Уравнением с одной переменной — это равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.
Содержание:
- Определение уравнения. Корни уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Равносильность уравнений
- Линейные уравнения
- Пример 1.
- Пример 2.
- Квадратные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Рациональные уравнения
- Пример:
- Решение уравнения р(х) = 0 методом разложения его левой части на множители
- Пример 1.
- Пример 2.
- Решение уравнений методом введения новой переменной
- Пример 1.
- Пример 2.
- Биквадратные уравнения
- Пример:
- Решение задач с помощью составления уравнений
- Иррациональные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Показательные уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Логарифмические уравнения
- Пример 1.
- Пример 2.
- Пример 3.
- Примеры решения показательно-логарифмических уравнений
- Пример 1.
- Пример 2.
- Пример 3.
- Линейное уравнение с одной переменной
- Линейное уравнение
- Примеры линейных уравнений
- Свойства линейных уравнений
- Равносильные уравнения
- Свойства равенств
- Примеры решения уравнений
- Общий вид решений линейного уравнения
- Шаг 1.
- Шаг 2.
- Шаг 3.
- Задача №1.
- Задача №2.
- Задача №3.
- Задача №4.
- Задача №5.
- Линейное уравнение с одной переменной с примерами решения
- Линейное уравнение с одной переменной
- Общие сведения об уравнении
- Равносильные уравнения
- Линейные уравнения
- Уравнения первой степени
- Решение задач с помощью уравнений
- Линейное уравнение с одной переменной
- Решение задач с помощью уравнений
- Что такое уравнение, линейное уравнение, что значит решить уравнение
- Что такое уравнение
- Корень уравнения
- Количество корней уравнения
- Пример №86
- Пример №87
- Решение уравнений. Свойства уравнений
- Линейные уравнения с одной переменной
- Уравнения с модулями
- Решение уравнений с модулями, исходя из определения модуля числа
- Решение задач с помощью уравнений
- 💥 Видео
Определение уравнения. Корни уравнения
Равенство с переменной f(x) = g (х) называют уравнением с одной переменной х, если поставлена задача найти все те же значения х, при которых равенство с переменной обращается в верное числовое равенство. Всякое значение переменной, при котором выражения /(х) и g(x) принимают равные числовые значения, называют корнем уравнения.
Решить уравнение — это значит найти все его корни или доказать, что их нет.
Пример 1.
Уравнение 3 + х = 7 имеет единственный корень 4, так как при этом и только при этом значении переменной равенство 3 + х = 7 является верным.
Пример 2.
Уравнение (х — 1)(х — 2) = 0 имеет два корня: 1 и 2.
Пример 3.
Уравнение не имеет действительных корней.
Заметим, что можно говорить и о мнимых корнях уравнений. Так, уравнение имеет два мнимых корня: (см. п. 47). Всюду ниже речь идет только о действительных корнях уравнений.
Равносильность уравнений
Уравнения, имеющие одни и те же корни, называют равносильными. Равносильными считаются и уравнения, каждое из которых не имеет корней.
Например, уравнения х + 2 = 5 и х + 5 = 8 равносильны, так как каждое из них имеет единственный корень — число 3. Равносильны и уравнения — ни одно из них не имеет корней.
Уравнения неравносильны, так как первое имеет только один корень 6, тогда как второе имеет два корня: 6 и — 6.
В процессе решения уравнения его стараются заменить более простым, но равносильным данному. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в равносильное ему уравнение.
Теорема 1.
Если в уравнении какое-нибудь слагаемое перенести из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Например, уравнение равносильно уравнению
Теорема 2.
Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
Например, уравнение равносильно уравнению (обе части первого уравнения мы умножили на 3).
Линейные уравнения
Линейным уравнением с одной переменной х называют уравнение вида
где — действительные числа; называют коэффициентом при переменной, — свободным членом.
Для линейного уравнения могут представиться три случая:
1) ; в этом случае корень уравнения равен ;
2) ; в этом случае уравнение принимает вид , что верно при любом х, т. е. корнем уравнения служит любое действительное число;
3) ; в этом случае уравнение принимает вид , оно не имеет корней.
Многие уравнения в результате преобразований сводятся к линейным.
Пример 1.
Решить уравнение
Решение:
По теореме 1 (см. п. 135), данное уравнение равносильно уравнению . Если разделить обе части этого уравнения на коэффициент при х, то по теореме 2 получим равносильное данному уравнение . Итак, — корень уравнения.
Пример 2.
Решение:
Это уравнение сводится к линейному уравнению. Умножив обе части уравнения на 12 (наименьшее общее кратное знаменателей 3, 4, 6,12), получим
Квадратные уравнения
где — действительные числа, причем , называют квадратным уравнением. Если , то квадратное уравнение называют приведенным, если , то неприведенным. Коэффициенты имеют следующие названия: — первый коэффициент, — второй коэффициент, с — свободный член. Корни уравнения находят по формуле
Выражение называют дискриминантом квадратного уравнения (1). Если D О, то уравнение имеет два действительных корня.
В случае, когда D = О, иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение , можно переписать формулу (2) в виде Если , то формулу (2) можно упростить:
Формула (3) особенно удобна, если — целое число, т. е. коэффициент — четное число.
Пример 1.
Решение:
Здесь . Имеем:
Так как , то уравнение имеет два корня, которые найдем по формуле (2):
Итак, — корни заданного уравнения.
Пример 2.
Решить уравнение
Решение:
Здесь По формуле (3) находим т. е. х = 3 — единственный корень уравнения.
Пример 3.
Решить уравнение
Решение:
Здесь Так как D 0, откуда х>3, и 5 — х > 0, откуда х 5, тогда как для уравнения (2) областью определения служит вся числовая прямая. Поэтому найденное значение х = 4, являющееся корнем уравнения (2), может оказаться посторонним корнем для уравнения (1). В данном случае именно это и происходит, поскольку х = 4 не принадлежит области определения уравнения (1) (не удовлетворяет неравенству х > 5). Итак, х = 4 — посторонний корень, т. е. заданное уравнение не имеет корней.
Рациональные уравнения
Уравнение f(x) = g(x) называют рациональным, если f(x) и g(x) — рациональные вьфажения. При этом если f(x) и g(x) — целые выражения, то уравнение называют целым; если же хотя бы одно из выражений f(х), g(x) является дробным, то рациональное уравнение f(x) = g(x) называют дробным.
Например, целыми являются линейные (см. п. 136), квадратные (см. п. 137) уравнения.
Чтобы решить рациональное уравнение, нужно:
1) найти общий знаменатель всех имеющихся дробей;
2) заменить данное уравнение целым, умножив обе его части на общий знаменатель;
3) решить полученное целое уравнение;
4) исключить из его корней те, которые обращают в нуль общий знаменатель.
Пример:
Решение:
Общим знаменателем имеющихся дробей является 2х(2 — х). Найдя дополнительные множители для каждой дроби, освободимся от знаменателей. Имеем:
Из уравнения находим (см. п. 137). Осталось проверить, обращают ли найденные корни выражение 2х(2 — х) в нуль, т. е. проверить выполнение условия Замечаем, что 2 не удовлетворяет этому условию, а 4 удовлетворяет. Значит, х = 4 — единственный корень уравнения.
Решение уравнения р(х) = 0 методом разложения его левой части на множители
Суть этого метода состоит в следующем. Пусть нужно решить уравнение р(х) = 0, где р(х) — многочлен степени . Предположим, что удалось разложить многочлен на множители:, где — многочлены более низкой степени, чем . Тогда уравнение р(х) = 0 принимает вид . Если — корень уравнения а потому хотя бы одно из чисел равно нулю.
Значит, — корень хотя бы одного из уравнений
Верно и обратное: если — корень хотя бы одного из уравнений то — корень уравнения т. е. уравнения р (х) = 0.
Итак, если , где — многочлены, то вместо уравнения р(х) = 0 нужно решить совокупность уравнений Все найденные корни этих уравнений, и только они, будут корнями уравнения р(х) = 0.
Пример 1.
Решить уравнение
Решение:
Разложим на множители левую часть уравнения. Имеем откуда
Значит, либо х + 2 = 0, либо . Из первого уравнения находим х = — 2, второе уравнение не имеет корней. Итак, получили ответ: -2.
Метод разложения на множители применим к любым уравнениям вида р(х) = 0, где р(х) необязательно многочлен. Пусть но среди выражений есть выражения более сложного вида, чем многочлены (например, иррациональные, логарифмические и т. д.). Среди корней уравнений могут быть посторонние для уравнения р(х) = 0.
Пример 2.
Решить уравнение
Решение:
Имеем ; значит, либо , либо .Из уравнения находим х = 0, из уравнения находим .
Но х = -3 не удовлетворяет исходному уравнению, так как при этом значении не определено выражение . Это посторонний корень.
Итак, уравнение имеет два корня: 3; 0.
Решение уравнений методом введения новой переменной
Суть этого метода поясним на примерах.
Пример 1.
Решение:
Положив , получим уравнение
откуда находим . Теперь задача сводится к решению совокупности уравнений
Первое квадратное уравнение не имеет действительных корней, так как его дискриминант отрицателен.
Из второго квадратного уравнения находим . Это корни заданного уравнения.
Пример 2.
Решение:
Положим , тогда
и уравнение примет вид
Решив это уравнение (см. п. 145), получим
Но . Значит, нам остается решить совокупность уравнений
Из первого уравнения находим , ; из второго уравнения получаем Тем самым найдены четыре корня заданного уравнения.
Биквадратные уравнения
Биквадратным уравнением называют уравнение вида
Биквадратное уравнение решается методом введения новой переменной: положив , придем к квадратному уравнению
Пример:
Решить уравнение .
Решение:
Положив , получим квадратное уравнение , откуда находим . Теперь задача сводится к решению совокупности уравнений Первое уравнение не имеет действительных корней, из второго находим Это — корни заданного биквадратного уравнения.
Решение задач с помощью составления уравнений
С помощью уравнений решаются многочисленные задачи, к которым приводят самые разнообразные вопросы физики, механики, экономики и т. д. Прежде всего напомним общий порядок решения задач с помощью уравнений.
1) Вводят переменные, т. е. буквами х, у, z обозначают неизвестные величины, которые либо требуется найти в задаче, либо они необходимы для отыскания искомых величин.
2) С помощью введенных переменных и данных в задаче чисел и их соотношений составляют систему уравнений (или одно уравнение).
3) Решают составленную систему уравнений (или уравнение) и из полученных решений отбирают те, которые подходят по смыслу задачи.
4) Если буквами х, у, z обозначили не искомые величины, то с помощью полученных решений находят ответ на вопрос задачи.
Задача 1.
Для перевозки 60 т груза из одного места в другое затребовали некоторое количество машин. Ввиду неисправности дороги на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, поэтому дополнительно потребовались 4 машины. Какое количество машин было затребовано первоначально?
Решение: Обозначим через х количество машин, затребованных первоначально. Тогда на самом деле было вызвано (х + 4) машин. Так как надо было перевезти 60 т груза, то предполагалось, что на одну машину будут грузить т груза, а на самом деле грузили т груза, что на 0,5 т меньше, чем предполагалось. В результате мы приходим к уравнению
Это уравнение имеет два корня: х = -24, х = 20. Ясно, что по смыслу задачи значение х = —24 не подходит. Таким образом, первоначально было затребовано 20 машин.
Задача 2.
Моторная лодка, движущаяся со скоростью 20 км/ч, прошла расстояние между двумя пунктами по реке туда и обратно без остановок за 6 ч 15 мин. Расстояние между пунктами равно 60 км. Найти скорость течения реки.
Решение:
Пусть х км/ч — скорость течения реки. Тогда лодка, собственная скорость которой 20 км/ч, идет по течению со скоростью (20 + х) км/ч, а против течения — со скоростью (20 — х) км/ч. Время, за которое лодка пройдет путь между пунктами по течению, составит ч, а время, за которое лодка пройдет обратный путь, составит ч. Так как путь туда и обратно лодка проходит за 6 ч 15 мин, т. е. ч, приходим к уравнению
решив которое, находим два корня: х = 4, х = -4. Ясно, что значение х = -4 не подходит по смыслу задачи. Итак, скорость течения реки равна 4 км/ч.
Задача 3.
Найти двузначное число, зная, что цифра его единиц на 2 больше цифры десятков и что произведение искомого числа на сумму его цифр равно 144.
Решение:
Напомним, что любое двузначное число может быть записано в виде 10х + у, где х — цифра десятков, а у — цифра единиц. Согласно условию, если х — цифра десятков, то цифра единиц равна х + 2 и мы получаем
Решив это уравнение, найдем
Второй корень не подходит по смыслу задачи.
Итак, цифра десятков равна 2, цифра единиц равна 4; значит, искомое число равно 24.
Задача 4.
Двое рабочих, работая вместе, выполнили некоторую работу за 6 ч. Первый из них, работая отдельно, может выполнить всю работу на 5 ч скорее, чем второй рабочий, если последний будет работать отдельно. За сколько часов каждый из них, работая отдельно, может выполнить всю работу?
Решение:
Производительность труда, т. е. часть работы, выполняемая в единицу времени (обозначим ее через А), и время, необходимое для выполнения всей работы (обозначим его через t), — взаимно обратные величины, т. е. At = 1. Поэтому если обозначить через х ч время, необходимое для выполнения всей работы первому рабочему, а через (х + 5) ч — второму, то часть работы, выполняемая первым рабочим за 1 ч, равна , а часть работы, выполняемая вторым рабочим за 1 ч, равна Согласно условию, они, работая вместе, выполнили всю работу за 6 ч. Доля работы, выполненная за 6 ч первым рабочим, есть , а доля работы, выполненная за 6 ч вторым рабочим, есть Так как вместе они выполнили всю работу, т. е. доля выполненной работы равна 1, получаем уравнение
решив которое, найдем х = 10.
Итак, первый рабочий может выполнить всю работу за 10 ч, а второй — за 15 ч.
Задача 5.
Из сосуда емкостью 54 л, наполненного кислотой, вылили несколько литров и долили сосуд водой, потом опять вылили столько же литров смеси. Тогда в оставшейся в сосуде смеси оказалось 24 л чистой кислоты. Сколько кислоты вылили в первый раз?
Решение:
Пусть в первый раз было вылито х л кислоты. Тогда в сосуде осталось (54 — х) л кислоты. Долив сосуд водой, получили 54 л смеси, в которой растворилось (54 — х) л кислоты. Значит, в 1 л смеси содержится л кислоты (концентрация раствора). Во второй раз из сосуда вылили х л смеси, в этом количестве смеси содержалось л кислоты. Таким образом, в первый раз было вылито х л кислоты, во второй л кислоты, а всего
за два раза вылито 54 — 24 = 30 л кислоты. В результате приходим к уравнению
Решив это уравнение, найдем два корня: и . Ясно, что значение 90 не удовлетворяет условию задачи.
Итак, в первый раз было вылито 18 л кислоты.
Задача 6.
Имеется кусок сплава меди с оловом массой 12 кг, содержащий 45% меди. Сколько чистого олова надо прибавить к этому куску, чтобы получившийся новый сплав содержал 40% меди?
Решение:
Пусть масса добавленного олова составляет х кг. Тогда получится сплав массой (12 + х) кг, содержащий 40% меди. Значит, в новом сплаве имеется 0,4(12 + х) кг меди. Исходный сплав массой 12 кг содержал 45% меди, т. е. меди в нем было . Так как масса меди и в имевшемся, и в новом сплаве одна и та же, приходим к уравнению
Решив это уравнение, получим х = 1,5. Таким образом, к исходному сплаву надо добавить 1,5 кг олова.
Задача 7.
Имеется сталь двух сортов с содержанием никеля 5% и 40%. Сколько стали того и другого сорта надо взять, чтобы после переплавки получить 140 т стали с содержанием никеля 30% ?
Решение:
Пусть масса стали первого сорта равна х т, тогда стали второго сорта надо взять (140 — х) т. Содержание никеля в стали первого сорта составляет 5%; значит, в х т стали первого сорта содержится 0,05л; т никеля. Содержание никеля в стали второго сорта составляет 40%; значит, в (140 — х) т стеши второго сорта содержится 0,4 (140 — х) т никеля. По условию после соединения взятых двух сортов должно получиться 140 т стали с 30% -ным содержанием никеля, т. е. после переплавки в полученной стали должно быть 0,3 * 140 т никеля. Но это количество никеля складывается из 0,05л; т, содержащихся в стали первого сорта, и из 0,4 (140 — х) т, содержащихся в стали второго сорта. Таким образом, приходим к уравнению
0,05х + 0,4 (140 — х) = 0,3 * 140,
из которого находим х = 40. Следовательно, надо взять 40 т стали с 5% -ным и 100 т стали с 40% -ным содержанием никеля.
Иррациональные уравнения
Иррациональным называют уравнение, в котором переменная содержится под знаком радикала или под знаком возведения в дробную степень. Например, иррациональными являются уравнения
Используются два основных метода решения иррациональных уравнений:
1) метод возведения обеих частей уравнения в одну и ту же степень;
2) метод введения новых переменных (см. п. 147).
Метод возведения обеих частей уравнения в одну
и ту же степень состоит в следующем:
а) преобразуют заданное иррациональное уравнение к виду
б) возводят обе части полученного уравнения в п-ю степень:
в) учитывая, что , получают уравнение
г) решают уравнение и, в случае четного п, делают проверку, так как возведение обеих частей уравнения в одну и ту же четную степень может привести к появлению посторонних корней (см. п. 142). Эта проверка чаще всего осуществляется с помощью подстановки найденных значений переменной в исходное уравнение.
Пример 1.
Решить уравнение
Решение:
Возведем обе части уравнения в шестую степень; получим х — 3 = 64, откуда х = 67.
Проверка:
Подставив 67 вместо х в данное уравнение, получим , т. е. 2 = 2 — верное равенство.
Ответ: 67.
Пример 2.
Решение:
Преобразуем уравнение к виду
и возведем обе части его в квадрат. Получим
Еще раз возведем обе части уравнения в квадрат:
откуда
Проверка:
1) При х = 5 имеем
— верное равенство.
Таким образом, х = 5 является корнем заданного уравнения.
2) При х = 197 имеем Таким образом, х = 197 — посторонний корень.
Ответ: 5.
Пример 3.
Решение:
Применим метод введения новой переменной.
Положим и мы получаем уравнение , откуда находим
Теперь задача свелась к решению совокупности уравнений
Возведя обе части уравнения в пятую степень, получим х — 2 = 32, откуда х = 34.
Уравнение не имеет корней, поскольку под знаком возведения в дробную степень может содержаться только неотрицательное число, а любая степень неотрицательного числа неотрицательна.
Ответ: 34.
Показательные уравнения
Показательное уравнение вида
где равносильно уравнению f(х) = g(x).
Имеются два основных метода решения показательных уравнений:
1) метод уравнивания показателей, т. е. преобразование заданного уравнения к виду а затем к виду f(х) = g(x);
2) метод введения новой переменной.
Пример 1.
Решить уравнение
Решение:
Данное уравнение равносильно уравнению откуда находим Решив это квадратное уравнение, получим
Пример 2.
Решение:
Приведем все степени к одному основанию . Получим уравнение которое преобразуем к виду Уравнение равносильно уравнению х = 2х — 3, откуда находим х = 3.
Пример 3.
Решить уравнение
Решение:
Применим метод введения новой переменной. Так как ,то данное уравнение можно переписать в виде
Введем новую переменную, положив Получим квадратное уравнение с корнями Теперь задача сводится к решению совокупности уравнений
Из первого уравнения находим х = 2. Второе уравнение не имеет корней, так как при любых значениях х.
Ответ: 2.
Логарифмические уравнения
Чтобы решить логарифмическое уравнение вида
где нужно:
1) решить уравнение f(x) = g(x);
2) из найденных корней отобрать те, которые удовлетворяют неравенствам f(x) > 0 и g(x) > 0; остальные корни уравнения f(x) = g(x) являются посторонними для уравнения (1).
Имеются два основных метода решения логарифмических уравнений:
1) метод, заключающийся в преобразовании уравнения к виду затем к виду f(x) = g(x);
2) метод введения новой переменной.
Пример 1.
Решение:
Перейдем от заданного уравнения к уравнению и решим его. Имеем Проверку найденных значений х выполним с помощью неравенств Число -3 этим неравенствам удовлетворяет, а число 4 — нет. Значит, 4 — посторонний корень.
Ответ: -3.
Пример 2.
Решение:
Воспользовавшись тем, что сумма логарифмов равна логарифму произведения (см. п. 120), преобразуем уравнение к виду
Из последнего уравнения находим
Осталось сделать проверку. Ее можно выполнить с помощью системы неравенств
Подставив поочередно найденные значения -1 и -5,5 в эти неравенства, убеждаемся, что -1 удовлетворяет всем неравенствам, а -5,5 — нет, например при этом значении не выполняется первое неравенство. Значит, -5,5 — посторонний корень.
Ответ: -1.
Пример 3.
Решение:
Так как заданное уравнение можно переписать следующим образом:
Введем новую переменную, положив Получим
Но ; из уравнения находим х = 4.
Ответ: 4.
Примеры решения показательно-логарифмических уравнений
Пример 1.
Решение:
Область определения уравнения: х > 0. При этом условии выражения, входящие в обе части уравнения (1), принимают только положительные значения. Прологарифмировав обе части уравнения (1) по основанию 10, получим уравнение
равносильное уравнению (1). Далее имеем
Полагая получим уравнение , откуда Остается решить совокупность уравнений Из этой совокупности получим — корни уравнения (1).
Здесь применен метод логарифмирования, заключающийся в переходе от уравнения f(x) = g(x) к уравнению
Пример 2.
(2)
Решение:
Воспользовавшись определением логарифма, преобразуем уравнение (2) к виду
Полагая , получим уравнение корнями которого являются
Теперь задача сводится к решению совокупности уравнений
Так как , а -1 0 и мы получаем
если , то D = 0 и мы получаем , т. е. (поскольку ) .
Итак, если то действительных корней нет; если = 1, то ; если ,то ; если и , то
Пример 3.
При каких значениях параметра уравнение
имеет два различных отрицательных корня?
Решение:
Так как уравнение должно иметь два различных действительных корня его дискриминант должен быть положительным. Имеем
Значит, должно выполняться неравенство
По теореме Виета для заданного уравнения имеем
Так как, по условию, , то и
В итоге мы приходим к системе неравенств (см. п. 177):
Из первого неравенства системы находим (см. п. 180, 183) ; из второго ; из третьего . С помощью координатной прямой (рис. 1.107) находим, что либо , либо
Эта лекция взята со страницы полного курса лекций по изучению предмета «Математика»:
Смотрите также дополнительные лекции по предмету «Математика»:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Линейное уравнение с одной переменной
Тема урока: § 5. Линейное уравнение с одной переменной. Навык решения линейных уравнений проверяется на экзаменах ОГЭ и ЕГЭ и необходим для решения текстовых задач.
Существуют ли такие значения переменной $x$, при которых соответственные значения выражений $3x$ и $x+8$ равны? Чтобы ответить на этот вопрос, надо решить уравнение:
При $x$, равном $4$, значения левой и правой частей уравнения равны. Число $4$ называют решением или корнем данного уравнения.
Определение:
Корень уравнения с одной переменной — это число, обращающее данное уравнение в верное равенство.
Решить уравнение — значит найти множество всех его корней.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Линейное уравнение
Определение:
Каждое алгебраическое уравнение с одним неизвестным, степень которого равна единице называется линейным уравнением.
В общем виде линейное уравнение имеет вид:
Где $k$ и $b$ — произвольные числа.
Примеры линейных уравнений
Приведём несколько примеров линейных уравнений:
Уравнение $x+5=8$ имеет корень $3$. Этот корень единственный, так как при $x 3$ больше $8$.
Уравнение $(x+2)(x-1)(x-7)=0$ имеет три корня: $-2$, $1$ и $7$, так как каждое из этих чисел обращает уравнение в верное равенство, а при всех других значениях $x$ ни один из множителей (а значит, и их произведение) не равен нулю.
Уравнение $x+3=x-1$ совсем не имеет корней, так как при любых $x$ значение выражения, стоящего в левой части уравнения, на $4$ больше соответственного значения выражения, стоящего в правой части. Множество корней этого уравнения пустое.
Уравнение $x=|x|$ имеет бесконечное множество корней. Любое положительное число или нуль является его корнем.
Уравнение $5(x+8)=40+5x$ также имеет бесконечное множество корней, причем любое значение $x$ является его корнем, так как выражения $5(x+8)$ и $40+5x$ тождественно равны. О таком уравнении говорят, что оно удовлетворяется тождественно.
Заметим, что каждое из данных равенств имеет общую форму:
$$kx+b=0 Leftrightarrow kx=-b$$
они внешне похожи друг на друга, где $x$ — переменная (неизвестное), $k$ и $b$ — произвольные числа.
Следующие уравнения не будут являться линейными, так как они не имеют вышеописанный вид.
Свойства линейных уравнений
Линейные уравнения обладают рядом специфических свойств, рассмотрим их:
Любое слагаемое можно переносить в противоположную сторону равенства, но при этом слагаемое меняет знак. Покажем на примере равенства:
$$x+2=0 Rightarrow x=-2$$
Смена знака связана с тем, что мы вправе прибавлять к обоим частям уравнения одно и то же число (смысл уравнения от этого не меняется).
$$x+0=0-2 Rightarrow x=-2$$
Каждую часть равенства можно умножать, делить на одно и то же число отличное от нуля (смысл уравнения от этого не меняется). Покажем на примере того же равенства, домножив обе части на число четыре:
$$x+2=0 Rightarrow (x+2)cdot 4=0cdot 4$$
Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать
Равносильные уравнения
Рассмотрим три уравнения:
$x(x+2)(x-3)=0$ Уравнение (1) имеет два корня: $-2$ и $3$, а уравнение (2) — три корня: $0$, $-2$ и $3$. Каждый корень уравнения (1) является корнем уравнения (2), но не каждый корень уравнения (2) является корнем уравнения (1).
При $x=0$ второе уравнение обращается в верное равенство , а первое — нет.
Уравнение $x(x+2)=3(x+2)$ имеет два корня: $-2$ и $3$.
Каждое решение уравнения (3) является решением уравнения (1) и каждое решение уравнения (1) является решением уравнения (3). Такие уравнения называются равносильными.
Важно!
У равносильных уравнений множества их решений совпадают.
Понятие равносильности уравнений распространяется и на уравнения с несколькими переменными. Например, два уравнения с переменными $x$ и $y$ считаются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения служит решением первого.
Пусть первое уравнение $P(x)=0$, а второе $Q(x)=0$ и если они равносильны, то имеет место знак равносильности:
В дальнейшем мы будем часто использовать такую символику.
Свойства равенств
Можно ли, не решая уравнений $2x-5=9$ и $2x=14$, утверждать, что они равносильны? Ответить на этот вопрос помогут нам хорошо известные свойства равенств. Перечислим их:
Рефлексивность. Любое число равно самому себе: $a=a$.
Симметричность. Если одно число равно другому, то это второе число равно первому: если $a=b$, то $b=a$.
Транзитивность. Если первое число равно второму, а второе равно третьему, то первое число равно третьему: если $a=b$ и $b=c$, то $a=c$. Свойствами, аналогичными указанным свойствам равенств, обладают многие соотношения. Например, параллельность (в множестве прямых плоскости) обладает симметричностью и транзитивностью .
Действительно, если $a||b$, то $b||a$; если $a||b$ и $b||c$, то $a||c$. Равносильность уравнений обладает всеми тремя свойствами. В самом деле, каждое уравнение равносильно самому себе; если одно уравнение равносильно другому, то второе равносильно первому; если одно уравнение равносильно второму, а второе — третьему, то первое уравнение равносильно третьему.
Приведем еще два свойства равенств, которые нам понадобятся дальше:
Если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство: если $a=b$, то
Если обе части верного равенства умножить на одно и то же число, то получится верное равенство: если $a=b$, то
Примеры решения уравнений
Свойства равенств используются при решении уравнений. Покажем это на примере.
Задача 1.
Пусть нужно решить уравнение: $6x-42=0$
Прибавим к левой и правой частям уравнения число $42$ (перенесем $-42$ в правую часть уравнения с противоположным знаком).
Получим уравнение: $6x=42$
Если при некотором значении $x$ равенство верно, то верно и равенство которое мы получили, и, наоборот, если при некотором значении $x$ верно равенство которое мы получили, то верно и исходное равенство. Это следует из свойства 4. Значит, уравнения равносильны.
Умножим обе части уравнения на $frac$ (разделим на $6$). Получим уравнение: $x=7$
Из свойства 5. следует, что последние два уравнения равносильны:
$$6x=42 Leftrightarrow x=7$$
Следовательно равносильны и уравнения (так как равносильность обладает свойством транзитивности): $6x-42=0 Leftrightarrow x=7$
Значит число $7$ есть корень исходного уравнения.
Рассмотренный пример показывает, что перенос членов уравнения из одной его части в другую с противоположным знаком и умножение (или деление) обеих частей уравнения на неравное нулю число приводят к уравнению, равносильному данному.
Приведем все слагаемые левой части уравнения к общему знаменателю:
Домножим обе части равенства на $frac$ чтобы избавиться от коэффициента при неизвестном, получим:
Сократим числа $7$ и $16$, получим:
Видео:7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Общий вид решений линейного уравнения
Решим уравнение: $kx+b=0$
Очевидно, решение зависит от наших параметров $k$ и $b$, поэтому рассмотрим несколько сюжетов, которые встречаются при решении линейных уравнений.
Шаг 1.
Коэффициент при неизвестной $k$ будет равняться нулю, а свободный член $b$ отличным от нуля.
$$k=0, bneq 0 Rightarrow 0cdot x=-b$$
Заметим, в этом случае не найдется такого числа $x$, что при подстановке его в уравнение — получится верное равенство. Т.к при умножении на 0 мы не получим число отличное от нуля, стало быть — решений нет. Обычно это записывается так: $$xin oslash$$ что переводится как: $x$ принадлежит пустому множеству.
Шаг 2.
Коэффициент при неизвестной и свободный член отличны от нуля:
$$kneq 0, bneq 0 Rightarrow kx=-b Rightarrow x=frac$$
Т.е. $x$ принимает действительное и единственное решение в виде отношения двух чисел: $-b$ и $k$
Шаг 3.
Числа $k$ и $b$ принимают значения равное нулю, т.е:
$$k=0, b=0 Rightarrow kx=-b Rightarrow 0cdot x=0$$
Очевидно, что какой бы $x$ мы не взяли — равенство будет верным, т.к, при умножении на 0 получим 0. Тогда говорят, что $x$ — любое число, либо $x$ принадлежит всем действительным числам. Запись имеет такой вид:
В данном случае решение можно записать несколькими способами, например с помощью двойного неравенства:
Задача №1.
Найдите корень уравнения: $0,9x-0,6(x-3)=2(0,2x-1,3)$
Раскроем скобки и приведем подобные.
Перенесем слагаемые содержащие неизвестную в одну часть, а остальные в другую.
Домножим обе части равенства на $10$, тогда получим:
Задача №2.
Решите уравнение: $-36(6x+1)=9(4-2x)$
Раскроем скобки в обеих частях равенства.
Перенесем переменные вправо, а остальные слагаемые влево.
Разделим обе части уравнения на $198$ и получим ответ:
Сократим дробь на $18$.
Задача №3.
Чему равен наибольший корень уравнения: $(1,8-0,3y)(2y+9)=0$?
Для решения уравнения нужно воспользоваться свойством произведения. Произведение равно нулю, тогда и только тогда, когда один из множителей равен нулю, а значит одно из выражений в скобках должно равнятся нулю. Рассмотрим первый случай:
После переноса слагаемых домножим обе части равенства на $10$ и поделим на $3$.
Теперь рассмотрим второй случай:
Разделим обе части равенства на $2$.
Как мы видим у нас получилось два корня, при которых уравнение обращается в $0$. Для ответа выберем наибольший из данных, т.е:
Задача №4.
Найдите корень уравнения:
Вспомним, что все наши действия должны быть направлены на приведение уравнения к виду: $x=…$ Поэтому домножим обе части равенства на общий знаменатель $12$, т.е на $4$ и $3$.
После сокращения слева на $4$, а справа на $3$ получим:
$$(3m+5)cdot 3=(5m+1)cdot 4$$
$$3mcdot 3+5cdot 3=5mcdot 4+1cdot 4$$
В данном случае $9m$ удобно перенести вправо, так как не придется избавляться от минуса. Сделаем перенос слагаемых, приведем подобные и получим ответ.
Задача №5.
При каком значении $a$ уравнение: $3ax=12-x$ имеет корень, равный числу $-9$?
Если подставить вместо переменной $x$ число $-9$, то получим $a$ при котором эта ситуация имеет место.
Обратим внимание на правую часть равенства и воспользуемся свойством:
Если перед скобками стоит знак минус, то при их раскрытии все знаки стоящие в скобках меняются на противоположные.
Разделим обе части уравнения на число $-27$, получим:
Сокращаем правую часть равенства на $3$ и получаем окончательный ответ.
Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Линейное уравнение с одной переменной с примерами решения
Содержание:
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Линейное уравнение с одной переменной
Уравнение — одно из важнейших понятий не только математики, но и многих прикладных наук. Это наиболее удобная математическая модель, наилучшее средство для решения сложнейших задач. Образно говоря, уравнение — это ключ, которым можно отворять тысячи дверей в неизвестное. Основные темы главы:
- общие сведения об уравнениях;
- равносильные уравнения;
- линейные уравнения;
- решение задач с помощью уравнений.
Общие сведения об уравнении
Алгебра в течение многих столетий развивалась как наука об уравнениях.
Уравнение — это равенство, содержащее не-известные числа, обозначенные буквами.
Неизвестные числа в уравнении называют переменными. Переменные чаще всего обозначают буквами х, у, z (икс, игрек, зет), хотя их можно обозначить и другими буквами.
Примеры уравнений:
Рассмотрим уравнение . Если в нём вместо переменной х написать число 5, то будем иметь правильное числовое равенство . Говорят, что «число 5 удовлетворяет данное уравнение».
Число, удовлетворяющее уравнение, называется его корнем.
Уравнение имеет только один корень:
Уравнение имеет три корня:
Уравнение не имеет ни одного корня, так как при каждом значении переменной х число х + 7 на 7 больше, чем х.
Уравнение имеет бесконечное множество корней.
Решить уравнение — это означает, что надо найти все его корни или показать, что их не существует.
Простейшие уравнения можно решать, пользуясь известными зависимостями между слагаемыми и суммой, между множителями и произведением и т. п.
Пример:
Решите уравнение
Решение:
В данном случае неизвестно вычитаемое. Чтобы найти его, следует от уменьшаемого отнять разность:
Здесь неизвестный множитель х. Чтобы найти его, надо произведение разделить на известный множитель:
Уравнение — это своеобразный кроссворд. Только в клеточки кроссворда вписывают буквы, чтобы получить нужные слова, а в уравнение вместо переменных подставляют числа, чтобы получались правильные равенства.
Например, уравнение можно записать в форме числового кроссворда:
Какое число надо поставить в квадратики, чтобы получилось верное равенство?
Уравнения бывают разных видов, в частности — содержащие неизвестную переменную в квадрате, в кубе, под знаком модуля и т. п. Решим, например, уравнения:
1) Ответим на вопрос: какое число надо возвести в квадрат, чтобы получить 9? Это числа 3 и -3. Это и есть корни данного уравнения.
2) Разделим обе части уравнения Какое число, возведённое в куб, равно 8? Таковым является число 2. Значит, решение данного уравнения х = 2.
3) Если модуль числа x — 2, то это число равно 5 или -5. Имеем: x — 2 = 5, отсюда х = 7, или x — 2 = -5, отсюда х = -3. Значит, уравнение имеет два корня: x = 7 и x = -3.
Пример:
Решите уравнение
Решение:
Пример:
Я задумал число. Если его умножить на 3, от результата отнять 4, то получим 5. Какое число я задумал?
Решение:
Обозначим искомое число буквой х. Если умножить его на 3, то получим Зх. Отняв от результата 4, получим Зх — 4. Имеем уравнение:
Решим это уравнение: Ответ. 3.
Пример:
При каком значении а уравнение будет иметь корень х = 3?
Решение:
Первый способ. Найдём неизвестный множитель х как частное от деления произведения 12 и известного множителя а + 5:
По условию x + 3, поэтому отсюда а = -1.
Второй способ. Подставим в уравнение вместо переменной х число 3:
Решим полученное уравнение относительно переменной а. Имеем:
Ответ. Если а = -1, то уравнение имеет корень х = 3.
Равносильные уравнения
Рассмотрим два уравнения: . Каждое из них имеет один и тот же корень: х = 5.
Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Равносильными считают и такие уравнения, которые не имеют корней.
Чтобы решать более сложные уравнения, нужно уметь заменять их более простыми и равносильными данным. Покажем, как это делается.
Из распределительного закона умножения следует, что при любом значении х числа 2x + 5x = 7x. Поэтому равносильными будут такие, например, уравнения:
Из распределительного закона следует, что при каждом значении х числа . Поэтому равносильны и уравнения:
Вообще, если в любой части уравнения свести подобные слагаемые или раскрыть скобки, то получим уравнение, равносильное данному.
Прибавив к обеим частям верного числового равенства одно и то же число, получим также верное равенство. Подобно этому тела с равными массами, положенные на чаши уравновешенных весов, не нарушают равновесия (рис. 4).
Отсюда следует, что когда, например, к обеим частям уравнения (1) прибавить по -10y, то получим уравнение , равносильное данному. А прибавить к левой и правой частям уравнения (1) по -10y — это то же самое, что перенести 10y из правой части уравнения в левую с противоположным знаком. Вообще, если из одной части уравнения в другую перенести любой его член с противоположным знаком, то получим уравнение, равносильное данному.
Вспомним также, что обе части числового равенства можно умножить или разделить на одно и то же число, отличное от нуля. Поэтому если обе части уравнения умножить иди разделить на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному. Например, умножив обе части уравнения получим уравнение имеющее такой же корень, как и данное. А если обе части уравнения разделим на 20, то будем иметь более простое уравнение , равносильное данному.
Всегда справедливы такие основные свойства уравнений.
- В любой части уравнения можно свести подобные слагаемые или раскрыть скобки, если они есть.
- Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
- Обе части уравнения можно умножить или разделить на одно и то число, отличное от нуля.
В результате таких преобразований всегда получаем уравнение, равносильное данному.
Сформулированные свойства часто используют для решения уравнений. Для примера решим уравнение:
Решение:
Умножим обе части уравнения на 6:
Перенесём 4х в правую часть, а -1 — в левую с противоположными знаками:
Сведём подобные члены:
Разделим обе части уравнения на 2:
Ответ.
Откуда произошло название науки — алгебра? От названия книги об уравнениях узбекского математика IX в. Мухаммеда аль-Хо-резми (Мухаммеда из Хорезма). В те далёкие времена отрицательные числа не считались настоящими. Поэтому когда в результате перенесения отрицательного члена уравнения из одной его части в другую этот член становился положительным, считалось, что Qh восстанавливался, переходил из ненастоящего в настоящий. Такое преобразование уравнений Мухаммед аль-Хорезми назвал восстановлением (аль-джебр). Свойство об уничтожении одинаковых членов уравнения в обеих частях он назвал противопоставлением (аль-мукабала). Книга об этих преобразованиях называлась «Китаб мухтасар аль-джебр ва-л-мукабала» («Книга о восстановлении и противопоставлении»). Со временем её перевели на латинский Язык, взяв для названия только одно слово, которое стали писать Algebr. Отсюда и пошло название науки — алгебра. Преобразование «аль,-джебр» стало важным шагом в развитии алгебры, так как упростило решение уравнений.
Алгебра, арифметика, геометрия, математический анализ — основные составляющие математики (рис. 5). Арифметику — науку о числах и вычислениях — вы уже изучали на уроках математики. В 7-9 классах будете изучать алгебру и геометрию, с математическим анализом ознакомитесь в старших классах.
Пример:
Равносильны ли уравнения:
а)
б)
Решение:
а) Если раскрыть скобки в первом уравнении, то получим второе. Значит, уравнения равносильны.
б) Решим первое уравнение:
отсюда х = 1. Итак, данные уравнения не равносильны.
Ответ. а) Равносильны; б) не равносильны.
Пример:
Решение:
Раскроем скобки и приведём подобные слагаемые: Перенесём слагаемое 3 в правую часть, а Зх — в левую, изменив их знаки на противоположные:
Разделим обе части уравнения на 2. Получим: х = 6. Ответ. х = 6.
Пример:
Найдите корни уравнения:
Решение:
Умножим обе части уравнения на 3. Получим:
Линейные уравнения
Уравнение вида ax = b, где a и b — данные числа, называется линейным уравнением с переменной х.
Числа a и b — коэффициенты уравнения ax = b , a— коэффициент при переменной х,b — свободный член уравнения.
Если то уравнение ах = b называют уравнением первой степени с одной переменной. Его корень
Каждое уравнение первой степени с одной переменной имеет один корень. Линейное уравнение может не иметь корней, иметь один или бесконечное множество корней.
Линейное уравнение ах = b:
Например, уравнение 0x = 5 не имеет ни одного корня, так как не существует числа, которое при умножении на 0 в произведении давало бы 5.
Уравнение 0x = 0 имеет бесконечное множество корней, так как его удовлетворяет любое значение переменной х.
Решая уравнение, его сначала стараются упростить, свести к линейному. Делают это преимущественно в такой последовательности.
- Избавляются от знаменателей (если они есть).
- Раскрывают скобки (если они есть).
- Переносят члены, содержащие переменные, в левую часть уравнения, а не содержащие — в правую.
- Приводят подобные слагаемые.
В результате такого преобразования получают уравнение, равносильное данному; его корни являются также корнями данного уравнения.
Пример 1. Решите уравнение:
Решение. Умножим обе части уравнения на 12 — наименьшее общее кратное знаменателей 2, 3, 4 и 12:
Если коэффициенты уравнения многозначные, его удобно решать, пользуясь калькулятором. Пример 2. Решите уравнение
Ответ.
Найденное значение корня — приближённое. Точное значение пришлось бы записать в виде смешанной дроби, а именно Решая прикладные задачи, ответ обычно округляют и записывают, например, так:
Уравнение первой степени — это отдельный вид линейных уравнений. Соотношение между этими двумя видами уравнений наглядно проиллюстрировано на рисунке 7.
Ниже приведём примеры линейных уравнений, которые не являются уравнениями первой степени.
Уравнения первой степени
Уравнения не линейные,но сводящиеся к линейным.
Почему уравнение вида ах = b называют линейными, станет понятно, когда вы ознакомитесь с линейными функциями.
Пример:
а) б)
Решение:
а)
— уравнение корней не имеет.
б)
— любое число удовлетворяет уравнение.
Ответ. а) Уравнение корней не имеет;
б) уравнение имеет бесконечное множество корней.
Пример:
Найдите два числа, полусумма которых вдвое больше их полуразности, которая равна 35.
Решение:
Если полуразность чисел равна 35, то разность будет вдвое больше, а именно — 70. Обозначим меньшее число буквой х, тогда большее будет равно
70 + х. По условию задачи или , отсюда х = 35 — меньшее число, 70 + 35 = 105 — большее число. Ответ. 35 и 105.
Решение задач с помощью уравнений
Чтобы решить задачу с помощью уравнения, сначала надо составить соответствующее этой задаче уравнение. Образно говоря, надо перевести задачу с обычного языка на язык алгебры, то есть составить математическую модель данной задачи. Как это можно сделать, покажем на нескольких примерах.
Пример:
На двух токах 1000т зерна. Сколько зерна на каждом току, если на первом его на 200т меньше, чем на втором?
Решение:
Пусть на первом току зерна. Тогда на втором — а на обоих — Имеем уравнение:
отсюда
Ответ.
Уравнение составленное по условию задачи, — это математическая модель данной задачи.
Составить уравнения часто помогает рисунок или схема (рис. 10)
Данную задачу можно решить и другими способами.
Если на втором току есть у т зерна, то на первом . Так как на втором току зерна на 200 т больше, то отсюда
Рисунок 10, рисунок 11., уравнение — это три разные математические модели прикладной задачи 1. В математике прикладными называют задачи, условия которых содержат не математические понятия.
Модель всегда подобна оригиналу. В ней отображаются те или иные важные свойства исследуемого объекта. Такими являются уменьшенные модели автомобиля, самолёта, строения. Глобус — модель Земли, кукла — модель человека. Если модель создана на основе уравнений, формул или других математических понятий, её называют математической моделью.
Для решения задач на движение также используют разные модели. Надо помнить, что при равномерном движении пройденное телом расстояние равно произведению скорости на время При этом все значения величин следует выражать в соответствующих единицах измерения. Например, если время дано в часах, а расстояние — в километрах, то скорость надо выражать в километрах в час. Если тело движется при наличии течения, то его скорость движения по течению (против течения) равна сумме (разности) его собственной скорости и скорости течения. С помощью схем многие задачи на движение можно решить устно (№ 124). Для решения некоторых сложных задач требуется построение нескольких моделей.
Рассмотрим задачу, составить уравнение к которой помогает таблица — ещё один вид математических моделей.
Пример:
Катер должен был пройти расстояние между городами со скоростью 15 км/ч, а на самом деле шёл со скоростью 12 км/ч и потому опоздал на 3 ч. Найдите расстояние между городами.
Ответ. Построим таблицу и заполним её в соответствии с условием задачи.
Катер шёл на 3 ч дольше, чем должен был идти. Этому условию соответствует уравнение:
Решим уравнение:
Ответ. 180 км.
Решив задачу с помощью уравнения, нужно всегда анализировать полученное значение неизвестного. Может получиться, что найденный корень уравнения не соответствует условию задачи.
Пример:
Периметр треугольника равен 17 см. Найдите его стороны, если одна из них короче другой на 2 см, а третьей — на б см.
Решение:
Пусть длина самой короткой стороны треугольника равна х см. Тогда длины других сторон соответственно будут равны .Получим уравнение:
Решим его:
Если длина первой стороны 3 см, то вторая и третья соответственно будут равны 5 и 9 см.
Существует ли треугольник с такими сторонами? Нет, так как каждая сторона треугольника короче суммы двух других, а
Ответ. Задача не имеет решения.
Решение прикладных задач методом математического моделирования состоит из трёх этапов:
- создание математической модели данной задачи;
- решение соответствующей математической задачи;
- анализ ответа.
Иногда с помощью уравнения решают не всю задачу, а только её часть.
Покажем, например, как можно заполнять пустые клеточки магического квадрата — таблицы чисел с одинаковым количеством строк столбцов, с одинаковой суммой чисел во всех строках, столбцах и по диагоналям.
Пример:
Перерисуйте в тетрадь рисунок 12 и в его пустые клеточки впишите такие числа, чтобы получился магический квадрат.
Решение:
Обозначим буквой х число в правой верхней клеточке Тогда сумма всех чисел первой строки будет равна 5+6+x, или 11 + x Такими же должны быть суммы и в каждой диагонали, и в среднем столбце поэтому в нижней строке следует написать 4, x — 2 , x — 1 (рис. 13). Та как сумма чисел должна быть равна 11 + х, то составим уравнение:
Подставим вместо х его значение 10, после чего пустые клеточки рисунка 14 заполнить нетрудно. В данном случае уравнение — модель части сформулированной задачи, дающая возможность вычислит только значение х.
Пример:
Катер прошёл расстояние между пристанями по течению реки за 2 ч, а обратно — за 2,5 ч. Найдите собственную скорость катера, если скорость течения равна 2 км/ч.
Решение:
Пусть собственная скорость катера равна x км/ч. Тогда:
— его скорость по течению;
— скорость катера против течения;
— такое расстояние катер прошёл по течению;
— такое расстояние катер прошёл против течения.
Расстояния равны. Итак, получим уравнение
Пример:
Решите математический кроссворд (рис. 15).
Решение:
В кружки следует вписать два числа так, чтобы их сумма была равна 200, а разность — 10. Если второе число обозначим буквой х, то первое будет равно 200 — х. Их разность равна 10, следовательно, , отсюда 2 Ответ на рисунке 16.
Исторические сведения:
Уравнения первой степени с одной переменной люди научились решать очень давно. Египетские учёные почти четыре тысячи лет тому назад искомое неизвестное число называли «аха» (в переводе — «куча») и обозначали специальным знаком. В папирусе, дошедшем до нас, есть такая задача: «Куча и её седьмая часть составляют 19. Найдите кучу». Теперь бы мы сформулировали её так: «Сумма неизвестного числа и его седьмой части равна 19. Найдите неизвестное число».
Задача сводится к уравнению
Подобные задачи умели решать учёные Древней Греции, древних Индии, Китая. Древнегреческий математик Диофант (III в.) решал и более сложные уравнения, в частности такие, которые в современных символах имеют вид У Диофанта уравнение записывалось таким способом:
Аль-Хорезми и многие его преемники все уравнения записывали словами, не используя математических знаков.
От фамилии аль-Хорезми происходит ещё один важный для современной науки термин — алгоритм. Так называют совокупность правил, пользуясь которыми можно решить любую задачу из определённого класса задач. Например, известный вам способ умножения чисел «столбиком», способ определения наибольшего общего делителя двух или нескольких чисел — это алгоритмы. В современной науке понятие «алгоритм» играет огромную роль, существует даже специальная область математики — теория алгоритмов. Подробнее с алгоритмами вы ознакомитесь в старших классах.
Сначала алгеброй называли науку, изучающую различные способы решения уравнений. Со временем она значительно расширилась, обогатилась новыми идеями. Теперь уравнение — только одна из составляющих алгебры.
Напомню:
Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами.
Числа, удовлетворяющие уравнение, — его корни. Решить уравнение — это значит найти все его корни или показать, что их не существует.
Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Уравнения, которые не имеют корней, также считают равносильными друг другу.
Основные свойства уравнений.
- В любой части уравнения можно привести подобные слагаемые или раскрыть скобки, если они есть.
- Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
- Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.
Уравнение вида ах = b, где а и b — произвольные числа, называют линейным уравнением с переменной х. Если , то уравнение ах = b называют уравнением первой степени с одной переменной.
Каждое уравнение первой степени ах = b имеет один корень . Линейное уравнение может иметь один корень, бесконечно много корней или не иметь ни одного корня.
Решение прикладных задач методом математического I моделирования состоит из трёх этапов:
- создание математической модели данной задачи;
- решение соответствующей математической задачи;
- анализ ответа.
Линейное уравнение с одной переменной
Рассмотрим три уравнения:
Очевидно, что число -1,5 является единственным корнем первого уравнения.
Поскольку произведение любого числа на нуль равно нулю, то корнем второго уравнения является любое число.
Понятно, что третье уравнение корней не имеет.
Несмотря на существенное различие полученных ответов, приведенные уравнения внешне похожи: все они имеют вид где — переменная, — некоторые числа.
Уравнение вида где — переменная, — некоторые числа, называют линейным уравнением с одной переменной.
Вот еще примеры линейных уравнений:
Текст, выделенный жирным шрифтом, разъясняет смысл термина «линейное уравнение». В математике предложение, раскрывающее суть нового термина (слова, понятия, объекта), называют определением.
Итак, мы сформулировали (или говорят: «дали») определение линейного уравнения.
Заметим, что, например, уравнения линейными не являются.
Если то, разделив обе части уравнения на получим . Отсюда следует: если то уравнение имеет единственный корень, равный
Если же то линейное уравнение приобретает такой вид: Здесь возможны два случая:
В первом случае получаем уравнение Тогда, если то уравнение имеет бесконечно много корней: любое число является его корнем.
Во втором случае, когда при любом значении получим неверное равенство Отсюда, если и то уравнение корней не имеет.
Следующая таблица подытоживает приведенные рассуждения.
Пример:
1)
Решение:
1) Так как произведение нескольких множителей равно нулю, когда хотя бы один из множителей равен нулю, получаем:
2) Учитывая, что модуль только чисел 4 и -4 равен числу 4, имеем:
Обратим ваше внимание на то, что рассмотренные уравнения не являются линейными, однако решение каждого из них сводится к решению линейных уравнений.
Пример:
Решение:
1) При уравнение принимает вид В этом случае корней нет. При имеем
Ответ: если , то уравнение не имеет корней; если , то
2) При уравнение принимает вид В этом случае корнем уравнения является любое число. При имеем
Ответ: если , то — любое число; если , то
Решение задач с помощью уравнений
Вам много раз приходилось решать задачи с помощью составления уравнений (текстовые задачи). И разнообразие решенных задач является лучшим подтверждением эффективности и универсальности этого метода. В чем же заключается секрет его силы?
Дело в том, что условия непохожих друг на друга задач удается записать математическим языком. Полученное уравнение — это результат перевода условия задачи с русского языка на математический.
Часто условие задачи представляет собой описание какой-то реальной ситуации. Составленное по этому условию уравнение называют математической моделью этой ситуации.
Конечно, чтобы получить ответ, уравнение надо еще решить. Для этого в алгебре разработаны различные методы и приемы. С некоторыми из них вы уже знакомы, многие другие вам еще предстоит изучить.
Найденный корень — это еще не ответ задачи. Следует выяснить, не противоречит ли полученный результат реальной ситуации, описанной в условии.
Рассмотрим, например, такие задачи:
- За 4 ч собрали 6 кг ягод. Сколько ягод собирали за каждый час?
- Несколько мальчиков собрали 6 кг ягод. Каждый из них собрал по 4 кг. Сколько мальчиков собирали ягоды?
Обе задачи приводят к одному и тому же уравнению , корнем которого является число 1,5. Но в первой задаче решение «полтора килограмма ягод за час» является приемлемым, а во второй — «ягоды собирали полтора мальчика» — нет.
При решении задач на составление уравнений удобно пользоваться следующей схемой:
- по условию задачи составить уравнение (сконструировать математическую модель задачи);
- решить уравнение, полученное на первом шаге;
- выяснить, соответствует ли найденный корень смыслу задачи, и дать ответ.
Эту последовательность действий, состоящую из трех шагов, можно назвать алгоритмом решения текстовых задач.
Пример:
Рабочий должен был выполнить заказ за 8 дней. Однако, изготавливая ежедневно 12 деталей сверх нормы, он уже за 6 дней работы не только выполнил заказ, но и изготовил дополнительно 22 детали. Сколько деталей ежедневно изготавливал рабочий?
Решение:
Пусть рабочий изготавливал ежедневно деталей. Тогда по плану он должен был изготавливать ежедневно деталей, а всего их должно было быть изготовлено На самом деле он изготовил деталей. Так как по условию задачи значение выражения на 22 больше значения выражения то
Ответ: 37 деталей.
Пример:
Велосипедист проехал 65 км за 5 ч. Часть пути он проехал со скоростью 10 км/ч, а оставшийся путь — со скоростью 15 км/ч. Сколько времени он ехал со скоростью 10 км/ч и сколько — со скоростью 15 км/ч?
Решение:
Пусть велосипедист ехал ч со скоростью 10 км/ч. Тогда со скоростью 15 км/ч он ехал ч. Первая часть пути составляет км, а вторая — км. Имеем:
Следовательно, со скоростью 10 км/ч велосипедист ехал 2 ч, а со скоростью 15 км/ч — 3 ч.
Видео:Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать
Что такое уравнение, линейное уравнение, что значит решить уравнение
Алгебра длительное время была частью арифметики — одной из древнейших математических дисциплин. Слово «арифметика» в переводе с греческого означает «искусство чисел». Алгебру же после выделения ее в отдельную науку рассматривали как искусство решать уравнения.
В данном разделе мы выясним, что такое уравнение, линейное уравнение, что значит решить уравнение, как решать задачи с помощью уравнений.
Что такое уравнение
Масса 4 больших и 15 малых деталей равна 270 г. Масса большой детали в три раза больше массы малой. Какова масса малой детали?
Пусть масса малой детали равна г, тогда масса большой — г. Масса 15 малых деталей равна г, а 4 больших — (г). По условию задачи сумма этих масс равна 270 г:
.
Мы пришли к равенству, которое содержит неизвестное число, обозначенное буквой (еще говорят: равенство содержит переменную ). Чтобы решить задачу, нужно найти значение , при котором равенство является верным числовым равенством.
Равенство с неизвестным значением переменной называют уравнением с одной переменной (или уравнением с одним неизвестным).
Корень уравнения
Рассмотрим уравнение . Подставляя вместо переменной некоторые числа, будем получать числовые равенства, которые могут быть верными или неверными. Например:
- при получим равенство , которое является верным;
- при получим равенство , которое является неверным.
Значение переменной, при котором уравнение превращается в верное числовое равенство, называют корнем, или решением уравнения.
Итак, число 3 является корнем уравнения , а число 4 — нет.
Количество корней уравнения
Уравнения могут иметь разное количество корней. Например:
- уравнение имеет только один корень — число 3;
- уравнение имеет два корня — числа 2 и 6;
уравнению удовлетворяет любое число ; говорят, что это уравнение имеет бесконечно много корней.
Уравнение может и не иметь корней. Рассмотрим, например, уравнение . Для любого числа значение левой части уравнения на 1 больше значения правой части. Следовательно, какое бы число мы не взяли, равенство будет неверным. Поэтому это уравнение не имеет корней.
Решить уравнение — значит найти все его корни или доказать, что корней нет.
Решим уравнение, составленное выше по условию задачи о больших и малых деталях:
Таким образом, масса малой детали равна 10 г.
Примеры решения уравнений:
Пример №86
Является ли число 2,5 корнем уравнения ?
Решение:
Если , то:
значение левой части уравнения равно: ; значение правой части равно: . Значения обеих частей уравнения равны, поэтому — корень данного уравнения.
Пример №87
а) ; б) ; в) .
а) ; ; ; ; . Ответ. 11.
б) Произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю. Следовательно, или ; или . Ответ.-0,5; 2.
в) ; ; . Квадрат числа не может быть равен отрицательному числу. Поэтому данное уравнение корней не имеет. Ответ. Уравнение корней не имеет.
Решение уравнений. Свойства уравнений
Решение любого уравнения сводится к выполнению определенных преобразований, в результате которых данное уравнение заменяют более простым.
Решим, например, уравнение:
. (1)
1. Раскроем скобки:
. (2)
2. Приведем подобные слагаемые в левой части уравнения:
. (3)
3. Перенесем слагаемые с переменной в левую часть уравнения, а без переменной — в правую, изменив их знаки на противоположные:
. (4)
4. Приведем подобные слагаемые в каждой части уравнения:
. (5)
5. Разделим обе части уравнения на 2:
.
Таким образом, уравнение (1) имеет единственный корень — число 4.
При решении уравнения (1) мы выполняли некоторые преобразования: раскрывали скобки, приводили подобные слагаемые, переносили слагаемые из одной части уравнения в другую, делили обе части уравнения на число. С этими преобразованиями связаны следующие основные свойства уравнений:
Свойство 1. В любой части уравнения можно раскрыть скобки или привести подобные слагаемые.
Свойство 2. Любое слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак на противоположный.
Свойство 3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.
Если в некотором уравнении выполнить одно из преобразований, указанных в свойствах 1, 2 или 3, то получим уравнение, имеющее те же корни, что и начальное уравнение.
Решая уравнение (1), мы последовательно получали уравнения (2), (3), (4), (5). Все они вместе с уравнением (1) имеют один и тот же корень — число 4.
Для тех, кто хочет знать больше
Свойства уравнений можно обосновать, используя следующие свойства числовых равенств:
Если а — b — верное числовое равенство и с — некоторое число, то:
Если к обеим частям верного числового равенства прибавить одно и то же число, то получим верное числовое равенство.
Если обе части верного числового равенства умножить на одно и то же число, то получим верное числовое равенство.
Если обе части верного числового равенства разделить на одно и то же число. отличное от нуля то получим верное числовое равенство.
Из первого свойства числовых равенств можно получить такое следствие: если из одной части верного числового равенства перенести в другую часть слагаемое, изменив его знак на противоположный, то получим верное числовое равенство.
Используя свойства числовых равенств, докажем, например, что уравнение
(6)
имеет тс же корни, что и уравнение
. (7)
(Это свойство 2 для уравнения .)
• Пусть — произвольный корень уравнения (6). Тогда — верное числовое равенство. Перенесем слагаемое в левую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство , из которого следует, что является корнем уравнения (7). Мы доказали, что произвольный корень уравнения (6) является корнем уравнения (7).
Наоборот, пусть — произвольный корень уравнения (7). Тогда числовое равенство является верным. Перенесем слагаемое в правую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство , из которого следует, что является корнем уравнения (6). Мы доказали, что произвольный корень уравнения (7) является корнем уравнения (6). Таким образом, уравнения (6) и (7) имеют одни и тс же корни. • Уравнения, имеющие одни и те же корни, называют равносильными. Следовательно, уравнения (6) и (7) являются равносильными.
Примеры решения уравнений:
Пример №88
Решить уравнение .
Решение:
Умножив обе части уравнения на 14, получим:
; ; ;
Пример №89
Решить уравнение .
Решение:
Разделив обе части уравнения на 25, получим:
Линейные уравнения с одной переменной
Линейные уравнения с одной переменной
Левая часть каждого из этих уравнений является произведением некоторого числа и переменной, а права часть — некоторым числом. Такие уравнения называют линейными уравнениями с одной переменной.
Определение:
Уравнение вида , где — некоторые известные числа, а — переменная, называют линейным уравнением с одной переменной.
Числа а и b называют коэффициентами линейного уравнения.
Когда при решении уравнения выполняют некоторые преобразования, приводя данное уравнение к более простому, то во многих случаях этим «простым» уравнением является именно линейное уравнение.
Выясним, сколько корней может иметь линейное уравнение. Для этого рассмотрим сначала три следующих уравнения:
1) ; 2) ; 3) .
- Чтобы решить уравнение , достаточно обе его части разделить на 3. Получим один корень:
- В уравнении значение левой части равно 0 для любого числа . Правая же часть уравнения не равна нулю. Следовательно, данное уравнение корней не имеет.
- Равенство является верным для любого числа . Поэтому корнем уравнения является любое число (уравнение имеет бесконечно много корней).
В общем случае для линейного уравнения получим:
- если , то уравнение имеет единственный корень ;
- если , a , то уравнение корней не имеет;
- если и , то корнем уравнения является любое число (уравнение имеет бесконечно много корней).
Итог: количество корней линейного уравнения
— линейное
Уравнения с модулями
Напомним, что модулем положительного числа и числа 0 является это же число, модулем отрицательного числа является противоположное ему число:
Так, . Модуль любого числа является неотрицательным числом, то есть .
Уравнения содержат переменную под знаком модуля. Такие уравнения называют уравнениями с модулем.
Уравнение вида . Решая уравнение вида , где а — некоторое известное число, можно использовать геометрический смысл модуля числа: модуль числа — это расстояние от начала отсчета до точки, изображающей число на координатной прямой.
Рассмотрим уравнение . На координатной прямой существуют две точки, расположенные на расстоянии 2 единицы от начала отсчета. Это точки, соответствующие числам 2 и -2 (рис. I). Поэтому уравнение имеет два корня: 2 и -2.
Уравнение имеет один корень — число 0, а уравнение не имеет корней (модуль любого числа является неотрицательным числом и не может быть равен -2).
В общем случае уравнение :
- имеет два корня а и -а, если ;
- имеет один корень 0, если ;
- не имеет корней, если
Решение уравнений с модулями, исходя из определения модуля числа
(1)
Это уравнение нельзя привести к виду , где а — некоторое число. Для его решения рассмотрим два случая.
1. Если — неотрицательное число (), то и уравнение (1) принимает вид , откуда . Число 1 — неотрицательное (удовлетворяет неравенству ), поэтому оно является корнем уравнения (1).
2. Если — отрицательное число (), то и уравнение (1) принимает вид , откуда . Число 2 не является отрицательным (не удовлетворяет неравенству ), поэтому оно не является корнем уравнения (1).
Таким образом, уравнение имеет один корень .
Примеры выполнения заданий:
Пример №90
Решить уравнение .
Решение:
Пример №91
Решить уравнение .
Решение:
Ответ. Уравнение корней не имеет.
Пример №92
Решить уравнение
Решение:
Ответ. Корнем уравнения является любое число.
Пример №93
Решить уравнение .
Решение:
Умножив обе части уравнения на 36 (36 — наименьшее общее кратное знаменателей дробей), получим:
Итог. При решении уравнения нужно придерживаться следующей схемы:
- Если в уравнении есть выражения с дробными коэффициентами, то умножить обе его части на наименьший общий знаменатель дробей.
- Раскрыть скобки.
- Перенести все слагаемые, содержащие переменную, в одну часть уравнения (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (в правую).
- Привести подобные слагаемые.
- Разделить обе части уравнения на коэффициент при переменной, если он не равен нулю. Если же он равен 0, то уравнение или не имеет корней, или его корнем является любое число.
Пример №94
Решить уравнение .
Решение:
Если модуль числа равен 3, то этим числом является 3 или -3. Поэтому возможны два случая:
1) 2)
Пример №95
Решить уравнение .
Решение:
Решение задач с помощью уравнений
При решении задач с помощью уравнений в большинстве случаев придерживаются следующей схемы:
- выбирают неизвестное и обозначают его буквой (или какой-нибудь другой буквой);
- используя условие задачи, составляют уравнение;
- решают уравнение и отвечают на вопросы, поставленные в задаче.
Пример №96
В двух цистернах находится 66 т бензина, причем в первой бензина в 1,2 раза больше, чем во второй. Сколько бензина в каждой цистерне?
Решение:
Пусть во второй цистерне т бензина, тогда в первой — т. В двух цистернах вместе находится т бензина, что по условию равно 66 т. Получаем уравнение:
Решим это уравнение: .
Таким образом, во второй цистерне 30 т бензина, а в первой — 1,2 • 30 = 36 (т).
Ответ. 36 т, 30 т.
Примечание. Чтобы решить задачу 1, можно рассуждать и так. Пусть во второй цистерне т бензина, тогда в первой — т. В первой цистерне бензина в 1,2 раза больше, чем во второй, поэтому . Остается решить это уравнение и записать ответ задачи.
Пример №97
Из. города А в город В выехал грузовой автомобиль. Через 30 мин навстречу ему из города В выехал легковой автомобиль, скорость которого на 25 км/ч больше скорости грузового. Автомобили встретились через 1,3 ч после выезда грузового автомобиля из города А. Найти расстояние между городами, если за все время движения грузовой автомобиль проехал на 10 км больше, чем легковой.
Решение:
Пусть скорость грузового автомобиля км/ч, тогда скорость легкового — км/ч.
До момента встречи грузовой автомобиль был в пути 1,3 ч, а легковой на 30 мин = 0,5 ч меньше: 1,3 ч — 0,5 ч = 0,8 ч. За 1,3 ч грузо&ой автомобиль проехал 1,3 км, а легковой за 0,8 ч — 0,8 км. Поскольку грузовой автомобиль проехал на 10 км больше, чем легковой, то разность расстояний 1,3 км и 0,8 км равна 10 км.
Скорость, км/ч | Время, ч | Путь, км | |
Грузовой автомобиль | 1,3 | 1,3 | |
Легковой автомобиль | 0,8 |
Получили уравнение:
Решим это уравнение:
Итак, скорость грузового автомобиля равна 60 км/ч.
Расстояние между городами равно сумме расстояний, которые проехали оба автомобиля, то есть км. Поскольку = 60, то получим:
Примечание. Опираясь на решение задач 1 и 2, проанализируем первые два шага приведенной выше схемы решения задач с помощью уравнений.
1) Выбор неизвестного, которое мы обозначали буквой, в решениях этих задач был разным. В задаче 1 мы обозначили через т одну из искомых величин (массу бензина во второй цистерне). В задаче 2 искомой величиной является расстояние между городами. Если эту величину обозначить через км, то при составлении уравнения рассуждения будут довольно сложными. Мы же через км/ч обозначили неизвестную скорость грузового автомобиля, выразили через расстояния, пройденные автомобилями, и составили уравнение, зная, что разность расстояний равна 10 км.
Таким образом, обозначать через (или какую-нибудь другую букву) желательно ту неизвестную величину, через которую легче выражаются величины, значения которых можно приравнять.
2) Чтобы составить уравнение, сначала выражаем через те величины, значения которых будем приравнивать. После этого записываем уравнение.
Математическая модель:
Вам, наверное, уже приходилось видеть модели корабля, самолета, автомобиля, изготавливать модели куба, прямоугольного параллелепипеда. Каждая модель, в зависимости от ее предназначения, отображает некоторые свойства оригинала.
Математическая модель — это описание некоторого реального объекта или процесса на языке математики.
Опишем на языке математики задачу 2. Определяя скорость грузового автомобиля в этой задаче, мы обозначили ее через км/ч. Скорость легкового автомобиля на 25 км/ч больше, чем скорость грузового, что на языке математики записывают так: скорость легкового автомобиля равна км/ч.
На языке математики расстояние, пройденное грузовым автомобилем, записывают: 1,3 км, а расстояние, пройденное легковым автомобилем, — км.
По условию задачи грузовой автомобиль проехал на 10 км больше, чем легковой, что на языке математики можно выразить так: разность расстояний, пройденных грузовым и легковым автомобилями, равна 10 км, и записать: .
Полученное уравнение и является математической моделью задачи на движение автомобилей. Построив математическую модель, мы свели задачу на движение к математической задаче — решить уравнение.
Кроме уравнений, есть и другие виды математических моделей, с которыми ми познакомимся в процессе изучения алгебры.
Интересно знать. История науки знает немало примеров, когда в рамках удачно построенной математической модели с помощью вычислений, как говорят, «на кончике пера», удавалось предвидеть существование новых физических объектов и явлений. Так, опираясь на математические модели, астрономы Дж. Адамс (Англия) в 1845 году и У. Леверье (Франция) в 1846 году независимо друг от друга пришли к выводу о существовании неизвестной тогда еще планеты и указали ее расположение на небе. По расчетам Леверье астроном Г. Галле (Германия) нашел эту планету. Ее назвали Нептуном.
Интересно знать
На протяжении многих столетий алгебра была наукой об уравнениях и способах их решения. Линейные уравнения умели решать еще древние египтяне и вавилоняне (1 тысячелетие до н. э.).
О состоянии математики в Древнем Египте свидетельствуют математические тексты, написанные на особой бумаге — папирусе, изготовленном из стеблей растения, которое имеет такое же название. Написание некоторых папирусов относят к XVIII в. до н. э., хотя описанные в них математические факты были известны древним египтянам задолго до их изложения.
Один из таких папирусов был найден в 1872 году в одной из египетских пирамид. Его приобрел английский коллекционер древностей Райнд, и сейчас >тот папирус — папирус Райнда — хранится в Лондоне.
В папирусе Райнда особое место занимают задачи на «аха» («хау»).
Это задачи, которые решаются с помощью линейных уравнений с одним нечестным. «Аха» («хау») означает «совокупность», «куча» (неизвестная величина). Пример такой задачи: «Куча. Ее, ее , ее и ее целое. Это 33». Если обозначить «кучу» — неизвестную величину — через , то получим уравнение: .
Более заметные успехи в создании начал алгебры были достигнуты в Древнем Вавилоне. До нашего времени сохранились вавилонские глиняные плитки с комбинациями клиновидных черточек — клинописью. Такие плитки имели в Вавилоне то же значение, что и папирусы в Египте. На плитках встречаются и и клинописные математические тексты, которые свидетельствуют, что уже более 4000 лет гому назад в Вавилоне могли решать уравнения, содержащие квадрат неизвестного.
Начиная с VII в. до н. э., древние греки после знакомства с достижениями египтян и вавилонян в сфере математики продолжили их науку. При этом достаточно мало греческих ученых при решении задач использовали уравнения. Одним из тех, кто использовал уравнения, был древнегреческий математик Диофант.
О Диофанте известно мало, даже точно не установлены годы его жизни. Кое-что о жизни Диофанта и о том, сколько он прожил лет, можно узнать из надписи на его могильной плите.
Надпись на плите | Языком алгебры |
Путник! Здесь погребен Диофант. И числа поведать могут, о чудо, сколь долог был век его жизни. | |
Часть шестую его представляло прекрасное детство. | |
Двенадцатая часть протекла его жизни — покрылся пухом тогда подбородок. | |
Седьмую в бездетном браке провел Диофант. | |
Прошло пятилетие; он был осчастливлен рождением прекрасного первенца-сына, | 5 |
коему рок дал половину лишь жизни прекрасной и светлой на земле по сравнению с отцом. | |
И в печали глубокой старец земного удела конец воспринял, переживши года четыре с тех пор, как сына лишился. | 4 |
Скажи, сколько лет жизни достигнув, смерть воспринял Диофант? |
Греческую науку в Средневековье заимствовали ученые Востока — индийцы и арабы. Именно на Востоке в IX в. алгебра становится самостоятельной математической наукой.
Происхождение слова «алгебра» также связано с Востоком.
Город Багдад в VII-IX в. был столицей могущественного Арабского халифата. Багдадские халифы оказывали содействие развитию природоведения и математических наук. За годы правления халифа Гаруна аль-Рашида в Багдаде была оборудована большая библиотека, а халиф аль-Мамун организовал своеобразную академию — «Дом мудрости» и построил хорошо оборудованную обсерваторию.
При дворе аль-Мамуна жил и работал ученый Мухаммед бен Муса аль-Хорезми (около 780 — около 850). Он собрал и систематизировал способы решения уравнений и описал их в работе «Китаб аль-джебр аль-мукабала», что дословно означает «Книга о восстановлении и противопоставлении». В то время отрицательные числа считались «ненастоящими», и, когда в процессе решения уравнения в какой-то его части появлялось отрицательное число, его нужно было перенести в другую часть. Эту операцию называли восстановлением (аль-джебр), то есть переведением «ненастоящих» (отрицательных) чисел в «настоящие» (положительные). С помощью противопоставления (аль-мукабала) отбрасывали одинаковые слагаемые в обеих частях уравнения.
В XII в. сочинение аль-Хорезми перевели на латинский язык, сохранив в его названии только слово «аль-джебр», которое вскоре стали произносить как алгебра.
Постепенно сформировалась современная алгебра, которая охватывает не только теорию решения уравнений, а и способы проведения операций (действий) с разнообразными объектами (в частности, с числами).
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Целые выражения
- Одночлены
- Многочлены
- Формулы сокращенного умножения
- Отношения и пропорции
- Рациональные числа и действия над ними
- Делимость натуральных чисел
- Выражения и уравнения
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
💥 Видео
Виды уравнений. Свойства уравнений. Перенос слагаемых из одной части уравнения в другую. Алгебра 7.Скачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ с одной переменной. §2 алгебра 7 классСкачать
Уравнения с одной переменной. Видеоурок по алгебре за 7 класс.Скачать
Линейное уравнение с одной переменнойСкачать
6 класс, 18 урок, Линейные уравнения с одной переменнойСкачать
АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать
Линейное уравнение с одной переменнойСкачать
Дробно-рациональные уравнения. 8 класс.Скачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Свойства уравненийСкачать
Целое уравнение и его корни. Алгебра, 9 классСкачать
Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать
Уравнения с одной переменной 9 класс МакарычевСкачать