Свойство эффективности оценки коэффициента уравнения регрессии

Эффективность МНК-оценок метода наименьших квадратов

Свойство эффективности оценок неизвестных параметров модели регрессии, полученных методом наименьших квадратов, доказывается с помощью теоремы Гаусса-Маркова.

Сделаем следующие предположения о модели парной регрессии:

1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии βi;

Свойство эффективности оценки коэффициента уравнения регрессии

2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:

Свойство эффективности оценки коэффициента уравнения регрессии

3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:;

Свойство эффективности оценки коэффициента уравнения регрессии

4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю):

Свойство эффективности оценки коэффициента уравнения регрессии

Это условие выполняется в том случае, если исходные данные не являются временными рядами;

5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G 2 : εi

Если выдвинутые предположения справедливы, то оценки неизвестных параметров модели парной регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров β0и β1.

Если выдвинутые предположения справедливы для модели множественной регрессии, то оценки неизвестных параметров данной модели регрессии, полученные методом наименьших квадратов, имеют наименьшую дисперсию в классе всех линейных несмещённых оценок, т. е. МНК-оценки можно считать эффективными оценками неизвестных параметров β0…βn.

Для обозначения дисперсий МНК-оценок неизвестных параметров модели регрессии используется матрица ковариаций.

Матрицей ковариаций МНК-оценок параметров линейной модели парной регрессии называется выражение вида:

Свойство эффективности оценки коэффициента уравнения регрессии

Свойство эффективности оценки коэффициента уравнения регрессии– дисперсия МНК-оценки параметра модели регрессии β0;

Свойство эффективности оценки коэффициента уравнения регрессии– дисперсия МНК-оценки параметра модели регрессии β1.

Матрицей ковариаций МНК-оценок параметров линейной модели множественной регрессии называется выражение вида:

Свойство эффективности оценки коэффициента уравнения регрессии

где G 2 (ε) – это дисперсия случайной ошибки модели регрессии ε.

Для линейной модели парной регрессии дисперсии оценок неизвестных параметров определяются по формулам:

1) дисперсия МНК-оценки коэффициента модели регрессии β0:

Свойство эффективности оценки коэффициента уравнения регрессии

2) дисперсия МНК-оценки коэффициента модели регрессии β1:

Свойство эффективности оценки коэффициента уравнения регрессии

где G 2 (ε) – дисперсия случайной ошибки уравнения регрессии β;

G 2 (x) – дисперсия независимой переменой модели регрессии х;

n – объём выборочной совокупности.

В связи с тем, что на практике значение дисперсии случайной ошибки модели регрессии G 2 (ε) неизвестно, для вычисления матрицы ковариаций МНК-оценок применяют оценку дисперсии случайной ошибки модели регрессии S2(ε).

Для линейной модели парной регрессии оценка дисперсии случайной ошибки определяется по формуле:

Свойство эффективности оценки коэффициента уравнения регрессии

Свойство эффективности оценки коэффициента уравнения регрессии– это остатки регрессионной модели, которые рассчитываются как

Свойство эффективности оценки коэффициента уравнения регрессии

Тогда оценка дисперсии МНК-оценки коэффициента β0 линейной модели парной регрессии будет определяться по формуле:

Свойство эффективности оценки коэффициента уравнения регрессии

Оценка дисперсии МНК-оценки коэффициента β1 линейной модели парной регрессии будет определяться по формуле:

Свойство эффективности оценки коэффициента уравнения регрессии

Для модели множественной регрессии общую формулу расчёта матрицы ковариаций МНК-оценок коэффициентов на основе оценки дисперсии случайной ошибки модели регрессии можно записать следующим образом:

Видео:Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)Скачать

Простые показатели качества модели регрессии (R2, критерии Акаике и Шварца)

Оценка параметров уравнения регреcсии. Пример

Задание:
По группе предприятий, выпускающих один и тот же вид продукции, рассматриваются функции издержек:
y = α + βx;
y = α x β ;
y = α β x ;
y = α + β / x;
где y – затраты на производство, тыс. д. е.
x – выпуск продукции, тыс. ед.

Требуется:
1. Построить уравнения парной регрессии y от x :

  • линейное;
  • степенное;
  • показательное;
  • равносторонней гиперболы.

2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации. Сделать выводы.
3. Оценить статистическую значимость уравнения регрессии в целом.
4. Оценить статистическую значимость параметров регрессии и корреляции.
5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции, составляющем 195 % от среднего уровня.
6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный интервал.
7. Оценить модель через среднюю ошибку аппроксимации.

1. Уравнение имеет вид y = α + βx
1. Параметры уравнения регрессии.
Средние значения

Связь между признаком Y фактором X сильная и прямая
Уравнение регрессии

Коэффициент детерминации
R 2 =0.94 2 = 0.89, т.е. в 88.9774 % случаев изменения х приводят к изменению y. Другими словами — точность подбора уравнения регрессии — высокая

xyx 2y 2x ∙ yy(x)(y- y ) 2(y-y(x)) 2(x-x p ) 2
7813360841768910374142.16115.9883.831
8214867242190412136148.6117.90.379
8713475691795611658156.6895.44514.2664
7915462412371612166143.77104.67104.670
8916279212624414418159.9332.364.39100
106195112363802520670187.332624.5958.76729
671394489193219313124.4122.75212.95144
8815877442496413904158.29202.510.0881
7315253292310411096134.0967.75320.8436
8716275692624414094156.68332.3628.3364
7615957762528112084138.93231.98402.869
115173132252992919895201.86854.44832.661296
00016.320669.59265.736241
1027186989907294377161808186925672.312829.748774

Примечание: значения y(x) находятся из полученного уравнения регрессии:
y(1) = 4.01*1 + 99.18 = 103.19
y(2) = 4.01*2 + 99.18 = 107.2
. . .

2. Оценка параметров уравнения регрессии
Значимость коэффициента корреляции

По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;α/2) = (11;0.05/2) = 1.796
Поскольку Tнабл > Tтабл , то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически — значим.

Анализ точности определения оценок коэффициентов регрессии

S a = 0.1712
Доверительные интервалы для зависимой переменной

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
(-20.41;56.24)
Проверка гипотез относительно коэффициентов линейного уравнения регрессии
1) t-статистика

Статистическая значимость коэффициента регрессии a подтверждается

Статистическая значимость коэффициента регрессии b не подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими (tтабл=1.796):
(a — tтабл·Sa; a + tтабл·S a)
(1.306;1.921)
(b — tтабл·S b; b + tтабл·Sb)
(-9.2733;41.876)
где t = 1.796
2) F-статистики

Fkp = 4.84
Поскольку F > Fkp, то коэффициент детерминации статистически значим

Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

лекции по эконометрике. Основные понятия и определения эконометрики

НазваниеОсновные понятия и определения эконометрики
Анкорлекции по эконометрике.doc
Дата24.03.2018
Размер0.78 Mb.
Формат файлаСвойство эффективности оценки коэффициента уравнения регрессии
Имя файлалекции по эконометрике.doc
ТипДокументы
#17143
страница2 из 4
Подборка по базе: Тест 5. Основные понятия математической статистики. Вариационные, Основные понятия и определения в области организации вычислитель, Менеджмент. Основные модели принятия решений.Модели принятия реш, Реферат на тему Основные законы древней греции.docx, Анкета определения частоты и степени замерзания,Бербин.docx, Средства измерений и их основные элементы.pptx, Базовые понятия и классификация систем управления базами данных , Т-1 Основные требования законодательства Российской Федерации об, Диплом Структура расходов (затрат) на производство и реализацию , Устройство и основные элементы конструкции машины постоянного то

Видео:Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.Скачать

Эконометрика. Оценка значимости параметров уравнения регрессии. Критерий Стьюдента.

4. СТАТИСТИЧЕСКИЕ СВОЙСТВА ОЦЕНОК КОЭФФИЦИЕНТОВ

МЛРМ.
Полученные оценки неизвестных коэффициентов регрессионного уравнения Свойство эффективности оценки коэффициента уравнения регрессиимы с вами можем рассматривать как случайные величины. Действительно, при повторении наблюдений над экономическим объектом – получении выборок того же самого объема N при тех же самых значениях объясняющей переменной X значение результирующего параметра Y будет варьироваться за счет случайного члена , а, следовательно, будут варьироваться зависящие от y1,…,yN значения оценок. Если же X – случайная величина, то тогда вариация оценок будет зависеть и от вариации X. Таким образом, свойства коэффициентов регрессии будут существенным образом зависеть от свойств случайного члена  и от свойств X, если X— случайная величина.

Для того чтобы оценки, полученные по МНК, давали «наилучшие» результаты, мы потребуем от остаточного члена или ошибки  и от X выполнения следующих условий (предположения относительно того, как генерируются наблюдения):

  1. Свойство эффективности оценки коэффициента уравнения регрессии— спецификация модели;
  2. X1,…,Xk – детерминированные вектора, линейно независимые в Rn , т. е. матрица X имеет максимальный ранг k (в повторяющихся наблюдениях единственным источником случайных возмущений вектора Y являются случайные возмущения вектора );
  3. Свойство эффективности оценки коэффициента уравнения регрессии;
  4. Свойство эффективности оценки коэффициента уравнения регрессии, дисперсия ошибки не зависит от номера наблюдения;
  5. Свойство эффективности оценки коэффициента уравнения регрессиипри i  k, т. е. некоррелированность ошибок разных наблюдений;
  6. Свойство эффективности оценки коэффициента уравнения регрессии, т. е. . i –нормально распределенная случайная величина со средним 0 и дисперсией Свойство эффективности оценки коэффициента уравнения регрессии.

В матричной форме:

Свойство эффективности оценки коэффициента уравнения регрессии, Свойство эффективности оценки коэффициента уравнения регрессии— матрица ковариаций вектора ;

Свойство эффективности оценки коэффициента уравнения регрессии, т. е. Свойство эффективности оценки коэффициента уравнения регрессииимеют совместное нормальное распределение со средним 0 и матрицей ковариаций Свойство эффективности оценки коэффициента уравнения регрессии(разьяснение про матрицу ковариаций)

1-5 — КЛРМ, 1-6 — НЛРМ, условия 1-6 — условия Гаусса-Маркова.

В случае НЛРМ условие 5. эквивалентно условию статистической независимости ошибок для разных наблюдений. Действительно, если две нормально распределенные величины не коррелированны, то они независимы.

Обсудим эти условия.

              1. Спецификация модели отражает наше представление о механизме зависимости Y и X и выбор объясняющей переменной X.
              2. Мы будем предполагать, что Хi – детерминированные константы, т. е. значения Хi (значение объясняющей переменной в каждом наблюдении) считается экзогенным, полностью определяемым внешними причинами. Такое предположение подразумевает то, что переменная Х полностью контролируется исследователем, который может изменять ее значение в целях эксперимента. Это предположение нереалистично во многих экономических и бизнес моделях. Позже мы посмотрим, сохранятся ли свойства оценок в случае, если X – случайная величина.
              3. В матричной форме это условие выглядит так: Свойство эффективности оценки коэффициента уравнения регрессии.

Это условие состоит в том, что математическое ожидание случайного члена равно нулю в любом наблюдении. Иногда случайный член бывает положительным, иногда отрицательным, но он не должен иметь смещения ни в одном возможном направлении.

Надо сказать, что если в уравнение включается постоянный член, то бывает разумным предположить, что первое условие выполняется автоматически, т. к. роль константы и состоит в определении любой систематической составляющей в Y, которую не учитывают объясняющие переменные (если спецификация модели выбрана правильно).

Иллюстрация: предположим, что Свойство эффективности оценки коэффициента уравнения регрессии, тогда

Свойство эффективности оценки коэффициента уравнения регрессии

Свойство эффективности оценки коэффициента уравнения регрессии

Таким образом, исходная модель эквивалентна новой модели с ошибкой, имеющей нулевое математическое ожидание и другим свободным членом.

4. Второе условие говорит нам о том, что дисперсии ошибок постоянны для всех наблюдений. Иногда случайный член будет больше, иногда меньше, иногда больше, но не должно быть априорной причины для того, чтобы он порождал большую ошибку в одних наблюдениях, чем в других. Условие независимости ошибок от номера наблюдения называют гомоскедастичностью. Случай, когда условие гомоскедастичности нарушается, называется гетероскедастичностью. Этот случай можно иногда наблюдать графически:

Рисунок 1.
рисунок про гомо и гетероскедастичность.
5. Условие указывает на некоррелированность ошибок для разных наблюдений. Условие предполагает отсутствие систематической связи между значениями случайного члена в любых двух наблюдениях. Это условие почти всегда нарушается, если наши данные представляют собой временные ряды. В случае если это условие не выполняется, говорят об автокорреляции остатков. Для простейшего случая Свойство эффективности оценки коэффициента уравнения регрессии— автокорреляционный процесс первого порядка – типичный вид данных представлен на рисунке 2.

рисунок про  > 0 и  Несмещенность . Несмещенной называют статистическую оценку Q*, математическое ожидание которой равно истинному значению оцениваемого параметра, т. е. M(Q*) = Q, Оценку, которая не удовлетворяет этому свойству, называют смещенной. Смещенность оценки означает присутствие в оценке систематических ошибок (ошибок одного знака), т. е. смещенная оценка завышает или занижает истинное значение параметра. Если оценка смещена, то QM(Q*) есть смещение.

  • Эффективность . Эффективной называют оценку, которая при заданном объеме выборки N имеет наименьшую возможную дисперсию. Теперь вспомним, что такое дисперсия. Эта мера разброса св вокруг среднего значения. Следовательно, у эффективной оценки разброс вокруг среднего значения самый небольшой, т. е. возможные значения эффективной оценки в среднем лежат ближе к своему среднему значению (если оценка еще и несмещена, то, следовательно, к истинному значению оцениваемого параметра), чем возможные значения других оценок. Таким образом, эффективная несмещенная оценка обеспечивает наилучшую точность оценивания. Доказательство эффективности оценки и нахождение эффективной оценки дело довольно трудоемкое. Если мы имеем две оценки одного и того же параметра, то говорят, что первая оценка более эффективна, чем другая, если дисперсия первой оценки меньше, чем дисперсия второй оценки.
  • Состоятельность . Теперь мы хотим, чтобыс ростом выборки наша оценка была все ближе и ближе к истиному значению оцениваемсого параметра. Мы надеемся, что если выборка станет достаточно большой, то вероятность того, что оценка Q* будет отличатся от Q станет маленькой. Иными словами, мы хотим, чтобы оценка была состоятельной. Оценка Q* называется состоятельной, если при увеличении объема выборки значения оценки стремятся по вероятности к истинному значению оцениваемого параметра. Стремление по вероятности означает, что с ростом объема выборки вероятность того, что |Q*Q| будет меньше любого положительного числа, стремится к 1.
  • Как правило, эконометристов более интересует состоятельность оценки, чем ее Несмещенность. Смещенная, но состоятельная оценка может не равняться истинному значению в среднем, но с ростом выборки будет приближаться к истинному значению параметра. Пример несмещенной, но неэффективной оценкой и смещенной, но эффективной на рисунке.
    Свойства (с доказательствами для парного случая:

    Свойство 1. Линейная зависимость оценок от наблюдаемых значений Y.

    Свойство эффективности оценки коэффициента уравнения регрессии

    поскольку Свойство эффективности оценки коэффициента уравнения регрессиив силу того, что

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии, если X — детерминированный вектор, то w – детерминированный вектор (при повторении выборок значения не меняются).

    Легко убедится, что

    Свойство эффективности оценки коэффициента уравнения регрессии

    Аналогично преобразовывая выражение для Свойство эффективности оценки коэффициента уравнения регрессии, мы получим

    Свойство эффективности оценки коэффициента уравнения регрессии
    Свойство 2. Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии, т. е. Свойство эффективности оценки коэффициента уравнения регрессии— несмещенная оценка .

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии,

    Для доказательства мы использовали 2 и 3.
    Свойство 3. Матрица ковариаций оценок:

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии.

    Аналогично выводится формула для Свойство эффективности оценки коэффициента уравнения регрессии

    .Свойство эффективности оценки коэффициента уравнения регрессии

    Подобным образом можно отыскать ковариацию:

    Свойство эффективности оценки коэффициента уравнения регрессии.

    Свойство эффективности оценки коэффициента уравнения регрессии— из предыдущего пункта.

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии

    (пользовались тем, что матрица, обратная к симметричной, так же симметричная) посмотреть, что еще здесь надо

    пользовались 3, 4 и 5.

    Свойство эффективности оценки коэффициента уравнения регрессии, где a iii-й диагональный элемент матрицы Свойство эффективности оценки коэффициента уравнения регрессии
    Свойство 4. Теорема Гаусса-Маркова.

    В условиях 1-5 МНК-оценки МЛРМ представляют собой наилучшие линейные несмещенные оценки, т. е. в классе линейных несмещенных оценок МНК-оценки обладают наименьшей дисперсией.

    Best Linear Unbaised Estimation (BLUE)

    Важность теоремы Гаусса-Маркова. Мы можем придумать много оценок возможных для коэффициентов , в частности, можем придумать много линейных оценок, т. е. таких оценок, которые выражаются в виде взвешенного среднего наблюдений объясняемой переменной. Некоторые из этих оценок могут быть несмещенными как, например, «наивная» оценка. Так вот, оценки коэффициентов уравнения по методу наименьших квадратов в случае классической парной модели – это наилучшие оценки в том смысле, что среди всех возможных линейных несмещенных оценок эти оценки имеют наименьшую дисперсию. BestLinearUnbiasedEstimator BLUE Вопрос нахождения такой оценки будет возникать в нашем курсе снова и снова, т. к. мы увидим, что при нарушении условий Гаусса-Маркова МНК-оценки уже не будут «BLUE». В этом случае наша цель будет заключатся в построении других оценок, не МНК, которые уже будут «BLUR».
    Обратите внимание, что в выражении матрицы ковариаций Свойство эффективности оценки коэффициента уравнения регрессиифигурирует дисперсия остаточного члена. Однако на практике мы эту дисперсию не знаем, поскольку не знаем i, поэтому не можем вычислить теоретическую матрицу ковариаций Свойство эффективности оценки коэффициента уравнения регрессии. Мы сможем построить оценку этой матрицы, если сможем оценить  2 по результатам наблюдений. Никакой информацией об остаточном члене i мы не располагаем. Единственно, на что мы можем опираться — на остатки или невязки ei. Разброс остатков относительно линии регрессии будет отражать разброс  относительно истиной неизвестной прямой. В общем случае остаток и ошибка в любом данном наблюдении неравны друг другу. Для оценки Свойство эффективности оценки коэффициента уравнения регрессиииспользуем Свойство эффективности оценки коэффициента уравнения регрессии:

    Свойство 5. Свойство эффективности оценки коэффициента уравнения регрессии— несмещенная оценка Свойство эффективности оценки коэффициента уравнения регрессии

    Итак, оценка Свойство эффективности оценки коэффициента уравнения регрессииявляется несмещенной оценкой дисперсии Свойство эффективности оценки коэффициента уравнения регрессии. Тогда оценки матрицы ковариаций оценок будут следующими:

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии

    Для парной модели

    Свойство эффективности оценки коэффициента уравнения регрессии, Свойство эффективности оценки коэффициента уравнения регрессии

    Стандартные отклонения коэффициентов регрессии, вычисленные на основе предыдущей формулы, приводятся в результатах регрессии практически во всех статистических пакетах.
    До сих пор мы нигде не использовали свойство 6, т. е. не делали никаких предположений о распределении вероятностей ошибок i. Что будет, если мы запостулируем нормальную форму этого распределения.

    В предположениях НЛРМ Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство 7. В случае НРЛМ

    Свойство эффективности оценки коэффициента уравнения регрессии— без доказательства.

    Свойство 8. В условиях НЛРМ оценки Свойство эффективности оценки коэффициента уравнения регрессии Свойство эффективности оценки коэффициента уравнения регрессиинезависимы. — без доказательства.

    ПРОВЕРКА ГИПОТЕЗ ОТНОСИТЕЛЬНО КОЭФФИЦИЕНТОВ РЕГРЕССИИ.
    Предположим, что мы находимся в условиях НМЛРМ.

    1. H0:  = 0, или учитывая, что Свойство эффективности оценки коэффициента уравнения регрессии— несмещенная оценка , можем переписать гипотезу:

    H0: M Свойство эффективности оценки коэффициента уравнения регрессии= 0.

    Поскольку Свойство эффективности оценки коэффициента уравнения регрессии, то Свойство эффективности оценки коэффициента уравнения регрессииили Свойство эффективности оценки коэффициента уравнения регрессии, где Свойство эффективности оценки коэффициента уравнения регрессии. Поэтому Свойство эффективности оценки коэффициента уравнения регрессии. Далее, Свойство эффективности оценки коэффициента уравнения регрессиии оценки Свойство эффективности оценки коэффициента уравнения регрессиии Свойство эффективности оценки коэффициента уравнения регрессиинезависимы, следовательно,

    Свойство эффективности оценки коэффициента уравнения регрессии.

    Вычисляем наблюдаемое значение критерия tнабл/.

    Для проверки нулевой гипотезы при различных альтернативных гипотезах:

    tкр находим из таблиц критических точек распределения Стьюдента с Nk1 степенями свободы для выбранного уровня значимости  и учитывая, что критическая область двусторонняя — Свойство эффективности оценки коэффициента уравнения регрессии. Далее, если

    Свойство эффективности оценки коэффициента уравнения регрессии, то мы говорим, что у нас нет оснований отвергнуть нулевую гипотезу, если же

    Свойство эффективности оценки коэффициента уравнения регрессии, то мы нулевую гипотезу отвергаем.

    Если же у нас критерий односторонний, то все сохраняется, за исключением критического значения статистики. Его мы ищем по таблицам критических точек распределения Стьюдента с Nk-1 степенями свободы для выбранного уровня значимости  и учитывая, что критическая область односторонняя — Свойство эффективности оценки коэффициента уравнения регрессии. Выполняется следующее соотношение между односторонними и двусторонними критическими точками:

    Свойство эффективности оценки коэффициента уравнения регрессии= Свойство эффективности оценки коэффициента уравнения регрессии

    Особенно просто критерий выглядит в случае, когда i0 = 0, т. е. в случае, когда мы хотим убедиться в значимости этого коэффициента и таким образом убедиться в наличии связи между Y и Xi: Свойство эффективности оценки коэффициента уравнения регрессииtстатистика i-го коэффициента МЛРМ. Значение этой статистики приводятся почти всеми статистическими пакетами.

    Если мы теперь рассмотрим неравенство

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии

    Разрешим это неравенство относительно :

    Свойство эффективности оценки коэффициента уравнения регрессии

    Свойство эффективности оценки коэффициента уравнения регрессии— доверительный интервал для параметра i с уровнем надежности . В этом случае говорят, что доверительный интервал с вероятностью  покрывает истинное значение параметра i.

    Не говорят, что доверительный интервал содержит с вероятностью  содержит истинное значение параметра . Поскольку истинное значение параметра существует независимо от нас, а доверительный интервал мы строим, т. о. не  попадает в доверительный интервал, а доверительный интервал с той или иной вероятностью попадает на .

    1. Тестирование регрессионного уравнения.

    Пусть константа включена в число регрессоров.

    Процедура разделения вариации переменной Y на две составляющие позволяет провести нам тест на существование линейной зависимости между переменной Y и переменными X1,…,Xk.

    Н0: Свойство эффективности оценки коэффициента уравнения регрессии

    Таким образом, справедливость нулевой гипотезы означает, что ни одна из переменных X1,…,Xkне помогает нам объяснить вариацию Y. Эта гипотеза позволяет нам судить о значимости регрессии в целом. Эта гипотеза об отсутствии линейной связи между Y и X1,…,Xk.

    Проверка нулевой гипотезы осуществляется при помощи следующего критерия:

    Свойство эффективности оценки коэффициента уравнения регрессии

    При справедливости нулевой гипотезы данная статистика имеет распределение Фишера с числом степеней свободы числителя k и знаменателя Nk-1.

    Если нулевая гипотеза верна, то следует ожидать, что RSS, R 2 и, следовательно, F, близки к нулю. Таким образом, если значение F-статистики велико, мы нулевую гипотезу отвергаем. Граничное значение, начиная с которого мы отвергаем гипотезу, находится из таблиц распределения Фишера для выбранного уровня значимости  и числу степеней свободы числителя k и знаменателя N-k-1 — Свойство эффективности оценки коэффициента уравнения регрессии. Таким образом, если Свойство эффективности оценки коэффициента уравнения регрессии, мы нулевую гипотезу отвергаем, делаем вывод о том, что хотя бы одна из объясняющих переменных, участвующих в модели, действительно линейно влияет на переменную Y.

    Итак, при помощи F-статистики мы проверяем значимость коэффициента детерминации. Если F-статистика незначимо отличается от нуля, это означает, что объясняющие переменные, участвующие в модели на самом деле не очень-то нам помогают объяснит вариацию переменной Y.

    Для парного случая F – статистика выглядит следующим образом:

    Свойство эффективности оценки коэффициента уравнения регрессииУпражнение

    Сравнивая предыдущее выражение и выражение для t-статистики коэффициента наклона, получим, что F= t 2 :

    Свойство эффективности оценки коэффициента уравнения регрессии.

    Таким образом, проверка гипотезы Н0:  = 0 , используя F и t-статистики, дает для одномерной регрессионной модели дает тождественные результаты.
    3. Объединенный тест на несколько коэффициентов регрессии.

    При помощи F-статистики мы теперь умеем проверять гипотезу о том, что все коэффициенты при объясняющих переменных равны нулю. Иногда возникают ситуации, когда нам необходимо проверить гипотезу о том, что нулю равны не все коэффициенты при объясняющих переменных, а некоторые из них. В этом случае осуществляется следующая процедура.

    Рассмотрим модель множественной регрессии:

    Свойство эффективности оценки коэффициента уравнения регрессии «длинная регрессия».

    Назовем эту модель моделью без ограничений (UR), поскольку здесь мы не делаем никаких ограничений на возможные значения коэффициентов регрессии. Предположим, что мы хотим протестировать гипотезу о том, что q последних коэффициентов регрессии одновременно равны нулю. Т. е. мы хотим проверить гипотезу о том, что Свойство эффективности оценки коэффициента уравнения регрессии. Перепишем предыдущее уравнение следующим образом:

    Свойство эффективности оценки коэффициента уравнения регрессии

    нулевая гипотеза выглядит следующим образом:

    Н0: Свойство эффективности оценки коэффициента уравнения регрессии, т. е. последние q коэффициентов одновременно равны нулю.

    В случае, если эта гипотеза справедлива, то истинная модель выглядит следующим образом:

    Свойство эффективности оценки коэффициента уравнения регрессии «короткая регрессия»

    Назовем эту модель моделью с ограничениями (R –restricted model).

    Оценим обе эти модели и посчитаем сумму квадратов остатков в модели с ограничениями и в модели без ограничений – ESSR и ESSUR соответственно. ESSR всегда больше, чем ESSUR. Этот результат эквивалентен тому, что R 2 всегда увеличивается при добавлении в модель новых объясняющих переменных. Если нулевая гипотеза справедлива, выбрасывание из уравнения q последних объясняющих переменных несильно скажется на объясняющих качествах уравнения, и ESSR будет ненамного отличатся от ESSUR. Таким образом, если нулевая гипотеза справедлива, разница ESSRESSUR будет ненамного отличатся от нуля. Статистический критерий для проверки нулевой гипотезы следующий:

    Свойство эффективности оценки коэффициента уравнения регрессии

    При справедливости нулевой гипотезы данная статистика имеет распределение Фишера с числом степеней свободы числителя q и знаменателя Nk-1.

    Если нулевая гипотеза справедлива, выбрасывание из уравнения q последних объясняющих переменных несильно скажется на объясняющих качествах уравнения, и ESSR будет ненамного отличатся от ESSUR. Таким образом, если нулевая гипотеза справедлива, разница ESSRESSUR. будет ненамного отличатся от нуля. Следовательно, F-статистика будет достаточно мала. Граничное значение, при котором нулевую гипотезу отвергают, зависит от выбранного уровня значимости . Оно находится из таблиц распределения Фишера для выбранного уровня значимости  и числу степеней свободы числителя q и знаменателя Nk-1. Таким образом, если мы нулевую гипотезу отвергаем, то делаем вывод о том, что наши переменные действительно оказывают влияние на переменную Y и включение их в модель существенно повышает объясняющую силу уравнения.

    Похожий подход – рассмотрение регрессии с ограничение регрессии без ограничений – можно применить и для проверки гипотезы о наличии линейных связей между коэффициентами. Например, нам может понадобиться в ходе нашего исследования проверить гипотезу о равенстве между собой нескольких коэффициентов регрессии.

    1. Проверка гипотезы о наличии линейных ограничений на коэффициенты.

    Предположим, мы рассматриваем и оцениваем функцию потребления:

    Свойство эффективности оценки коэффициента уравнения регрессии, где XL  трудовые доходы, а XNL  нетрудовые доходы. В этом случае нам может понадобиться проверить гипотезу о том, что предельные склонности к потреблению равны между собой (Свойство эффективности оценки коэффициента уравнения регрессии) или гипотезу о том, что общая предельная склонность к потреблению равна 1 (Свойство эффективности оценки коэффициента уравнения регрессии).

    Рассмотрим сначала первый случай.

    Суть подхода к проверке таких гипотез такая же, как и в предыдущем пункте. Мы оцениваем две регрессии  регрессию без ограничений и регрессию с ограничениями, составляем F  статистику и проверяем ее значимость при помощи таблиц распределения Фишера.

    Рассмотрим сначала первый случай.

    Нулевая гипотеза: H0: Свойство эффективности оценки коэффициента уравнения регрессии

    Модель без ограничений: Свойство эффективности оценки коэффициента уравнения регрессии;

    модель с ограничениями: Свойство эффективности оценки коэффициента уравнения регрессии.

    Во втором случае моделью с ограничениями будет следующая модель:

    Свойство эффективности оценки коэффициента уравнения регрессии.

    Здесь мы просто подставили в исходную модель выражение для 2:Свойство эффективности оценки коэффициента уравнения регрессииСвойство эффективности оценки коэффициента уравнения регрессии.

    Статистический критерий для проверки нулевой гипотезы следующий:

    Свойство эффективности оценки коэффициента уравнения регрессии.

    При справедливости нулевой гипотезы данная статистика имеет распределение Фишера с числом степеней свободы числителя q и знаменателя Nk-1, где q  чисто ограничений, накладываемых на коэффициенты. В нашем случае оно равно 1.

    В статистических пакетах проверка гипотезы о наличии линейных ограничений на коэффициенты называется тестом Вальда (Wald test).

    Рассмотрим эту гипотезу в общем виде:

    Свойство эффективности оценки коэффициента уравнения регрессииозначает, что Свойство эффективности оценки коэффициента уравнения регрессии.

    H  матрица размера Свойство эффективности оценки коэффициента уравнения регрессии, где q  число ограничений, r  вектор из q компонент.

    Для проверки такой гипотезы используется статистика Вальда:

    Свойство эффективности оценки коэффициента уравнения регрессии

    При справедливости нулевой гипотезы эта статистика распределена асимптотически как Свойство эффективности оценки коэффициента уравнения регрессии. Для проверки нулевой гипотезы находим критическую точку распределения Свойство эффективности оценки коэффициента уравнения регрессиидля выбранного уровня значимости   W кр . Если Свойство эффективности оценки коэффициента уравнения регрессии, то мы нулевую гипотезу отвергаем, если Свойство эффективности оценки коэффициента уравнения регрессии, то говорим, что нет оснований отвергнуть нулевую гипотезу.

    Ту же самую гипотезу можно проверить при помощи статистики Фишера, вычислив суммы квадратов остатков для моделей с ограничением и модели без ограничений. Как связаны между собой эти статистики? Оказывается, что Свойство эффективности оценки коэффициента уравнения регрессии. В пакете Eviews приводятся наблюдаемые значения обеих статистик и значения Probability для каждой из них.

    1. Проверка гипотезы о равенстве коэффициентов различных регрессионных уравнений (тест Чоу).

    Предположим, что мы рассматриваем регрессионное уравнение Свойство эффективности оценки коэффициента уравнения регрессиии данные для его оценки содержат наблюдения для разных по качеству объектов: для мужчин и женщин, для белых и черных. вопрос, который нас может здесь заинтересовать, следующий – верно ли, что рассматриваемая модель совпадает для двух выборок, относящихся к объектам разного качества? Ответить на этот вопрос можно при помощи теста Чоу.

    📸 Видео

    Эконометрика Линейная регрессия и корреляцияСкачать

    Эконометрика  Линейная регрессия и корреляция

    Интерпретация коэффициента при логарифмировании в уравнениях регрессииСкачать

    Интерпретация коэффициента при логарифмировании в уравнениях регрессии

    Коэффициент детерминации. Основы эконометрикиСкачать

    Коэффициент детерминации. Основы эконометрики

    Статистические свойства оценок коэффициентов. Подробный урокСкачать

    Статистические свойства оценок коэффициентов. Подробный урок

    Эконометрика. Линейная парная регрессияСкачать

    Эконометрика. Линейная парная регрессия

    Математика #1 | Корреляция и регрессияСкачать

    Математика #1 | Корреляция и регрессия

    3.2 Точечные оценки математического ожидания и дисперсии .Скачать

    3.2  Точечные оценки математического ожидания и дисперсии .

    Уравнение линейной регрессии. Интерпретация стандартной табличкиСкачать

    Уравнение линейной регрессии. Интерпретация стандартной таблички

    Проверка гипотезы о значимости коэффициентов уравнения регрессииСкачать

    Проверка гипотезы о значимости коэффициентов уравнения регрессии

    12-05 Информация Фишера и свойства ММП оценокСкачать

    12-05 Информация Фишера и свойства ММП оценок

    Корреляция: коэффициенты Пирсона и Спирмена, линейная регрессияСкачать

    Корреляция: коэффициенты Пирсона и Спирмена, линейная регрессия

    Способы проверки гипотезы о значимости коэффициенте бетаСкачать

    Способы проверки гипотезы о значимости коэффициенте бета

    5. М-оценки. Робастность. ЭффективностьСкачать

    5. М-оценки. Робастность. Эффективность

    Коэффициент линейной регрессии, 2 способаСкачать

    Коэффициент линейной регрессии, 2 способа

    Математическая статистика. Семинар 2. Эффективность оценок. Сверхэффективность.Скачать

    Математическая статистика. Семинар 2. Эффективность оценок. Сверхэффективность.

    Линейная регрессия. Оценка качества моделиСкачать

    Линейная регрессия. Оценка качества модели

    Как вычислить линейный коэффициент корреляции в MS Excel и построить уравнение регрессии?Скачать

    Как вычислить линейный коэффициент корреляции в MS Excel  и построить уравнение регрессии?
    Поделиться или сохранить к себе: