Тангенс угла между прямыми заданными уравнениями

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Содержание
  1. Предупреждение
  2. 1. Угол между прямыми на плоскости
  3. Прямые заданы каноническими уравнениями
  4. 1.1. Определение угла между прямыми
  5. 1.2. Условие параллельности прямых
  6. 1.3. Условие перпендикулярности прямых
  7. Прямые заданы общими уравнениями
  8. 1.4. Определение угла между прямыми
  9. 1.5. Условие параллельности прямых
  10. 1.6. Условие перпендикулярности прямых
  11. 2. Угол между прямыми в пространстве
  12. 2.1. Определение угла между прямыми
  13. 2.2. Условие параллельности прямых
  14. 2.3. Условие перпендикулярности прямых
  15. Угол между прямыми
  16. Определение угла между прямыми
  17. Угол между прямыми на плоскости
  18. Угол между прямыми заданными уравнениями с угловым коэффициентом
  19. Угол между прямыми через направляющие векторы этих прямых
  20. Угол между прямыми через векторы нормалей этих прямых
  21. Угол между прямыми через направляющий вектор и вектор нормали этих прямых
  22. Примеры задач на вычисления угла между прямыми на плоскости
  23. Угол между прямыми в пространстве
  24. Решение задач по математике онлайн
  25. Калькулятор онлайн. Вычисление угла между двумя прямыми
  26. 💥 Видео

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Видеоурок "Угол между прямыми"Скачать

Видеоурок "Угол между прямыми"

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

Тангенс угла между прямыми заданными уравнениями,(1.1)
Тангенс угла между прямыми заданными уравнениями,(1.2)

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

Тангенс угла между прямыми заданными уравнениями,
Тангенс угла между прямыми заданными уравнениями,(1.3)

Из выражения (1.3) получим:

Тангенс угла между прямыми заданными уравнениямиТангенс угла между прямыми заданными уравнениями.(1.4)

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

Тангенс угла между прямыми заданными уравнениями.(1.5)
Тангенс угла между прямыми заданными уравнениями.(1.6)
Тангенс угла между прямыми заданными уравнениями.

Упростим и решим:

Тангенс угла между прямыми заданными уравнениями.
Тангенс угла между прямыми заданными уравнениями

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Тангенс угла между прямыми заданными уравнениями

Угол между прямыми равен:

Тангенс угла между прямыми заданными уравнениями

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

Тангенс угла между прямыми заданными уравнениями.(1.7)

Сделаем преобразования с выражением (1.7):

Тангенс угла между прямыми заданными уравнениями,
Тангенс угла между прямыми заданными уравнениями,
Тангенс угла между прямыми заданными уравнениямиТангенс угла между прямыми заданными уравнениями,
Тангенс угла между прямыми заданными уравнениями,
Тангенс угла между прямыми заданными уравнениями,
Тангенс угла между прямыми заданными уравнениями.(1.8)

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

Тангенс угла между прямыми заданными уравнениями.(1.9)

Пример 2. Определить, параллельны ли прямые

Тангенс угла между прямыми заданными уравнениями.(1.10)
Тангенс угла между прямыми заданными уравнениями.(1.11)
Тангенс угла между прямыми заданными уравнениями, Тангенс угла между прямыми заданными уравнениями.

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

Тангенс угла между прямыми заданными уравнениями.(1.12)

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Тангенс угла между прямыми заданными уравнениями.(1.13)

Пример 3. Определить, перпендикулярны ли прямые

Тангенс угла между прямыми заданными уравнениями(1.14)
Тангенс угла между прямыми заданными уравнениями.(1.15)
Тангенс угла между прямыми заданными уравнениями.(16)

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

Тангенс угла между прямыми заданными уравнениями(1.17)
Тангенс угла между прямыми заданными уравнениями.(1.18)

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

Тангенс угла между прямыми заданными уравнениями.

Из определения скалярного произведения двух векторов, имеем:

Тангенс угла между прямыми заданными уравнениями.(1.19)

Из уравнения (19) получим

Тангенс угла между прямыми заданными уравнениямиТангенс угла между прямыми заданными уравнениями.(1.20)

Пример 4. Найти угол между прямыми

5x1−2x2+3=0(1.21)
x1+3x2−1=0.(1.22)
Тангенс угла между прямыми заданными уравнениями(23)
Тангенс угла между прямыми заданными уравнениями

Упростим и решим:

Тангенс угла между прямыми заданными уравнениями
Тангенс угла между прямыми заданными уравнениями

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Тангенс угла между прямыми заданными уравнениями

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

Тангенс угла между прямыми заданными уравнениями.(1.24)

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

Тангенс угла между прямыми заданными уравнениями.(1.25)

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

4x+2y+2=0(1.26)

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

A1A2+B1B2=0.(1.28)

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

4x−1y+2=0(1.29)
2x+8y−14=0.(1.30)

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

Видео:Угол между прямыми в пространстве. 10 класс.Скачать

Угол между прямыми в пространстве. 10 класс.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

Тангенс угла между прямыми заданными уравнениями,(2.1)
Тангенс угла между прямыми заданными уравнениями,(2.2)

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

Тангенс угла между прямыми заданными уравнениями,(2.3)

Из выражения (2.3) получим:

Тангенс угла между прямыми заданными уравнениямиТангенс угла между прямыми заданными уравнениями.(2.4)

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

Тангенс угла между прямыми заданными уравнениями.(2.5)
Тангенс угла между прямыми заданными уравнениями(2.6)
Тангенс угла между прямыми заданными уравнениямиТангенс угла между прямыми заданными уравнениями.
Тангенс угла между прямыми заданными уравнениями.

Упростим и решим:

Тангенс угла между прямыми заданными уравнениями.
Тангенс угла между прямыми заданными уравнениями

Угол между прямыми равен:

Тангенс угла между прямыми заданными уравнениями

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

m1=αm2, p1=αp2, l1=αl2(2.7)

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

Тангенс угла между прямыми заданными уравнениями(2.8)

Отметим, что любую пропорцию Тангенс угла между прямыми заданными уравненияминужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

Тангенс угла между прямыми заданными уравнениями.(2.9)
Тангенс угла между прямыми заданными уравнениями.(2.10)
Тангенс угла между прямыми заданными уравнениями, Тангенс угла между прямыми заданными уравнениями, Тангенс угла между прямыми заданными уравнениями.

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

Тангенс угла между прямыми заданными уравнениями.(2.11)
Тангенс угла между прямыми заданными уравнениями.(2.12)
Тангенс угла между прямыми заданными уравнениями.(2.13)

Выражение (2.13) нужно понимать так:

Тангенс угла между прямыми заданными уравнениями, Тангенс угла между прямыми заданными уравнениями, Тангенс угла между прямыми заданными уравнениями.(2.14)

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

Тангенс угла между прямыми заданными уравнениями.(2.15)

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Тангенс угла между прямыми заданными уравнениями.(2.16)

Пример 3. Определить, перпендикулярны ли прямые

Тангенс угла между прямыми заданными уравнениями(2.17)
Тангенс угла между прямыми заданными уравнениями.(2.18)
Тангенс угла между прямыми заданными уравнениямиТангенс угла между прямыми заданными уравнениями.(2.19)

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

Видео:14. Угол между прямыми в пространствеСкачать

14. Угол между прямыми в пространстве

Угол между прямыми

Видео:§16 Угол между двумя прямыми на плоскостиСкачать

§16 Угол между двумя прямыми на плоскости

Определение угла между прямыми

Тангенс угла между прямыми заданными уравнениями

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k 1· k 2 = 0), то прямые перпендикулярны.

Тангенс угла между прямыми заданными уравнениями

Соответственно легко найти угол между прямыми

tg γ = tg ( α — β ) = tg α — tg β 1 + tg α ·tg β = k 1 — k 2 1 + k 1· k 2

Угол между прямыми через направляющие векторы этих прямых

Тангенс угла между прямыми заданными уравнениями

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано параметрически

x = l t + a y = m t + b

то вектор направляющей имеет вид

Если уравнение прямой задано как

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = — C B значит точка на прямой имеет координаты K(0, — C B ), при y = 0 => x = — C A значит точка на прямой имеет координаты M(- C A , 0). Вектор направляющей KM = .

Если дано каноническое уравнение прямой

то вектор направляющей имеет вид

Если задано уравнение прямой с угловым коэффициентом

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b ), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b ). Вектор направляющей KM =

Угол между прямыми через векторы нормалей этих прямых

Тангенс угла между прямыми заданными уравнениями

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано как

то вектор нормали имеет вид

Если задано уравнение прямой с угловым коэффициентом

то вектор нормали имеет вид

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Тангенс угла между прямыми заданными уравнениями

sin φ = | a · b | | a | · | b |

Видео:9. Угол между плоскостями Условия параллельности и перпендикулярности плоскостейСкачать

9. Угол между плоскостями Условия параллельности и перпендикулярности плоскостей

Примеры задач на вычисления угла между прямыми на плоскости

Тангенс угла между прямыми заданными уравнениями

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k 1 — k 2 1 + k 1· k 2 = 2 — (-3) 1 + 2·(-3) = 5 -5 = 1

Тангенс угла между прямыми заданными уравнениями

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор , для второй прямой направляющий вектор

cos φ = |1 · 2 + 2 · 1| 1 2 + 2 2 · 2 2 + 1 2 = 4 5 · 5 = 0.8

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2 x + 3 y = 0 => y = — 2 3 x ( k 1 = — 2 3 )

x — 2 3 = y 4 => y = 4 3 x — 8 3 ( k 2 = 4 3 )

tg γ = k 1 — k 2 1 + k 1· k 2 = — 2 3 — 4 3 1 + (- 2 3 )· 4 3 = — 6 3 1 — 8 9 = 18

Видео:94. Угол между прямымиСкачать

94. Угол между прямыми

Угол между прямыми в пространстве

cos φ = | a · b | | a | · | b |

Если дано каноническое уравнение прямой

то направляющий вектор имеет вид

Если уравнение прямой задано параметрически

x = l t + a y = m t + b z = n t + c

то направляющий вектор имеет вид

Решение: Так как прямые заданы параметрически, то — направляющий вектор первой прямой, направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0| 2 2 + 1 2 + (-1) 2 · 1 2 + (-2) 2 + 0 2 = 0 6 · 5 = 0

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор .

Преобразуем второе уравнение к каноническому вид.

1 — 3 y = 1 + y -1/3 = y — 1/3 -1/3

3 z — 5 2 = z — 5/3 2/3

Получено уравнение второй прямой в канонической форме

x — 2 -2 = y — 1/3 -1/3 = z — 5/3 2/3

— направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(- 1 3 ) + 5· 2 3 3 2 + 4 2 + 5 2 · (-2) 2 + (- 1 3 ) 2 + ( 2 3 ) 2 = -6 — 4 3 + 10 3 9 + 16 + 25 · 4 + 1 9 + 4 9 = -4 50 · 41/9 = 12 5 82 = 6 82 205

Видео:Угол между прямыми в пространстве. 11 класс.Скачать

Угол между прямыми в пространстве. 11 класс.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Калькулятор онлайн.
Вычисление угла между двумя прямыми

Этот калькулятор онлайн вычисляет угол между двумя прямыми заданными в каноническом виде (для трехмерного пространства):

Онлайн калькулятор для вычисления расстояния от точки до плоскости не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac )

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac )

💥 Видео

найти уравнения биссектрис углов между прямымиСкачать

найти уравнения биссектрис углов между прямыми

Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

Угол между прямыми в пространстве. Практическая часть. 11 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 11 класс.

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Часть 5 Определение угла между прямыми Условия перпендикулярности двух прямыхСкачать

Часть 5 Определение угла между прямыми  Условия перпендикулярности двух прямых

9. Угол между прямымиСкачать

9. Угол между прямыми

Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

Видеоурок "Уравнение прямой с угловым коэффициентом"Скачать

Видеоурок "Уравнение прямой с угловым коэффициентом"

11 класс, 7 урок, Вычисление углов между прямыми и плоскостямиСкачать

11 класс, 7 урок, Вычисление углов между прямыми и плоскостями
Поделиться или сохранить к себе: