе принципа двойственной симметрии M. у. (см. в разделе 9), для чего в (2) и (2a) наряду с магн. током смещения вводится ещё и «истинный» магн. ток (процедура, обратная проделанной когда-то Максвеллом с электрич. током в первом ур-нии), а в ур-ние Гаусса (3), (За) — магн. заряд
где — плотность магн. заряда. Фактически все экспериментальные установки для регистрации ожидаемых магнитных монополей основаны на этом предположении. Наконец, ур-ние (4a) определяет поле свободного электрич. заряда; его иногда называют законом Кулона (Ch. A. Coulomb), хотя, строго говоря, оно не содержит утверждения о силе взаимодействия между зарядами, да и к тому же справедливо не только в электростатике, но и для систем с произвольным изменением поля во времени. На тех же основаниях иногда и ур-нпе (Ia) связывают с именем Ампера (A. Ampere).
4. Общая характеристика Максвелла уравнений
Совокупность M. у. (1) — (4) составляет систему из восьми (двух векторных и двух скалярных) линейных дифференц. ур-ний 1-го порядка для четырёх векторов Источники (скаляри вектор) не могут быть заданы произвольно; применяя операцию к ур-нию (1) и подставляя результат в (4), получаем:
или в интегральной форме:
Это ур-ние непрерывности для тока, содержащее в себе закон сохранения заряда для замкнутых изолнров. областей,- один из фундам. физ. принципов, подтверждаемых в любых экспериментах.
Ур-ния (1) — (4) распадаются на два самостоят, «блока»: ур-ния (1) и (4), содержащие векторы и источники и ур-ния (2) и (3) — однородные ур-ния для не содержащие источников. Ур-ння (2) и (3) допускают получение общего решения, в к-ромвыражаются через т. H. потенциалы электромагнитного поляПри этом ур-ние (3) «почти следует» из (2), т. к. операция (у), применённая к (2), даёт что отличается от (3) только константой, определяемой нач. условиями. Аналогично ур-ние (4) «почти следует» из (1) и ур-ния непрерывности (5).
Система M. у. (1) — (4) не является полной: по существу, она связывает 4 векторные величины двумя векторными ур-ниями. Её замыкание осуществляется путём добавления соотношений, связывающих векторы 1-го «блока»с векторами 2-го «блока» Эти соотношения зависят от свойств сред (материальных сред), в к-рых происходят эл—магн. процессы, и наз. материальными ур-ниями (см. раздел 7).
5. Максвелла уравнения для комплексных амплитуд
В силу линейности системы (1) — (4) для её решений справедлив суперпозиции принцип .Часто оказывается удобным фурье-представление общего решения (1) — (4) как ф-ции времени (см. Фурье преобразование). Записывая временной фактор в виде , для комплексных фурье-амплитуди т. д.) получаем систему ур-ний
Система (1б) — (4б) в нек-ром смысле удобнее (1) — (4), ибо упрощает применение к эл—динамич. системам, обладающим временной дисперсией (см. раздел 7), т. е. зависимостью параметров от частоты
6. Алгебраические Максвелла уравнения
Если распространить (в силу линейности M. у.) фурье-разложение и на зависимость полей от пространственных координат, т. е. представить общее решение ур-ний (1) — (4) в виде суперпозиции плоских волн типа (k — волновой вектор), то для фурье-компонентов нолейk и т. д.) получим систему алгебраич. ур-ний:
Такое сведение M. у. к набору ур-ний для осцилляторов (осцилляторов поля) составляет важный этап перехода к квантовой электродинамике, где эл—магн. поле рассматривается как совокупность фотонов, характеризуемых энергиями и импульсами Однако и в макроэлектродинамике представления (1в) — (4в) оказываются иногда вполне адекватными физ. сущности процессов: напр., при выделении откликов высокодобротных систем (см. Объёмный резонатор) или при изучении «механизма формирования» мод со сложной пространственной структурой из набора плоских волн и т. п. Наконец, M. у. в форме (1в) — (4в) удобны для описания свойств эл—динамич. систем, обладающих не только временной, но и пространственной дисперсией, если последняя задаётся в виде зависимости параметров от волнового вектора k.
7. Материальные уравнения
В макроэлектродинамике материальные связи, характеризующие эл—магн. свойства сред, вводятся феноменологически; они находятся либо непосредственно из эксперимента, либо на основании модельных представлений. Существуют два способа описания: в одном векторы E и H считаются исходными и материальные ур-ния задаются в виде D = D(E , H) и В = В( Е,Н), в другом — за исходные берутся векторы 2-го «блока» E и В, и соответствующие материальные связи представляются иначе: D = D(E,В), H= H(E, В). Оба описания совпадают для вакуума, где материальные уравнения вырождаются в равенства D = E и B = H.
Рассмотрим простейшую модель среды, характеризуемую мгновенным, локальным поляризац. откликом на появляющиеся в ней поля E и H. Под действием поля E в такой среде возникает электрич. поляризация (см. Поляризации вектор), а под действием поля H — магн. поляризация . Чаще её наз. намагниченностью и обозначают М.
Материальные ур-ния для таких сред имеют вид
При этом индуцированные в среде электрич. заряды наз. связанными или поляризац. зарядами с плотностью , а токи, обусловленные их изменениями,- поляризац. токами с плотностью:
Эти понятия были перенесены и на магн. поля, что можно выразить в виде системы ур-ний, аналогичной
и только потом выяснилось, что истинными источниками намагничивания среды оказались электрич. токи , а не магн. заряды. Поэтому терминология сложилась на основе физически некорректной системы
тогда как следовало бы принять беззарядовые ур-ния
что равносильно замыканию исходных M. у. (1) — (4) с помощью материальных связей
Из (6) и (7a) следует, что 2-й вариант представления материальных соотношений, в к-ром постулируются в качестве исходных векторы E и B, физически предпочтительнее.
В модели Лоренца — Максвелла усреднение микрополя Нмикро, произведённое с учётом вклада со стороны индуциров. полей, приводит к ур-ниям (9) и соответственно = В. Однако обычно параметры сред вводятся с помощью ур-ний (7), что облегчает двойственную симметризацию ф-л (подробнее см. в разделе 9). Напр., скалярные восприимчивости сред (c e , c m ) определяются соотношениями
Простейшие модели сред характеризуются пост, значениямиВ случае вакуума0.
Классификация разл. сред ооычно основывается на материальных ур-ниях типа (10) и их обобщениях. Если проницаемости e и m не зависят от полей, то M. у. (1) — (4) вместе с материальными ур-ниями (10) остаются линейными, поэтому о таких средах говорят как о линейных средах. При наличии зависимостейсреды наз. нелинейными: решения M. у. в нелинейных средах не удовлетворяют принципу суперпозиции. Если проницаемости зависят от координат то говорят о неоднородных средах, при зависимости от времени — о нестац попарных средах (иногда такие эл—динамич. системы наз. параметрическими). Для анизотропных сред скаляры e, m в (10) заменяются на тензоры: (по дважды встречающимся индексам производится суммирование). Важное значение имеют также эффекты запаздывания и нелокальности отклика среды на внеш. поля.
Значение индуциров. поляризации Р е , напр, в момент г, может определяться, вообще говоря, значениями полей во все предыдущие моменты времени, т. е.
что при преобразовании Фурье по времени приводит к зависимости [соответственноi]. Такие среды наз. средами с временной (частотной) дисперсией или просто диспергирующими средами. Аналогичная связь устанавливается и для нелокальных взаимодействий, когда отклик в точке г зависит от значения полей, строго говоря, во всех окружающих точкахно обычно всё-таки в пределах нек-рой конечной её окрестности: При преобразовании Фурье по г это приводит к появлению зависимостей такие среды наз. средами с пространственной дисперсией (см. Дисперсия пространственная).
В проводящих средах входящая в M. у. (1) — (5) плотность тока состоит из двух слагаемых: одно по-прежнему является сторонним токомобусловленным заданным перемещением электрич. зарядов под действием сторонних сил (обычно неэлектрич. происхождения), а другое — током проводимостизависящим от полей, определяемых системой M. у., и связанным с ними материальными ур-ниями вида В простейшем случае эта зависимость сводится к локальному Ома закону,
где — электропроводность (проводимость) среды. Иногда в (11) вводят обозначение, благодаря к-рому различают системы с заданными токами и системы с заданными полями (напряжениями). Для синусоидальных во времени полей, подчинённых ур-ниям (1б) — (4б) и материальным связям (10) и (11), вводится комплексная диэлектрич. проницаемость, объединяющая (10) и (11),, мнимая часть к-рой обусловлена проводимостью и определяет диссипацию энергии эл—магн. поля в среде. По аналогии вводится комплексная магн. проницаемость, мнимая часть к-рой обусловливает потери, связанные с перемагничиванием среды. Комплексные проницаемости в общем случае зависят от частоты w и волнового вектораэти зависимости не могут быть произвольными: причинности принцип связывает их действительные и мнимые части Крамерса — Кронига соотношениями.
В общем случае вид материальных ур-ний зависит также и от системы отсчёта, в к-рой эти ур-ния рассматривают. Так, если в неподвижной системе К среда характеризуется простейшими ур-ниями (10), то в инер-циальной системе К’ , движущейся относительно К с пост, скоростью и, появляется анизотропия:
где индексыобозначают продольные и поперечные ксоставляющие векторов. В рамках алгебраич. M. у. (1в) — (4в) материальные ур-ния (12) могут быть переписаны в виде
что можно трактовать как наличие временной и пространственной дисперсии. Исследование процессов с материальными связями типа (12) составляет предмет электродинамики движущихся сред. Заметим, что хотя характеристики е и m удобно симметризуют материальные ур-ния, их введение не является непременным условием замыкания M. у. Соответствующей перенормировкой допустимо свести описание магн. поля к одно-векторному, т. е. сделать но при этом даже для изотропной среды диэлектрич. проницаемость становится тензором, она различна для вихревых и потенциальных полей. Физически это связано с неоднозначностью модельного представления диполь-ных моментов, во всяком случае приони могут равноправно интерпретироваться и как зарядовые, и как токовые.
8. Граничные условия
Поскольку M. у. справедливы для любых (в рамках применимости макроэлектродинамики) неоднородных сред, то в областях резкого изменения их параметров иногда можно игнорировать тонкую структуру распределения полей в переходном слое и ограничиться «сшиванием» полей по разные стороны от него, заменяя тем самым переходный слой матем. поверхностью — границей, лишённой толщины. Если внутри переходной области имелись заряды с объёмной плотностьюили токи с объёмной плотностьюто при сжатии слоя в поверхность сохраняются их интегральные значения ·- вводятся поверхностные заряды r пов и поверхностные токи
— толщина переходного слоя.
Применение M. у. и ур-ния непрерывности приводит к следующим граничным условиям:
Здесь индексы 1 и 2 характеризуют поля по разные стороны от границы, а— единичный вектор нормали к поверхности, направленный из среды 1 в среду 2. Правила (1г) — (5г) пригодны для перехода через любые поверхности, независимо от того, совпадают ли они с границами раздела сред или проходят по однородным областям, поэтому их иногда наз. поверхностными M. у.
Иногда граничные условия (1г) — (5г) порождают краевые условия, т. е. задают не правила перехода через границу, а сами поля на ней. Напр., внутри идеального проводника в силу (11) (иначе возник бы ток неограниченной плотности), поэтому на границе раздела диэлектрик — идеальный проводник в согласии с (2г)Такие границы наз. идеальными электрич. стенками. Аналогично вводится понятие идеальной магн. стенки, на к-рой Если структура полей по одну сторону от границы универсальна, т. е. не зависит от распределения полей по др. сторону, то краевые условия могут состоять в задании не самих полей, а лишь связей между ними, напр. где Z — нек-рая скалярная или тензорная ф-ция координат границы (— тангенциальный компонент). К условиям такого рода относится, в частности, Леонтовича граничное условие для синусоидально меняющихся во времени полей на поверхности хороших проводников.
9. Двойственная симметрия Максвелла уравнений
Двойственная симметрия M. у. имеет место для любой формы их записи. Она состоит в инвариантности M. у. относительно линейных преобразований нолей, производимых по след, правилам:
Здесь— произвольный угл. параметр; в частности, при= О получаются тождественные преобразования, а при — стандартные преобразования перестановочной двойственности (операция ): замена даёт в областях, свободных от источников, новое решение M. у. При этом, однако, оно меняет местами ур-ния
и, следовательно, там, где раньше были распределены электрич. источники, возникают источники магнитные
. Поэтому с точки зрения двойственной симметрии M. у. задание материальных связей в виде представляется вполне удобным. Дуально-симметричные M. у. обладают рядом достоинств, по крайней мере в чисто методич. плане. Так, напр., они симметризуют скачки тангенциальных компонентов магн. и электрич. полей и, если задание ff Tall на поверхности идеальной электрич. стенки эквивалентно заданию поверхностного электрич. тока, то задание Я 1а „ на идеальной магн. стенке сводится к заданию магн. поверхностного тока:
Таким сведением задач с заданнымиполями к задачам с заданными токами широко пользуются в теории дифракции волн, в частности в дифракции радиоволн.
Принцип перестановочной двойственности является представителем класса дискретных преобразований (см. Симметрия ),оставляющих инвариантными M. у. Такого же сорта преобразованиями являются, в частности, операция обращения времени
последовательно осуществляемые комбинации операций
10. Максвелла уравнения в четырёхмерном представлении
Придавая времени t смысл четвёртой координаты и представляя её чисто мнимой величиной (см. Минковского пространство-время ),можно заключить описание электромагнетизма в компактную форму. Эл—магн. поле в 4-описании может быть задано двумя антисимметричными тензорами
где— Леви-Чивиты символ ,лат. индексы пробегают значения 1, 2, 3, 4, а греческие — 1, 2, 3. В 4-век-торе тока объединены обычная плотность тока j e и плотность электрич. заряда
аналогично вводят 4-вектор магн. тока.
В этих обозначениях M. у. допускают компактное 4-мерное представление:
Взаимной заменой векторов поля и индукции в ф-лах (13),(14) вводятся тензоры индукции эл—магн. поля
через к-рые также могут быть записаны M. у.:
Любая пара тензорных ур-ний, содержащая в правых частях оба 4-тока (электрич. и мат.), тождественна системе M. у. Чаще используют пару ур-ний (15 а), (18), при этом материальные ур-ния сводятся к функциональной связи между тензорами (последний чаще обозначают через.
Из антисимметрии тензоров поля, индукции и M. у. в форме (17) — (18) следует равенство нулю 4-дивергенций 4-токов:
к-рое представляет собой 4-мерную запись ур-ний непрерывности для электрич. (магн.) зарядов. T. о., 4-векторы токов являются чисто вихревыми, и соотношения (17), (18) можно рассматривать как их представление в виде 4-роторов соответствующих тензоров. Наряду с представленным здесь вариантом часто используется также 4-мерное описание, в к-ром временная координата (обычно с индексом О) берётся действительной, но 4-мерному пространству приписывается гипербодич. сигнатура в таком пространстве приходится различать ко- и контравариантные компоненты векторов и тензоров (см. Ковариантность и контравариантность).
11. Лоренц-инвариантность Максвелла уравнений
Все экспериментально регистрируемые эл—динамич. явления удовлетворяют относительности принципу .Вид M. у. сохраняется при линейных преобразованиях, оставляющих неизменным интервал и составляющих 10-мерную Пуанкаре группу: 4 трансляции, 3 пространственных (орто-) поворота и 3 пространственно-временных (орто-хроно-) поворота, иногда называемых ло-ренцевыми вращениями. Последние соответствуют перемещениям системы отсчёта вдоль осей x a с пост, скоростямиВ частности, для получается простейшая разновидность Лоренца преобразований:
, где Соответственно поля преобразуются по правилам:
Релятивистски-ковариантная запись M. у. позволяет легко находить инвариантные комбинации полей, токов и потенциалов (4-скаляров или инвариантов Лоренца группы), сохраняющихся, в частности, при переходе от одной инерциальной системы отсчёта к другой. Во-первых, это чисто полевые инварианты (см. Инварианты электромагнитного поля ).Во-вторых, это токовые (источниковые) инварианты:
В-третьих, это потенциальные инварианты:
где— магн. потенциалы (получающиеся из А е и преобразованием перестановочной двойственности), источниками к-рых являются магн. токи j m и заряды. И, наконец, многочисл. коыбиниров. инварианты типаи им подобные. Число таких комбиниров. инвариантов (квадратичных, кубичных и т. д.) по полям н источникам неограниченно.
12. Лагранжиан для электромагнитного поля
M. у. могут быть получены из наименьшего действия принципа, т. е. их можно совместить с Эйлера — Лаг-ранжа уравнениями, обеспечивающими вариационную акстремальность ф-ции действия:
здесь — лагранжиан ,являющийся релятивистски-инвариантной величиной; интегрирование ведётся по 4-мерному объёму V, (t 2 — t 1 ) с фиксиров. границами. В качестве обобщённых координат принято обычно использовать потенциалы А a и f. Поскольку лагран-жев формализм должен давать полное (замкнутое) динамич. описание системы, то при его построении нужно принимать во внимание материальные ур-ния. Они фигурируют как зависимости связанных зарядов и токов от полей В и Е·
В результате лагранжиан принимает вид инвариантной комбинации полей, потенциалов и источников:
А ур-ния Эйлера — Лагранжа для нек-рой обобщённой координаты получают приравниванием нулю соответствующих вариационных производных:
Для приходим к (4), для- к ур-нию (1) в соответствующих обозначениях. Вариационный подход позволяет придать теории универсальную форму описания, распространяемую и на описания динамики любых взаимодействий, даёт возможность получать ур-ния для комбиниров. динамич. систем, напр, электромеханических. В частности, для систем с сосредоточенными параметрами, характеризуемых конечным числом степеней свободы, соответствующие ур-ния наз. ур-ниями Лагранжа — Максвелла.
13. Единственность решений Максвелла уравнений
Различают теоремы единственности для стационарных и нестационарных процессов. Условия единственности нестационарных решений извлекаются из Пойн-тинга теоремы, где источники считаются заданными ф-циями координат и времени. Если бы они порождали два разл. поля, то разность этих полей в вакууме (или в любой линейной материальной среде) вследствие принципа суперпозиции была бы решением однородных M. у. Для обращения этой разности в нуль и, следовательно, получения единств, решения достаточно удовлетворить след, трём условиям. 1) На поверхности S, окружающей область V, где ищется поле, должны быть заданы тангенциальные составляющие поля Е тан или поля Н тан либо соотношения между ними импедансного типа: (п — нормаль к S) со значениями Z, исключающими приток энергии извне. К таковым относятся, в частности, условия излучения (см. Зоммерфельда условия излучения ),к-рым удовлетворяют волны в однородной среде на больших расстояниях от источников. Во всех случаях поток энергии для разностного поля вообще исчезает или направлен наружу (из объёма). 2) В нач. момент времени должны быть заданы все поля всюду внутри V. 3) Плотность энергии электромагнитного поля HB) должна быть положительна (вакуум, среды с . Эта частная теорема единственности обобщается на среды с нелокальными связями, а также на нек-рые виды параметрич. сред. Однако в нелинейных средах, где принцип суперпозиции не работает, никаких общих утверждений о единственности не существует.
В стационарных режимах нач. условия выпадают, и теоремы единственности формулируются непосредственно для установившихся решений. Так, в электростатике достаточно задать все источники r e ст , все полные заряды на изолиров. проводниках или их потенциалы, чтобы при соответствующих условиях на бесконечности (нужное спадание поля) решение было бы единственным. Аналогичные теоремы устанавливаются для магнитостатики и электродинамики пост, токов в проводящих средах.
Особо выделяется случай синусоидальных во времени процессов, для к-рых формулируют след, признаки, достаточные для получения единств, решения: 1) задание источников задание E тан или Н тан на ограничивающей объём V поверхности S или соответствующих импедансных условий, обеспечивающих отсутствие потока вектора Пойнтинга внутрь V; 3) наличие малого поглощения внутри V или малой утечки энергии через S для исключения существования собств. колебаний на частоте
14. Классификация приближений Максвелла уравнений
Классификация приближений M. у. обычно основывается на безразмерных параметрах, определяющих и критерии подобия для эл—магн. полей. В вакууме таким параметром является отношение , где — характерный масштаб изменения полей (либо размер области, в к-рой ищется решение), — характерный временной масштаб изменения полей.
а) а = 0 — статич. приближение, статика.
Система M. у. распадается на три.
Материальная связь в простейшем случае имеет вид . Это система M. у. для электростатики, в к-рой источниками служат заданные распределения плотности электрич. заряда и сторонней поляризации . В однородной среде эл—статич. потенциал f определяется Пуассона уравнением
Видео:Билеты №32, 33 "Уравнения Максвелла"Скачать
Тема 11. Электродинамические потенциалы. Основные теоремы и принципы электродинамики
Постановка задач в электродинамике. Скалярный и векторный электродинамические потенциалы. Уравнения Даламбера для электродинамических потенциалов. Уравнения Пуассона и Лапласа. Связь электродинамических потенциалов с векторами ЭМП. Решение неоднородных уравнений Даламбера для электродинамических потенциалов. Запаздывающие потенциалы.
Применение электродинамических потенциалов в анализе ЭМП.
Основные теоремы и принципы в теории гармонических полей. Магнитные токи и заряды. Принцип перестановочной двойственности уравнений Максвелла. Теорема единственности для внешней и внутренней задач электродинамики. Принцип эквивалентности. Различные формулировки принципа эквивалентности. Лемма Лоренца. Сопряженная лемма. Теорема взаимности.
Указания к теме
Необходимо выучить определения скалярного и векторного потенциалов, обратить внимание на их связь с векторами и энергией ЭМП, а также на применение в анализе ЭМП; уяснить понятие запаздывающего потенциала.
Пользуясь теоремой Пойнтинга о балансе энергии, можно определить дополнительные условия, наложение которых сообщает решениям уравнений Максвелла физическую определенность (единственность).
Следует выучить формулировки теорем единственности и взаимности, принципов эквивалентности и двойственности, обратить внимание на их место в теории ЭМП.
Основные сведения
При решении задач излучения необходимо решать систему уравнений Максвелла при наличии сторонних источников ЭМП. Введение электродинамических потенциалов позволяет упростить расчет ЭМП излучающих систем. Из условия соленоидальности магнитного поля (2.8) можно записать:
Þ , (11.1)
где введенную функцию называют векторным потенциалом.
Подстановка выражения (11.1) в (2.6) позволяет связать с :
или . (11.2)
Из условия потенциальности электростатического поля
Þ , (11.3)
где введенную функцию j называют скалярным потенциалом (в случае электростатического поля функция jявляется скалярным электрическим потенциалом)[1, 11].
Векторы ЭМП можно выразить через и j :
, . (11.4)
Волновые уравнения для электродинамических потенциалов.Подставляя выражение (11.4) в систему уравнений Максвелла для однородной среды при наличии сторонних источников ЭМП, получаем
. (11.5)
Удобно выбрать div так, чтобы в уравнении (11.5) слагаемое в скобках оказалось бы равным нулю
. (11.6)
Условие (11.6) называют калибровкой Лоренца. В случае равенства нулю правой части (11.6) получается калибровка Кулона [1–3, 11].
С учетом выражения (11.6) из системы уравнений Максвелла получаются неоднородные волновые уравнения для потенциалов и j
; (11.7)
. (11.8)
После решения уравнений (11.7) и (11.8) для конкретных исходных данных векторы и находятся после подстановки и j в (11.4).
В случае стационарного магнитного поля можно считать потенциальной энергией токов, в то же время j связан с потенциальной энергией зарядов в электростатике [1–3].
При решении задач излучения с целью уменьшения числа неизвестных иногда вводят вектор Герца [12] ( , ).
, . (11.9)
В классической электродинамике и j – лишь вспомогательные величины, так как для представления ЭМП необходим переход к и . В квантовой электродинамике и j считаются фундаментальными величинами [1–3].
Электродинамические потенциалы в безграничном пространстве.Решение уравнений (11.7) и (11.8) в безграничном пространстве упрощается. В пространстве вне точечного источника rст = 0.
Для точечного заряда в ССК и ЦСК решение имеет вид [1–4]
. (11.10)
При v®¥ (мгновенное распространение действия ЭМП) из уравнений (11.8) получается уравнение С. Пуассона [1, 6, 11] : .
При точках незаряженной области (r = 0) уравнение Пуассона (11.15) переходит в уравнение П. Лапласа [6, 11] : .
Волновое уравнение для векторного потенциала имеет вид [1–3, 11]
(11.11)
Полученные решения (11.10) и (11.11) отражают конечность скорости распространения ЭМП от своих источников. В точке наблюдения значения электродинамических потенциалов (а значит, и векторов ЭМП) определяются значением не в текущий момент времени t, а в предшествующий момент t – r/v. Поэтому решения (11.10) и (11.11) называют запаздывающими потенциалами. Время запаздывания r/v как раз показывает, какое время требуется ЭМВ, чтобы пройти расстояние r с конечной скоростью v [11].
Сравнивая уравнения (11.10) и (11.11) с (5.5) и (5.6), можно сделать вывод, что полученные решения имеют характер сферических волн.
При решении задач электродинамики выделяют внутреннюю и внешнюю задачи. Внутренней называется задача определения ЭМП внутри области V, ограниченной замкнутой поверхностью S (рис. 11.1), при заданных на ней граничных условиях для векторов ЭМП. Примеры внутренней задачи – определение ЭМП в объемном резонаторе, определение функции распределения тока в антенне заданной конструкции.
Внешняя задача электродинамики заключается в решении уравнений Максвелла для неограниченного пространства вне области V, ограниченной замкнутой поверхностью S , при наличии источников ЭМП. Примеры внешней задачи – определение ЭМП антенны в свободном пространстве при известном распределении тока в антенне, решение задач дифракции.
При постановке задач электродинамики необходимо ввести начальные и граничные условия, сообщающие этим задачам физическую определенность [1]. Векторы ЭМП не могут иметь произвольную зависимость от координат и времени. Например, есть ограничения на скорость убывания амплитуд и .
Из закона сохранения энергии следует [1], что в пространстве без потерь каждый из векторов и должен убывать не медленнее, чем 1/r . Это условие называется условием излучения на бесконечности [1]:
= 0 ; = 0 . (11.12)
Условия (11.12) эквивалентны условиям излучения Зоммерфельда
= 0 ; = 0 . (11.13)
Знак при вторых слагаемых в уравнениях (11.13) определяет, что условия записаны для ЭМВ, которая расходится (удаляется) от источника [1, 5]. При наличии потерь в пространстве, которые учитываются коэффициентом затухания a, векторы ЭМП убывают быстрее – пропорционально exp(–ar)/r.
Существуют принципы и теоремы электродинамики, которые позволяют существенно упростить решение задач электродинамики и теории антенн.
Теорема единственности решений уравнений Максвелла.Методы решения уравнений ЭМП могут быть различными, поэтому необходимо доказать, что решение, полученное любым методом, является единственным. В учебных пособиях [1, 12] приведено доказательство того, что если при решении уравнений Максвелла при определенных начальных и граничных условиях получены значения векторов ЭМП ( и ), то это решение будет единственным.
Принцип двойственности. Для решения задач теории ЭМП удобно ввести понятия магнитных токов и зарядов. Как отмечалось ранее, эти величины являются фиктивными и вводятся как эквивалент действия электрических токов.
При наличии магнитных источников уравнения Максвелла (2.20)–(2.21) уступают место следующим [1, 13]:
= = , , (11.14)
= = , . (11.15)
где и – плотности сторонних электрического и магнитного токов соответственно; sм – удельная эквивалентная магнитная проводимость; и – объемные плотности электрического и магнитного зарядов.
Сопоставляя уравнения Максвелла и выражения (11.14)–(11.15), нетрудно убедиться, что одни полностью переходят в другие при следующей замене:
® , ® , ® , ® , ® , ea « µa , sэ « sм,
, ® – , ® – , ® – , ® – , ® – . (11.16)
Следует отметить, что размерности эквивалентных величин несколько отличаются от обычных в системе СИ. Оказывается, что измеряется в вольтах на метр квадратный, а не в амперах на метр квадратный, как , Iм – в вольтах (размерность U), Qм – в веберах (размерность Ф), sм – в омах на метр (размерность удельного сопротивления) [1, 7], то есть размерности прямой и обратной замены отличаются как сопротивление и проводимость!
Таким образом, если найдено ЭМП заданных электрических источников, то достаточно сделать замену (11.16) в готовом решении задачи, и это непосредственно приведет к выражению ЭМП излучения магнитных источников.
Общий смысл принципа двойственности состоит в том, что при определенных условиях электрическое и магнитное поля «меняются ролями». Кроме того, симметрия системы уравнений Максвелла (11.14)–(15.9) подчеркивает равноправие электрических и магнитных составляющих в переменном ЭМП.
Лемма Лоренца. Пусть в некоторой линейной среде имеется два электрических источника, характеризуемых функциями плотности стороннего электрического тока и соответственно (рис. 11.2). После преобразований
. (11.17)
Интегрируя уравнение (11.17) по области V, ограниченной поверхностью S, охватывающей источники ЭМП, с учетом теоремы Остроградского – Гаусса (2.11) получим
. (11.18)
Соотношения (11.17) и (11.18) – это соответственно дифференциальная и интегральная формулировки леммы Лоренца, устанавливающей важные связи между полями двух источников.
В случае свободного пространства в дальней зоне источников (S®∞) левая часть соотношения (11.18) стремится к нулю [1, 5, 6], а это приводит к таким соотношениям:
, . (11.19)
Принцип взаимности разделенных источников. В случае, когда источники разделены в пространстве, первый источник расположен в области V1, а второй – в области V2 (рис. 11.2), соотношения (11.19) принимают форму
. (11.20)
Интеграл справа можно истолковать как некоторую характеристику взаимодействия ЭМП первого источника с ЭМП второго; аналогичный смысл имеет интеграл слева. Очевидно, что характеристики такого рода равны независимо от типа источников и изотропных сред, в которых они расположены.
Соотношение (11.20) выражает принцип взаимности, подразумевая пространственно разделенные источники и их поля.
Для двух линейных токов из выражения (11.20) следует [1]
, (11.21)
где и представляют собой э. д. с., наводимые на каждом из линейных элементов (I1) и (I2) полем другого источника.
Равенство (11.21) можно представить в другой форме:
Þ , (11.22)
где и имеют смысл взаимных сопротивлений.
Принцип взаимности проявляется в том, что э. д. с., наводимая на первом элементе заданным током второго, оказывается такой же, как и э. д. с. на втором элементе при равном токе первого [1].
Э. д. с., наводимая в приемной антенне в зависимости от ее ориентации, изменяется по тому же закону, что и ЭМП в дальней зоне, создаваемое этой антенной в режиме передачи. То есть направленность действия антенны при приеме и передаче одинакова. В теории антенн принцип взаимности позволяет использовать характеристику направленности передающей антенны (ДН) при использовании этой антенны в качестве приемной, а также использовать измеренную характеристику ДН приемной антенны и в режиме передачи.
Среды, устройства и системы, в которых выполняется принцип взаимности, называют взаимными [1].
Список рекомендуемой литературы:[1, гл. 11, 15, с. 55–59, 83–90; 2, с. 75–78, 123–126, 132–139, 150–152; 3, гл. 11, с. 51–55; 4, с. 47–50; 5, с. 21–24, 52–55, 223–239; 6, с. 128–138, 172, 205–212; 7, с. 63–67, 244–279; 8, с. 18–25, 57–61; 9, с. 60–61, 143–154, 157–159; 10, с. 68–70; 11, с. 61–75, 121–125; 12, с. 63–65, 94–98, 106–132; 13, с. 134–140, 150–155, 165–168, 238–241; 32, с. 13–17; 34, с. 5–10; 35, с. 11–13; 36, с. 9–12].
Контрольные вопросы и задания
1. Дайте определение электродинамическим потенциалам ЭМП.
2. Что дает введение электродинамических потенциалов?
3. Почему потенциалы называют «запаздывающими»?
4. Существует ли связь электродинамических потенциалов с энергией ЭМП?
5. С помощью какого из электродинамических потенциалов можно охарактеризовать потенциальную энергию зарядов в электростатическом поле?
6. Какой потенциал связан с потенциальной энергией токов в случае стационарного магнитного поля?
7. Каково место электродинамических потенциалов в теории ЭМП и теории антенн?
8. Укажите условия калибровки волновых уравнений для электродинамических потенциалов. Зачем нужны условия калибровки?
9. Можно ли скалярный потенциал назвать «электростатическим»?
10. Существуют ли магнитные токи и заряды?
11. Дайте определение внешней и внутренней задач электродинамики.
12. В чем смысл принципа двойственности?
13. Назовите формулировку теоремы единственности. Какие требования предъявляются к функциям, описывающим ЭМП для выполнения теоремы единственности?
14. Дайте формулировку принципа эквивалентности.
15. В чем заключается смысл теоремы взаимности?
🎦 Видео
3 14 Уравнения МаксвеллаСкачать
ЧК_МИФ /ЛИКБЕЗ/ 3_3_5_1 СИСТЕМА УРАВНЕНИЙ МАКСВЕЛЛА. ПРИМЕРЫ (минимум теории)Скачать
ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать
О чем говорят уравнения Максвелла? Видео 1/2Скачать
Существование и единственность Теорема и задачи ДзСкачать
3. Условия существования и единственности решения задачи КошиСкачать
Уравнения Максвелла 2021Скачать
6.1 Решение уравнений Максвелла с заданным сторонним электрическим током методом ЭД потенциаловСкачать
3 Уравнения Максвелла в дифференциальной формеСкачать
3.3. Решение системы уравнений Максвелла в присутствии границСкачать
Лекция №14 "Электричество и магнетизм" (Попов П.В.): Уравнения МаксвеллаСкачать
Как распознать талантливого математикаСкачать
Вывод уравнений МаксвеллаСкачать
Уравнения Максвелла и соответствующие уравнения Волновой МоделиСкачать
Система уравнений Максвелла. Связь интегральной и дифференциальной формы уравнений.Скачать
6. Особые решения ДУ первого порядкаСкачать
Как решают уравнения в России и США!?Скачать