Связь между системами дифференциальных уравнений и уравнениями высших порядков

Виды дифференциальных уравнений

Существует целый ряд задач, в которых установить прямую связь между величинами, применяемыми для описания процесса, не получается. Единственное, что можно сделать, это получить равенство, запись которого включает производные исследуемых функций, и решить его. Решение дифференциального уравнения позволяет установить непосредственную связь между величинами.

В этом разделе мы займемся разбором решений дифференциальных уравнений, неизвестная функция в которых является функцией одной переменной. Мы построили теоретическую часть таким образом, чтобы даже человек с нулевым представлением о дифференциальных уравнениях мог без труда получить необходимые знания и справиться с приведенными задачами.

Если какие-то термины окажутся для вас новыми, обратитесь к разделу «Определения и понятия теории дифференциальных уравнений». А тем временем перейдем к рассмотрению вопроса о видах дифференциальных уравнений.

Для каждого из видов дифференциальных уравнений применяется свой метод решения. В этом разделе мы рассмотрим все эти методы, приведем примеры с подробными разборами решения. После ознакомления с темой вам необходимо будет определять вид дифференциального уравнения и выбирать наиболее подходящий из методов решения поставленной задачи.

Возможно, прежде чем приступить к решению дифференциальных уравнений, вам придется освежить в памяти такие темы как «Методы интегрирования» и «Неопределенные интегралы».

Начнем ознакомление с темой мы с видов обыкновенных дифференциальных уравнений 1 -го порядка. Эти уравнения могут быть разрешены относительно производной. Затем перейдем в ОДУ 2 -го и высших порядков. Также мы уделим внимание системам дифференциальных уравнений.

Напомним, что y ‘ = d x d y , если y является функцией аргумента x .

Содержание
  1. Дифференциальные уравнения первого порядка
  2. Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )
  3. Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )
  4. Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )
  5. Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a
  6. Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0
  7. Дифференциальные уравнения второго порядка
  8. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R
  9. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R
  10. Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )
  11. Дифференциальные уравнения высших порядков
  12. Дифференциальные уравнения, допускающие понижение порядка
  13. Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )
  14. Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )
  15. Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2
  16. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. СВЯЗЬ С УРАВНЕНИЯМИ n-ГО ПОРЯДКА. МЕТОД СОБСТВЕННЫХ ВЕКТОРОВ
  17. Дифференциальные уравнения высших порядков
  18. Дифференциальные уравнения высших порядков, решаемые в квадратурах
  19. Уравнения, содержащие переменную и старшую производную
  20. Разрешенные относительно старшей производной
  21. Разрешенные относительно переменной
  22. Общий случай
  23. Уравнения, содержащие только производные порядков n и n-1
  24. Уравнения, содержащие только производные порядков n и n-2
  25. Дифференциальные уравнения высших порядков, допускающие понижение порядка
  26. Уравнения, не содержащие зависимую переменную y в явном виде
  27. Уравнения, не содержащие независимую переменную x в явном виде
  28. Однородные дифференциальные уравнения высших порядков
  29. Уравнения, однородные относительно функции и ее производных
  30. Обобщенно однородные уравнения относительно переменных
  31. Дифференциальные уравнения с полной производной
  32. Линейные дифференциальные уравнения высших порядков
  33. Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним
  34. Линейные однородные уравнения с постоянными коэффициентами
  35. Линейные неоднородные уравнения со специальной неоднородной частью
  36. Линейные неоднородные уравнения с постоянными коэффициентами
  37. Уравнение Эйлера
  38. 💥 Видео

Видео:Дифференциальные уравнения высших порядков, допускающие понижение порядкаСкачать

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Дифференциальные уравнения первого порядка

Простейшие дифференциальные уравнения первого порядка вида y ‘ = f ( x )

Начнем с примеров таких уравнений.

y ‘ = 0 , y ‘ = x + e x — 1 , y ‘ = 2 x x 2 — 7 3

Оптимальным для решения дифференциальных уравнений f ( x ) · y ‘ = g ( x ) является метод деления обеих частей на f ( x ) . Решение относительно производной позволяет нам прийти к уравнению вида y ‘ = g ( x ) f ( x ) . Оно является эквивалентом исходного уравнения при f ( x ) ≠ 0 .

Приведем примеры подобных дифференциальных уравнений:

e x · y ‘ = 2 x + 1 , ( x + 2 ) · y ‘ = 1

Мы можем получить ряд дополнительных решений в тех случаях, когда существуют значения аргумента х , при которых функции f ( x ) и g ( x ) одновременно обращаются в 0 . В качестве дополнительного решения в уравнениях f ( x ) · y ‘ = g ( x ) при заданных значениях аргумента может выступать любая функция, определенная для заданного значения х .

Наличие дополнительных решений возможно для дифференциальных уравнений x · y ‘ = sin x , ( x 2 — x ) · y ‘ = ln ( 2 x 2 — 1 )

Ознакомиться с теоретической частью и примерами решения задач таких уравнений вы можете в разделе «Простейшие дифференциальные уравнения 1 -го порядка».

Дифференциальные уравнения с разделяющимися переменными вида f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x )

Поговорим теперь об уравнениях с разделенными переменными, которые имеют вид f ( y ) d y = g ( x ) d x . Как следует из названия, к данному виду дифференциальных уравнений относятся выражения, которые содержат переменные х и у , разделенные знаком равенства. Переменные находятся в разных частях уравнения, по обе стороны от знака равенства.

Решить уравнения с разделенными переменными можно путем интегрирования обеих его частей: ∫ f ( y ) d y = ∫ f ( x ) d x

К числу дифференциальных уравнений с разделенными переменными можно отнести следующие из них:

y 2 3 d y = sin x d x , e y d y = ( x + sin 2 x ) d x

Для того, чтобы прийти от ДУ с разделяющимися переменными к ДУ с разделенными переменными, необходимо разделить обе части уравнения на произведение f 2 ( y ) ⋅ g 1 ( x ) . Так мы придем к уравнению f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x . Преобразование можно будет считать эквивалентным в том случае, если одновременно f 2 ( y ) ≠ 0 и g 1 ( x ) ≠ 0 . Если хоть одно из условий не будет соблюдаться, мы можем потерять часть решений.

В качестве примеров дифференциальных уравнений с разделяющимися переменными можно привести следующие из них: d y d x = y · ( x 2 + e x ) , ( y 2 + a r c cos y ) · sin x · y ‘ = cos x y .

К уравнениям с разделяющимися переменными мы можем прийти от ряда дифференциальных уравнений других видов путем замены переменных. Например, мы можем подставить в исходное уравнение z = a x + b y . Это позволит нам перейти к дифференциальному уравнению с разделяющимися переменными от дифференциального уравнения вида y ‘ = f ( a x + b y ) , a , b ∈ R .

Подставив z = 2 x + 3 y в уравнение y ‘ = 1 e 2 x + 3 y получаем d z d x = 3 + 2 e z e z .

Заменив z = x y или z = y x в выражениях y ‘ = f x y или y ‘ = f y x , мы переходим к уравнениям с разделяющимися переменными.

Если произвести замену z = y x в исходном уравнении y ‘ = y x · ln y x + 1 , получаем x · d z d x = z · ln z .

В ряде случаев прежде, чем производить замену, необходимо произвести преобразования исходного уравнения.

Предположим, что в условии задачи нам дано уравнение y ‘ = y 2 — x 2 2 x y . Нам необходимо привести его к виду y ‘ = f x y или y ‘ = f y x . Для этого нам нужно разделить числитель и знаменатель правой части исходного выражения на x 2 или y 2 .

Нам дано уравнение y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R .

Для того, чтобы привести исходное уравнение к виду y ‘ = f x y или y ‘ = f y x , нам необходимо ввести новые переменные u = x — x 1 v = y — y 1 , где ( x 1 ; y 1 ) является решением системы уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0

Введение новых переменных u = x — 1 v = y — 2 в исходное уравнение y ‘ = 5 x — y — 3 3 x + 2 y — 7 позволяет нам получить уравнение вида d v d u = 5 u — v 3 u + 2 v .

Теперь выполним деление числителя и знаменателя правой части уравнения на u . Также примем, что z = u v . Получаем дифференциальное уравнение с разделяющимися переменными u · d z d u = 5 — 4 z — 2 z 2 3 + 2 z .

Подробный разбор теории и алгоритмов решения задач мы привели в разделе «Дифференциальные уравнения с разделяющимися переменными».

Линейные неоднородные дифференциальные уравнения первого порядка y ‘ + P ( x ) · y = Q ( x )

Приведем примеры таких уравнений.

К числу линейных неоднородных дифференциальных уравнений 1 -го порядка относятся:

y ‘ — 2 x y 1 + x 2 = 1 + x 2 ; y ‘ — x y = — ( 1 + x ) e — x

Для решения уравнений этого вида применяется метод вариации произвольной постоянной. Также мы можем представить искомую функцию у в виде произведения y ( x ) = u ( x ) v ( x ) . Алгоритмы применения обоих методов мы привели в разделе «Линейные неоднородные дифференциальные уравнения первого порядка».

Дифференциальное уравнение Бернулли y ‘ + P ( x ) y = Q ( x ) y a

Приведем примеры подобных уравнений.

К числу дифференциальных уравнений Бернулли можно отнести:

y ‘ + x y = ( 1 + x ) e — x y 2 3 ; y ‘ + y x 2 + 1 = a r c t g x x 2 + 1 · y 2

Для решения уравнений этого вида можно применить метод подстановки z = y 1 — a , которая выполняется для того, чтобы свести исходное уравнение к линейному дифференциальному уравнению 1 -го порядка. Также применим метод представления функции у в качестве y ( x ) = u ( x ) v ( x ) .

Алгоритм применения обоих методов приведен в разделе «Дифференциальное уравнение Бернулли». Там же можно найти подробный разбор решения примеров по теме.

Уравнения в полных дифференциалах P ( x , y ) d x + Q ( x , y ) d y = 0

Если для любых значений x и y выполняется ∂ P ( x , y ) ∂ y = ∂ Q ( x , y ) ∂ x , то этого условия необходимо и достаточно, чтобы выражение P ( x , y ) d x + Q ( x , y ) d y представляло собой полный дифференциал некоторой функции U ( x , y ) = 0 , то есть, d U ( x , y ) = P ( x , y ) d x + Q ( x , y ) d y . Таким образом, задача сводится к восстановлению функции U ( x , y ) = 0 по ее полному дифференциалу.

Выражение, расположенное в левой части записи уравнения ( x 2 — y 2 ) d x — 2 x y d y = 0 представляет собой полный дифференциал функции x 3 3 — x y 2 + C = 0

Для более подробного ознакомления с теорией и алгоритмами решения примеров можно обратиться к разделу «Уравнения в полных дифференциалах».

Видео:Дифференциальные уравнения, 9 урок, Линейные дифференциальные уравнения высших порядковСкачать

Дифференциальные уравнения, 9 урок, Линейные дифференциальные уравнения высших порядков

Дифференциальные уравнения второго порядка

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = 0 , p , q ∈ R

Линейное однородное дифференциальное уравнение с постоянными коэффициентами обычно решается достаточно просто. Нам необходимо найти корни характеристического уравнения k 2 + p k + q = 0 . Здесь возможны три варианта в зависимости от различных p и q :

  • действительные и различающиеся корни характеристического уравнения k 1 ≠ k 2 , k 1 , k 2 ∈ R ;
  • действительные и совпадающие k 1 = k 2 = k , k ∈ R ;
  • комплексно сопряженные k 1 = α + i · β , k 2 = α — i · β .

Значения корней характеристического уравнения определяет, как будет записано общее решение дифференциального уравнения. Возможные варианты:

  • y = C 1 e k 1 x + C 2 e k 2 x ;
  • y = C 1 e k x + C 2 x e k x ;
  • y = e a · x · ( C 1 cos β x + C 2 sin β x ) .

Пример 13

Предположим, что у нас есть линейное однородное дифференциальное уравнение 2 -го порядка с постоянными коэффициентами y ‘ ‘ + 3 y ‘ = 0 . Найдем корни характеристического уравнения k 2 + 3 k = 0 . Это действительные и различные k 1 = — 3 и k 2 = 0 . Это значит, что общее решение исходного уравнения будет иметь вид:

y = C 1 e k 1 x + C 2 e k 2 x ⇔ y = C 1 e — 3 x + C 2 e 0 x ⇔ y = C 1 e — 3 x + C 2

Восполнить пробелы в теоретической части и посмотреть подробный разбор примеров по теме можно в статье «Линейные однородные дифференциальные уравнения 2 -го порядка с постоянными коэффициентами».

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами y ‘ ‘ + p y ‘ + q y = f ( x ) , p , q ∈ R

Основным способом решение уравнений данного вида является нахождение суммы общего решения y 0 , которое соответствует линейному однородному дифференциальному уравнению y ‘ ‘ + p y ‘ + q y = 0 , и частного решения y

исходного уравнения. Получаем: y = y 0 + y

Способ нахождения y 0 мы рассмотрели в предыдущем пункте. Найти частное решение y

мы можем методом неопределенных коэффициентов при определенном виде функции f ( x ) , которая расположена в правой части записи исходного выражения. Также применим метод вариации произвольных постоянных.

К числу линейных неоднородных дифференциальных уравнений 2 -го порядка с постоянными коэффициентами относятся:

y ‘ ‘ — 2 y ‘ = ( x 2 + 1 ) e x ; y ‘ ‘ + 36 y = 24 sin ( 6 x ) — 12 cos ( 6 x ) + 36 e 6 x

Теоретические выкладки и подробный разбор примеров по теме можно найти в разделе «ЛНДУ 2 -го порядка с постоянными коэффициентами».

Линейные однородные дифференциальные уравнения (ЛОДУ) y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x )

Линейные однородные и неоднородные дифференциальные уравнения и постоянными коэффициентами являются частными случаями дифференциальных уравнений этого вида.

На некотором отрезке [ a ; b ] общее решение линейного однородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = 0 представлено линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, y = C 1 y 1 + C 2 y 2 .

Частные решения мы можем выбрать из систем независимых функций:

1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 x , e k 2 x , . . . , e k n x 3 ) e k 1 x , x · e k 1 x , . . . , x n 1 · e k 1 x , e k 2 x , x · e k 2 x , . . . , x n 2 · e k 2 x , . . . e k p x , x · e k p x , . . . , x n p · e k p x 4 ) 1 , c h x , s h x

Однако существуют примеру уравнений, для которых частные решения не могут быть представлены в таком виде.

Возьмем для примера линейное однородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = 0 .

Общее решение линейного неоднородного дифференциального уравнения y ‘ ‘ + p ( x ) · y ‘ + q ( x ) · y = f ( x ) мы можем найти в виде суммы y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

частное решение исходного дифференциального уравнения. Найти y 0 можно описанным выше способом. Определить y

нам поможет метод вариации произвольных постоянных.

Возьмем для примера линейное неоднородное дифференциальное уравнение x y ‘ ‘ — x y ‘ + y = x 2 + 1 .

Более подробно этот раздел освещен на странице «Линейные дифференциальные уравнения второго порядка».

Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Дифференциальные уравнения высших порядков

Дифференциальные уравнения, допускающие понижение порядка

Мы можем провести замену y ( k ) = p ( x ) для того, чтобы понизить порядок исходного дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , которое не содержит искомой функции и ее производных до k — 1 порядка.

В этом случае y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p ‘ ‘ ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) , и исходное дифференциальное уравнение сведется к F 1 ( x , p , p ‘ , . . . , p ( n — k ) ) = 0 . После нахождения его решения p ( x ) останется вернуться к замене y ( k ) = p ( x ) и определить неизвестную функцию y .

Дифференциальное уравнение y ‘ ‘ ‘ x ln ( x ) = y ‘ ‘ после замены y ‘ ‘ = p ( x ) станет уравнением с разделяющимися переменными y ‘ ‘ = p ( x ) , и его порядок с третьего понизится до первого.

В уравнении, которое не содержит аргумента х и имеет вид F ( y , y ‘ , y ‘ ‘ , . . . , y ( n ) ) = 0 , порядок может быть заменен на единицу следующим образом: необходимо провести замену d y d x = p ( y ) , где p ( y ( x ) ) будет сложной функцией. Применив правило дифференцирования, получаем:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y )
Полученный результаты подставляем в исходное выражение. При этом мы получим дифференциальное уравнение, порядок которого на единицу меньше, чем у исходного.

Рассмотрим решение уравнения 4 y 3 y ‘ ‘ = y 4 — 1 . Путем замены d y d x = p ( y ) приведем исходное выражение к уравнению с разделяющимися переменными 4 y 3 p d p d y = y 4 — 1 .

Более подробно решения задач по теме рассмотрены в разделе «Дифференциальные уравнения, допускающие понижение порядка».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = 0 и y ( n ) + f n — 1 · y ( n — 1 ) + . . . + f 1 · y ‘ + f 0 · y = f ( x )

Решение уравнений данного вида предполагает выполнение следующих простых шагов:

  • находим корни характеристического уравнения k n + f n — 1 · k n — 1 + . . . + f 1 · k + f 0 = 0 ;
  • записываем общее решение ЛОДУ y 0 в стандартной форме, а общее решение ЛНДУ представляем суммой y = y 0 + y

— частное решение неоднородного дифференциального уравнения.

Нахождение корней характеристического уравнения подробно описано в разделе «Решение уравнений высших степеней». Для нахождения y

целесообразно использовать метод вариации произвольных постоянных.

Линейному неоднородному ДУ с постоянными коэффициентами y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = x cos x + sin x соответствует линейное однородное ДУ y ( 4 ) + y ( 3 ) — 5 y ‘ ‘ + y ‘ — 6 y = 0 .

Более детальный разбор теории и примеров по теме вы можете найти на странице « Линейные однородные и неоднородные дифференциальные уравнения высших порядков с постоянными коэффициентами».

Линейные однородные и неоднородные дифференциальные уравнения высших порядков y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 и y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = f ( x )

Найти решение ЛНДУ высших порядков можно благодаря сумме y = y 0 + y

, где y 0 — общее решение соответствующего ЛОДУ, а y

— частное решение неоднородного дифференциального уравнения.

y 0 представляет собой линейную комбинацию линейно независимых функций y 1 , y 2 , . . . , y n , каждая из которых является частным решением ЛОДУ, то есть, обращает равенство y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 1 ( x ) · y ‘ + f 0 ( x ) · y = 0 в тождество. Частные решения y 1 , y 2 , . . . , y n обычно подбираются из известных систем линейно независимых функций. Подобрать их далеко не всегда просто и возможно, в этом и заключается основная проблема.

После того, как мы найдем общее решение ЛОДУ, найти частное решение соответствующего ЛНДУ можно благодаря методу вариации произвольных постоянных. Итак, y = y 0 + y

Получить более подробную информацию по теме можно в разделе «Дифференциальные уравнения высших порядков».

Видео:14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Системы дифференциальных уравнений вида d x d t = a 1 x + b 1 y + c 1 d y d t = a 2 x + b 2 y + c 2

Данная тема подробно разобрана на странице «Системы дифференциальных уравнений». Там же приведены примеры задач с подробных разбором.

Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. СВЯЗЬ С УРАВНЕНИЯМИ n-ГО ПОРЯДКА. МЕТОД СОБСТВЕННЫХ ВЕКТОРОВ

Дадим основные определения, связанные с системами линейных дифференциальных уравнений.

1. Если система к дифференциальных уравнений, связывающая независимую переменную х и к функций уДх), . уА(х), разрешена относительно старших производных этих функций yf A) (x), . у[ Рк х), т.е. имеет вид

Связь между системами дифференциальных уравнений и уравнениями высших порядков

то она называется канонической, причем число п = р1 + р2 +. + рк называется порядком системы.

Каноническая система (17.33) при рх = р2 = . = pk = 1, т.е. система дифференциальных уравнений 1-го порядка

Связь между системами дифференциальных уравнений и уравнениями высших порядков

называется нормальной системой порядка п.

  • 2. Решением системы (17.34) на интервале а ^

Пример 17.35. Решить систему уравнений У У7 сведя

ее к одному уравнению второго порядка.

? Выразим у2 из первого уравнения: у2 = 4у <— у[. Подставим это выражение во второе уравнение: (4уху[)’ = -6ух + 3(4^ — у[), откуда получаем для функции у, уравнение второго порядка: у»- 7у[ + 6ух = = 0. Его характеристическое уравнение имеет корни = 1, Х2 = 6. Следовательно, ух = С<е х + С2е 6х .

Теперь находим функцию у2:

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Таким образом, общее решение системы имеет вид

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Задача Коши для системы (17.34) ставится следующим образом: найти решение у^х), . уя(х) системы (17.34), удовлетворяющее начальным условиям

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Определение. Общим решением системы (17.34) называется совокупность функций

Связь между системами дифференциальных уравнений и уравнениями высших порядков

зависящих от п произвольных постоянных, которые при любых допустимых значениях постоянных Сх, С2, . Сп обращают уравнения системы (17.34) в тождества, и в области, в которой выполнены условия теоремы Коши, из совокупности функции (17.36) можно получить решение любой задачи Коши.

Рассмотрим некоторые методы интегрирования нормальных систем.

Одним из методов решения систем дифференциальных уравнений является метод исключения неизвестных, который сводит систему уравнений к одному или нескольким дифференциальным уравнениям с одной неизвестной функцией в каждом. Поясним это на примерах.

Пример 17.36. Найти общее решение системы дифференциальных уравнений

Связь между системами дифференциальных уравнений и уравнениями высших порядков

и частное решение, удовлетворяющее начальным условиям у(1) = 1, z <1) = -1.

  • ? Выражаем z из первого уравнения системы z = — — + у
  • 2 Vdx )

и подставляем во второе уравнение:

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Дифференцируя по х выражения, стоящие в скобках, получаем

Связь между системами дифференциальных уравнений и уравнениями высших порядков

линейное однородное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение X 2 + 1 = О имеет корни = Х2 = 1. Записываем общее решение у(х) = Схе х + + С2хе х , СХ2 е R. Тогда

Связь между системами дифференциальных уравнений и уравнениями высших порядков

образует общее решение заданной системы дифференциальных уравнений.

Для нахождения частного решения используем начальные условия у(1) = 1, z(l) = -1. Получаем: 1 = Схе + С2е, -1 = Схе + -С2е. 7 4

Итак, система функций у(х) = Q — jxle* -1 , z(x) = ^

и есть искомое частное решение. ?

Не всякую систему дифференциальных уравнений можно свести к одному уравнению.

Пример 17.37. Показать, что систему дифференциальных уравнений Связь между системами дифференциальных уравнений и уравнениями высших порядков

нельзя свести к одному уравнению и найти общее решение этой системы.

  • ? Действительно, подставив во второе уравнение вместо у’ его значение ху, получим два не связанных между собой дифференциальных уравнения, каждое из которых содержит только одну функцию: у’ = ху, z’ = z.
  • 2 /2

Отсюда легко получить общее решение системы, у = Схе и z = С2е х , где Cl5 С2 g R. ?

Другим методом интегрирования систем дифференциальных уравнений является метод выделения интегрируемых комбинаций, т.е. получение из системы (17.34) такого уравнения, которое можно проинтегрировать и получить первый интеграл. Если найдены п независимых первых интегралов системы (17.34), то их совокупность дает общий интеграл.

Пример 17.38. Найти общий интеграл системы дифференциальных уравнений Связь между системами дифференциальных уравнений и уравнениями высших порядков

? Умножим обе части второго уравнения системы на е

х и сложим их с соответствующими частями первого уравнения и с тождеством -e

x zY + у’ = 0, откуда e

x z + у = С<. Это первый интеграл системы.

Теперь умножим обе части второго уравнения системы на е

и сложим с равенствами -e

y z— и х’ = 1, получим

y zY + х’ = 0, откуда e

y z + х = С2. Это тоже первый интеграл системы. Так как якобиан системы

Связь между системами дифференциальных уравнений и уравнениями высших порядков

отличен от нуля (проверьте!), то оба первых интеграла независимы между собой, поэтому их совокупность неявно определяет общее решение заданной системы уравнений. ?

Для выделения интегрируемых комбинаций из системы (17.34) удобнее записать ее в так называемой симметрической форме: Связь между системами дифференциальных уравнений и уравнениями высших порядков

Связь между системами дифференциальных уравнений и уравнениями высших порядков

и использовать следующие свойства равных дробей: если —- = — =

= . = — = у, то при любых ocj, ос2, ап имеет место соотношение

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Числа оц, ос2, . аи подбираются обычно таким образом, чтобы числитель в (17.38) был полным дифференциалом знаменателя или же был равен нулю.

В соотношении (17.38) независимая переменная и искомая функции равноправны.

Пример 17.39. Найти общее решение системы уравнений

Связь между системами дифференциальных уравнений и уравнениями высших порядков

? Запишем систему в симметрической форме:

Связь между системами дифференциальных уравнений и уравнениями высших порядков

и воспользуемся соотношением (17.38). Выбираем ocj = т, а2 = п и а3 = /, тогда

Связь между системами дифференциальных уравнений и уравнениями высших порядков

т.е. d(mx + пу + lz) = 0, откуда

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Аналогичным образом, выбирая = 2х, а2 = 2у и а3 = 2z, приходим к равенству d(x 2 + у 2 + z 2 ) = 0, откуда

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Соотношения (17.39) и (17.40) образуют два первых интеграла системы, неявно определяющих общее решение. ?

Рассмотрим подробнее линейные однородные системы дифференциальных уравнений.

Нормальная линейная однородная система п -го порядка имеет вид

Связь между системами дифференциальных уравнений и уравнениями высших порядков

или в матричной форме Связь между системами дифференциальных уравнений и уравнениями высших порядковгде

Связь между системами дифференциальных уравнений и уравнениями высших порядков

В области непрерывности коэффициентов a^t), (i,j = 1, 2,п), система (17.42) удовлетворяет условиям теоремы существования и единственности решения задачи Коши.

Фундаментальной системой решений системы (17.41) называется совокупность произвольных п линейно независимых решений

Если Xk(t), (к = 1,2. п), — фундаментальная система решений

системы (17.41), то общее решение имеет вид X(t) = ^CkXk(t), где

Интегрирование системы (17.41) обычно проводится методом исключения.

В частном случае систем с постоянными коэффициентами, когда матрица A(t) в правой части (17.42) не зависит от t, для отыскания фундаментальной системы решений системы Xk(t), (к = 1, 2, . п) могут быть использованы методы линейной алгебры.

Из характеристического уравнения

Связь между системами дифференциальных уравнений и уравнениями высших порядков

находятся различные корни Х2, ks и для всякого числа А, (с учетом его кратности) определяются соответствующие ему частные линейно независимые решения X^ ). Общее решение системы (17.42) имеет вид

Связь между системами дифференциальных уравнений и уравнениями высших порядков

При этом возможны следующие случаи.

Случай 1.Х — действительный корень кратности 1. Тогда ему соответствует решение Сме х ‘, где С — произвольная постоянная, о — собственный вектор матрицы А, соответствующий числу X.

Пример 17.40. Найти общее решение системы 1 = , соответствующий Х <= 5, определя-

ется из условия Ах>, = или = .Получаем

собственный вектор = f^l и соответствующее корню Х <= 5

частное решение имеет вид X^ l ) = 1 e 5t .

Аналогично для Х2 = -1 находим собственный вектор п2 = J

и соответствующее частное решение X^(t) = е ч . Общее решение исходной системы имеет вид

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Случай 2.Х — комплексный корень кратности 1. Тогда корнем характеристического уравнения (17.42) является также и сопряженное с X число X. Вместо комплексных частных решений X^ )

и X^ x ) следует взять действительные частные решения X[ x *(t) = = ReX (X) (t) иХ$ Х) (0 = lmX (X) (t).

Пример 17.41. Найти общее решение системы ,

  • 1-Х 1 2
  • ? Характеристическое уравнение = 0, или X -4Х +
  • —2 3 — Л,

+ 5 = 0, имеет комплексно сопряженные корни Хх2 = 2 ± /.

Для нахождения собственного вектора v = , соответству-

ющего корню X = 2 +i, получаем систему 1 «i

Используя равенство е (2+,)/ = e 2t+lt = e 2t (cost + /sin/), запишем Связь между системами дифференциальных уравнений и уравнениями высших порядковОтсюда пара действительных решений имеет вид:

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Окончательно получаем общее решение: Связь между системами дифференциальных уравнений и уравнениями высших порядков

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Случай 3. Если для кратного корня X кратности к имеется столько линейно независимых собственных векторов )1? . г»*, какова его кратность, то ему соответствует решение +. + Скх>ке ь .

Если же для кратного корня X кратности к имеется только т линейно независимых собственных векторов, и т 2t :

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Приравнивая коэффициенты при одинаковых степенях /, получаем

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Итак, общее решение исходной системы имеет вид

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Описанный метод нахождения решения системы линейных однородных дифференциальных уравнений (17.41) носит название метод собственных векторов.

Пример 17.43. Найти частное решение системы дифференциальных уравнений

Связь между системами дифференциальных уравнений и уравнениями высших порядков

удовлетворяющее начальному условию х(0) = 0, у(0) = 1, z(0) = -2.

  • -Х -1 1
  • ? Характеристическое уравнение 1 1 — X -1=0 имеет
  • 2 -1 -X

Для корня Х <= 1 из матричного уравнения (А — Xl?)vl = О нахо-

Видео:Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентам

Дифференциальные уравнения высших порядков

Связь между системами дифференциальных уравнений и уравнениями высших порядков

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Дифференциальные уравнения высших порядков, решаемые в квадратурах

Уравнения, содержащие переменную и старшую производную

Разрешенные относительно старшей производной

Рассмотрим дифференциальное уравнение следующего вида:
.
Интегрируем n раз.
;
;
и так далее. Так же можно использовать формулу:
.
См. Дифференциальные уравнения, решающиеся непосредственным интегрированием

Разрешенные относительно переменной

Рассмотрим дифференциальное уравнение, в котором независимая переменная x является функцией от старшей производной:
.
Это уравнение можно решить параметрическим методом. Для этого вводим параметр . В результате получаем:
;
.
Из последнего уравнения . Интегрируя, получаем зависимость производной от x в параметрическом виде:
.
Продолжая интегрирование аналогичным образом, получим зависимость y от x в параметрическом виде.

Общий случай

Рассмотрим дифференциальное уравнение, содержащее только независимую переменную и старшую производную общего вида:
.
Его можно решить в квадратурах в параметрическом виде, если удастся подобрать такие функции и , для которых .

Если такие функции найдены, то положим . Тогда исходное уравнение выполняется автоматически. Дифференцируя первую функцию, находим связь между дифференциалами переменных x и t : . Тогда
.
Интегрируя последнее соотношение, получаем решение для производной более низкого порядка в параметрическом виде. Продолжая действовать подобным способом, получим общее решение в квадратурах.

Уравнения, содержащие только производные порядков n и n-1

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-1-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Тогда положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению .

Тогда
;
.
Интегрируя эти уравнения, получим параметрическое представление производной порядка n – 2 . Продолжая подобным образом, получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Уравнения, содержащие только производные порядков n и n-2

Рассмотрим дифференциальное уравнение, содержащее только производные n-го и n-2-го порядков:
.
Его можно решить в квадратурах, если удастся найти такие функции и , которые удовлетворяют уравнению
.
Положим
.
Считаем, что такое параметрическое представление эквивалентно исходному уравнению.

Тогда
;
;
;
;
.
Интегрируя, получим параметрическое представление производных порядка n, n – 1 и n – 2 . Далее интегрируем как в предыдущем случае ⇑. В результате получаем выражения остальных производных и самой функции y через параметр t .
Подробнее, см. здесь.

Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Уравнения, не содержащие зависимую переменную y в явном виде

Подстановка приводит к понижению порядка уравнения на единицу. Здесь – функция от .
См. Дифференциальные уравнения высших порядков, не содержащие функцию в явном виде

Уравнения, не содержащие независимую переменную x в явном виде

Для решения этого уравнения, делаем подстановку
.
Считаем, что является функцией от . Тогда
.
Аналогично для остальных производных. В результате порядок уравнения понижается на единицу.
См. Дифференциальные уравнения высших порядков, не содержащие переменную в явном виде

Однородные дифференциальные уравнения высших порядков

Уравнения, однородные относительно функции и ее производных

Дифференциальное уравнение

является однородным относительно функции и ее производных, если оно обладает свойством:
.
Здесь t – число или любая функция; число p называют показателем однородности.

Чтобы распознать такое уравнение, нужно сделать замену
.
Если после преобразований t сократится, то это однородное уравнение.

Для его решения делаем подстановку
,
где – функция от . Тогда
.
Аналогично преобразуем производные и т.д. В результате порядок уравнения понижается на единицу.
См. Однородные относительно функции и ее производных дифференциальные уравнения высших порядков

Обобщенно однородные уравнения относительно переменных

Теперь рассмотрим дифференциальные уравнения, которые не меняют вида, если сделать замену переменных: , где c – постоянная; s – измерение однородности для переменной y. При такой замене производная порядка m умножается на :
.
Если записать исходное уравнение в общем виде:
,
то оно является обобщенно однородным относительно переменных, если обладает свойством:
,
где t – число или любая функция; p – показатель однородности.

При подобные уравнения можно назвать однородными дифференциальными уравнениями относительно переменных.

Порядок такого уравнения можно понизить на единицу, если искать решение в параметрическом виде, и перейти от зависимой переменной (функции) y к новой зависимой переменной (новой функции) с помощью подстановок:
, где t – параметр.
В результате для функции получим дифференциальное уравнение n — го порядка, которое не содержит переменную t в явном виде. Далее понижаем порядок изложенным выше методом ⇑.
См. Обобщенно однородные дифференциальные уравнения относительно переменных высших порядков

Дифференциальные уравнения с полной производной

Это уравнения, которые можно привести к полной производной:
.
Отсюда сразу получаем первый интеграл:
.
Он представляет собой дифференциальное уравнение, на единицу меньшего порядка по сравнению с исходным уравнением .

В качестве примера рассмотрим дифференциальное уравнение второго порядка:
.
Разделим его на . Тогда
.
Отсюда получаем первый интеграл, который является дифференциальным уравнением первого порядка:
.
См. Дифференциальные уравнения высших порядков с полной производной.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Линейные дифференциальные уравнения высших порядков

Рассмотрим линейное однородное дифференциальное уравнение n-го порядка:
(1) ,
где – функции от независимой переменной . Пусть есть n линейно независимых решений этого уравнения. Тогда общее решение уравнения (1) имеет вид:
(2) ,
где – произвольные постоянные. Сами функции образуют фундаментальную систему решений.
Фундаментальная система решений линейного однородного уравнения n-го порядка – это n линейно независимых решений этого уравнения.

Рассмотрим линейное неоднородное дифференциальное уравнение n-го порядка:
.
Пусть есть частное (любое) решение этого уравнения. Тогда общее решение имеет вид:
,
где – общее решение однородного уравнения (1).

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Линейные дифференциальные уравнения с постоянными коэффициентами и приводящиеся к ним

Линейные однородные уравнения с постоянными коэффициентами

Это уравнения вида:
(3) .
Здесь – действительные числа. Чтобы найти общее решение этого уравнения, нам нужно найти n линейно независимых решений , которые образуют фундаментальную систему решений. Тогда общее решение определяется по формуле (2):
(2) .

Ищем решение в виде . Получаем характеристическое уравнение:
(4) .

Если это уравнение имеет различные корни , то фундаментальная система решений имеет вид:
.

Если имеется комплексный корень
,
то существует и комплексно сопряженный корень . Этим двум корням соответствуют решения и , которые включаем в фундаментальную систему вместо комплексных решений и .

Кратным корням кратности соответствуют линейно независимых решений: .

Кратным комплексным корням кратности и их комплексно сопряженным значениям соответствуют линейно независимых решений:
.

Линейные неоднородные уравнения со специальной неоднородной частью

Рассмотрим уравнение вида
,
где – многочлены степеней s 1 и s 2 ; – постоянные.

Сначала мы ищем общее решение однородного уравнения (3). Если характеристическое уравнение (4) не содержит корень , то ищем частное решение в виде:
,
где
;
;
s – наибольшее из s 1 и s 2 .

Если характеристическое уравнение (4) имеет корень кратности , то ищем частное решение в виде:
.

После этого получаем общее решение:
.

Линейные неоднородные уравнения с постоянными коэффициентами

Здесь возможны три способа решения.

1) Метод Бернулли.
Сначала находим любое, отличное от нуля, решение однородного уравнения
.
Затем делаем подстановку
,
где – функция от переменной x . Получаем дифференциальное уравнение для u , которое содержит только производные от u по x . Выполняя подстановку , получаем уравнение n – 1 — го порядка.

2) Метод линейной подстановки.
Сделаем подстановку
,
где – один из корней характеристического уравнения (4). В результате получим линейное неоднородное уравнение с постоянными коэффициентами порядка . Последовательно применяя такую подстановку, приведем исходное уравнение к уравнению первого порядка.

3) Метод вариации постоянных Лагранжа.
В этом методе мы сначала решаем однородное уравнение (3). Его решение имеет вид:
(2) .
Далее мы считаем, что постоянные являются функциями от переменной x . Тогда решение исходного уравнения имеет вид:
,
где – неизвестные функции. Подставляя в исходное уравнение и накладывая на некоторые ограничения, получаем уравнения, из которых можно найти вид функций .

Уравнение Эйлера

Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
.
Однако, для решения уравнения Эйлера, делать такую подстановку нет необходимости. Можно сразу искать решение однородного уравнения в виде
.
В результате получим такие же правила, как и для уравнения с постоянными коэффициентами, в которых вместо переменной нужно подставить .

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 13-06-2017 Изменено: 11-05-2021

💥 Видео

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Системы дифференциальных уравнений. Часть 2Скачать

Системы дифференциальных уравнений. Часть 2

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Дифференциальные уравнения высших порядков, допускающие понижение порядка. Часть 3Скачать

Дифференциальные уравнения высших порядков, допускающие понижение порядка. Часть 3

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать

Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.
Поделиться или сохранить к себе: