О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
- Понятие уравнения
- Какие бывают виды уравнений
- Как решать простые уравнения
- Примеры линейных уравнений
- Линейное уравнение с одной переменной
- Содержание
- Что такое уравнение
- Приведем пример
- Рассмотрим пример
- Что такое линейное уравнение
- Коэффициенты и решение линейных уравнений
- Свойства линейных уравнений
- Линейное уравнение с одной переменной
- Линейное уравнение
- Примеры линейных уравнений
- Свойства линейных уравнений
- Равносильные уравнения
- Свойства равенств
- Примеры решения уравнений
- Общий вид решений линейного уравнения
- Шаг 1.
- Шаг 2.
- Шаг 3.
- Задача №1.
- Задача №2.
- Задача №3.
- Задача №4.
- Задача №5.
- 🌟 Видео
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Линейное уравнение с одной переменной
Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Содержание
Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Что такое уравнение
Для изучения темы линейного уравнения вспомним, что уравнением называют равенство, в составе которого есть неизвестное число. Это неизвестное число-переменную нам и нужно найти.
К примеру, не будут уравнениями выражения $3n-4$ или $d + 8$. Ведь в них не требуется найти значение переменной и отсутствует знак равенства. Это просто буквенные выражения. А вот записи: $4y-7 = 13$ или $-5x = 6x-2$ являются уравнениями.
Чаще всего уравнения используют, чтобы решить задачу.
Приведем пример
Папе и сыну вместе $45$ лет, при этом известно, что отец старше на $19$ лет. Найдем, сколько лет каждому из них?
Обозначим возраст сына за $x$, тогда папе будет $x+19$ лет. Получим уравнение: $x + (x + 19) = 45$, так как по условию вместе им $45$ лет. Решим:
после раскрытия скобок: $2x + 19 = 45$,
То есть с помощью составления уравнения мы выяснили, что сыну $13$ лет. Отцу тогда $32$ года $(13 + 19)$. И вместе им действительно $45$ лет: $$13 + 32 = 45$$
Таким образом, записав по условию задачи уравнение, мы смоделировали алгебраическую модель ситуации.
Неизвестная переменная может обозначаться в уравнении не только буквами $x$ или $y$, но и любыми другими латинскими буквами.
Когда от нас требуется решить уравнение, мы должны найти все его корни либо показать, что их нет.
Корень уравнения – это значение неизвестной переменной, превращающее уравнение в верное равенство.
Рассмотрим пример
Выясним, является ли корнем этого уравнения $x = 4$. Подставим $4$ вместо $x$ и получим: $$-1 = 5$$$$12-1 = 5$$$$11 = 5$$
При решении мы поняли, что $x ≠ 4$, так как $11 ≠ 5$. То есть число $4$ не может быть корнем данного в задании уравнения. Посчитайте самостоятельно, какой корень у этого уравнения?
Корней может быть несколько, один или не быть совсем. В последнем случае говорят обычно, что уравнение не имеет решения или не имеет корней.
В примере с папой и сыном корень уравнения единственный: $x = 13$. Ведь нет других вариантов решения, при которых будут выполнены все условия и получится верное равенство. Проверьте сами?
Видео:Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Что такое линейное уравнение
Если числа в конечном уравнении $2x = 26$ к нашему первому примеру заменить на буквы $a$ и $b$, мы получим уравнение вида $ax = b$.
Подобные уравнения и называются линейными.
Уравнения вида $ax = b$, где $x$ — переменная, $a$ и $b$ — некоторые числа, называются линейными уравнениями с одной переменной
Когда уравнения содержат, к примеру, степень: $$x^2 + 3 = 7$$ или неизвестная переменная находится в знаменателе дроби: $$frac — 3 = 0$$ они не будут называться линейными.
Иногда в составе уравнения есть несколько переменных, это тоже не наш случай: такие уравнения будут изучаться позже.
Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Коэффициенты и решение линейных уравнений
Числа $a$ и $b$ в линейном уравнении называют коэффициентами. Они могут быть выражены любыми числами, в том числе отрицательными или дробными. При этом $a$ называют коэффициентом при неизвестной переменной, а коэффициент $b$ свободным.
В наших примерах у уравнений был единственный корень. Наверное, вы заметили, что в них коэффициенты $a$ и $b$ были равны числам, отличным от нуля. Подобные уравнения решаются по простому алгоритму: $$x = frac $$
Посмотрим, когда линейное уравнение никак не может иметь корней (или верного решения).
Попробуем взять коэффициент $a$, равный $0$, а коэффициент $b$ — любое число, не равное $0$. Тогда получим уравнение: $$0times x = b$$ При умножении $x$ на ноль всегда будет ноль, но у нас $b ≠ 0$. Следовательно, правая и левая части такого уравнения между собой не равны, и при $a = 0$, а $b ≠ 0$ линейное уравнение не имеет верного решения.
Но линейное уравнение может иметь и множество решений. Рассмотрим такой случай. Например, что будет, если оба коэффициента равны нулю: $a = 0$ и $b = 0$? $$0times x + 0 = 0$$ Ясно, что любое подобное уравнение с обоими коэффициентами, равными нулю, имеет бесконечно много корней. Почему? Потому что любое число при умножении на 0 дает ноль. Какое бы число вместо $x$ мы не подставили, равенство будет верным.
Таким образом, при решении линейных уравнений мы пришли к трем общим ситуациям:
Величины $a$ и $b$ | $a ≠ 0$, $b$ — любое | $a = b = 0$ | $a = 0$, $b ≠ 0$ |
Корни уравнения $ax = b$ | $x = frac $ | $x$ — любое | корней нет |
Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Свойства линейных уравнений
Цель любого линейного уравнения – выразить $x$ и понять, чему он будет равен.
До того, как начать решать уравнение, над ним необходимо произвести все доступные арифметические действия, например, сложение/вычитание, раскрытие скобок, умножение/деление отдельно для свободных коэффициентов и отдельно для членов уравнения с неизвестной переменной.
Для упрощения дальнейшего решения с уравнениями можно произвести те же действия, что применяются к другим математическим выражениям.
Свойства линейных уравнений:
- Любой член можно перенести из одной части линейного уравнения в другую, но при этом нужно не забыть заменить знак на противоположный.
В процессе решения надо так преобразовать уравнение, чтобы все известные члены оказались с одной стороны равенства, а неизвестные — с другой.
Например: $5x = 30-3x$. Для решения перенесем $-3x$ в левую часть с противоположным знаком и получим $5x + 3x = 30$.
- В ходе решения обе части уравнения можно одновременно делить или умножать на какое-то одно и то же число, отличающееся от $0$. При этом равенство будет оставаться верным.
Часто второе свойство применяется в уравнениях с дробями. Например, нужно решить уравнение: $$frac times x = 8$$ Чтобы избавиться от дроби, попробуем и правую и левую части уравнения умножить на $2$. Тогда мы получим: $$2times frac times x = 2times 8$$ После умножения уравнение примет следующий вид: $$5x = 16$$
Согласитесь, такое уравнение решить намного легче. При этом после подобных преобразований равенство не нарушается, и мы получаем равносильные уравнения.
Видео:Математика без Ху!ни. Метод Гаусса.Скачать
Линейное уравнение с одной переменной
Тема урока: § 5. Линейное уравнение с одной переменной. Навык решения линейных уравнений проверяется на экзаменах ОГЭ и ЕГЭ и необходим для решения текстовых задач.
Существуют ли такие значения переменной $x$, при которых соответственные значения выражений $3x$ и $x+8$ равны? Чтобы ответить на этот вопрос, надо решить уравнение:
При $x$, равном $4$, значения левой и правой частей уравнения равны. Число $4$ называют решением или корнем данного уравнения.
Определение:
Корень уравнения с одной переменной — это число, обращающее данное уравнение в верное равенство.
Решить уравнение — значит найти множество всех его корней.
Видео:Линейные уравненияСкачать
Линейное уравнение
Определение:
Каждое алгебраическое уравнение с одним неизвестным, степень которого равна единице называется линейным уравнением.
В общем виде линейное уравнение имеет вид:
Где $k$ и $b$ — произвольные числа.
Примеры линейных уравнений
Приведём несколько примеров линейных уравнений:
Уравнение $x+5=8$ имеет корень $3$. Этот корень единственный, так как при $x 3$ больше $8$.
Уравнение $(x+2)(x-1)(x-7)=0$ имеет три корня: $-2$, $1$ и $7$, так как каждое из этих чисел обращает уравнение в верное равенство, а при всех других значениях $x$ ни один из множителей (а значит, и их произведение) не равен нулю.
Уравнение $x+3=x-1$ совсем не имеет корней, так как при любых $x$ значение выражения, стоящего в левой части уравнения, на $4$ больше соответственного значения выражения, стоящего в правой части. Множество корней этого уравнения пустое.
Уравнение $x=|x|$ имеет бесконечное множество корней. Любое положительное число или нуль является его корнем.
Уравнение $5(x+8)=40+5x$ также имеет бесконечное множество корней, причем любое значение $x$ является его корнем, так как выражения $5(x+8)$ и $40+5x$ тождественно равны. О таком уравнении говорят, что оно удовлетворяется тождественно.
Заметим, что каждое из данных равенств имеет общую форму:
$$kx+b=0 Leftrightarrow kx=-b$$
они внешне похожи друг на друга, где $x$ — переменная (неизвестное), $k$ и $b$ — произвольные числа.
Следующие уравнения не будут являться линейными, так как они не имеют вышеописанный вид.
Свойства линейных уравнений
Линейные уравнения обладают рядом специфических свойств, рассмотрим их:
Любое слагаемое можно переносить в противоположную сторону равенства, но при этом слагаемое меняет знак. Покажем на примере равенства:
$$x+2=0 Rightarrow x=-2$$
Смена знака связана с тем, что мы вправе прибавлять к обоим частям уравнения одно и то же число (смысл уравнения от этого не меняется).
$$x+0=0-2 Rightarrow x=-2$$
Каждую часть равенства можно умножать, делить на одно и то же число отличное от нуля (смысл уравнения от этого не меняется). Покажем на примере того же равенства, домножив обе части на число четыре:
$$x+2=0 Rightarrow (x+2)cdot 4=0cdot 4$$
Видео:Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать
Равносильные уравнения
Рассмотрим три уравнения:
$x(x+2)(x-3)=0$ Уравнение (1) имеет два корня: $-2$ и $3$, а уравнение (2) — три корня: $0$, $-2$ и $3$. Каждый корень уравнения (1) является корнем уравнения (2), но не каждый корень уравнения (2) является корнем уравнения (1).
При $x=0$ второе уравнение обращается в верное равенство , а первое — нет.
Уравнение $x(x+2)=3(x+2)$ имеет два корня: $-2$ и $3$.
Каждое решение уравнения (3) является решением уравнения (1) и каждое решение уравнения (1) является решением уравнения (3). Такие уравнения называются равносильными.
Важно!
У равносильных уравнений множества их решений совпадают.
Понятие равносильности уравнений распространяется и на уравнения с несколькими переменными. Например, два уравнения с переменными $x$ и $y$ считаются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения служит решением первого.
Пусть первое уравнение $P(x)=0$, а второе $Q(x)=0$ и если они равносильны, то имеет место знак равносильности:
В дальнейшем мы будем часто использовать такую символику.
Свойства равенств
Можно ли, не решая уравнений $2x-5=9$ и $2x=14$, утверждать, что они равносильны? Ответить на этот вопрос помогут нам хорошо известные свойства равенств. Перечислим их:
Рефлексивность. Любое число равно самому себе: $a=a$.
Симметричность. Если одно число равно другому, то это второе число равно первому: если $a=b$, то $b=a$.
Транзитивность. Если первое число равно второму, а второе равно третьему, то первое число равно третьему: если $a=b$ и $b=c$, то $a=c$. Свойствами, аналогичными указанным свойствам равенств, обладают многие соотношения. Например, параллельность (в множестве прямых плоскости) обладает симметричностью и транзитивностью .
Действительно, если $a||b$, то $b||a$; если $a||b$ и $b||c$, то $a||c$. Равносильность уравнений обладает всеми тремя свойствами. В самом деле, каждое уравнение равносильно самому себе; если одно уравнение равносильно другому, то второе равносильно первому; если одно уравнение равносильно второму, а второе — третьему, то первое уравнение равносильно третьему.
Приведем еще два свойства равенств, которые нам понадобятся дальше:
Если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство: если $a=b$, то
Если обе части верного равенства умножить на одно и то же число, то получится верное равенство: если $a=b$, то
Примеры решения уравнений
Свойства равенств используются при решении уравнений. Покажем это на примере.
Задача 1.
Пусть нужно решить уравнение: $6x-42=0$
Прибавим к левой и правой частям уравнения число $42$ (перенесем $-42$ в правую часть уравнения с противоположным знаком).
Получим уравнение: $6x=42$
Если при некотором значении $x$ равенство верно, то верно и равенство которое мы получили, и, наоборот, если при некотором значении $x$ верно равенство которое мы получили, то верно и исходное равенство. Это следует из свойства 4. Значит, уравнения равносильны.
Умножим обе части уравнения на $frac$ (разделим на $6$). Получим уравнение: $x=7$
Из свойства 5. следует, что последние два уравнения равносильны:
$$6x=42 Leftrightarrow x=7$$
Следовательно равносильны и уравнения (так как равносильность обладает свойством транзитивности): $6x-42=0 Leftrightarrow x=7$
Значит число $7$ есть корень исходного уравнения.
Рассмотренный пример показывает, что перенос членов уравнения из одной его части в другую с противоположным знаком и умножение (или деление) обеих частей уравнения на неравное нулю число приводят к уравнению, равносильному данному.
Приведем все слагаемые левой части уравнения к общему знаменателю:
Домножим обе части равенства на $frac$ чтобы избавиться от коэффициента при неизвестном, получим:
Сократим числа $7$ и $16$, получим:
Видео:Как решать линейные уравнения #математика #математика7классСкачать
Общий вид решений линейного уравнения
Решим уравнение: $kx+b=0$
Очевидно, решение зависит от наших параметров $k$ и $b$, поэтому рассмотрим несколько сюжетов, которые встречаются при решении линейных уравнений.
Шаг 1.
Коэффициент при неизвестной $k$ будет равняться нулю, а свободный член $b$ отличным от нуля.
$$k=0, bneq 0 Rightarrow 0cdot x=-b$$
Заметим, в этом случае не найдется такого числа $x$, что при подстановке его в уравнение — получится верное равенство. Т.к при умножении на 0 мы не получим число отличное от нуля, стало быть — решений нет. Обычно это записывается так: $$xin oslash$$ что переводится как: $x$ принадлежит пустому множеству.
Шаг 2.
Коэффициент при неизвестной и свободный член отличны от нуля:
$$kneq 0, bneq 0 Rightarrow kx=-b Rightarrow x=frac$$
Т.е. $x$ принимает действительное и единственное решение в виде отношения двух чисел: $-b$ и $k$
Шаг 3.
Числа $k$ и $b$ принимают значения равное нулю, т.е:
$$k=0, b=0 Rightarrow kx=-b Rightarrow 0cdot x=0$$
Очевидно, что какой бы $x$ мы не взяли — равенство будет верным, т.к, при умножении на 0 получим 0. Тогда говорят, что $x$ — любое число, либо $x$ принадлежит всем действительным числам. Запись имеет такой вид:
В данном случае решение можно записать несколькими способами, например с помощью двойного неравенства:
Задача №1.
Найдите корень уравнения: $0,9x-0,6(x-3)=2(0,2x-1,3)$
Раскроем скобки и приведем подобные.
Перенесем слагаемые содержащие неизвестную в одну часть, а остальные в другую.
Домножим обе части равенства на $10$, тогда получим:
Задача №2.
Решите уравнение: $-36(6x+1)=9(4-2x)$
Раскроем скобки в обеих частях равенства.
Перенесем переменные вправо, а остальные слагаемые влево.
Разделим обе части уравнения на $198$ и получим ответ:
Сократим дробь на $18$.
Задача №3.
Чему равен наибольший корень уравнения: $(1,8-0,3y)(2y+9)=0$?
Для решения уравнения нужно воспользоваться свойством произведения. Произведение равно нулю, тогда и только тогда, когда один из множителей равен нулю, а значит одно из выражений в скобках должно равнятся нулю. Рассмотрим первый случай:
После переноса слагаемых домножим обе части равенства на $10$ и поделим на $3$.
Теперь рассмотрим второй случай:
Разделим обе части равенства на $2$.
Как мы видим у нас получилось два корня, при которых уравнение обращается в $0$. Для ответа выберем наибольший из данных, т.е:
Задача №4.
Найдите корень уравнения:
Вспомним, что все наши действия должны быть направлены на приведение уравнения к виду: $x=…$ Поэтому домножим обе части равенства на общий знаменатель $12$, т.е на $4$ и $3$.
После сокращения слева на $4$, а справа на $3$ получим:
$$(3m+5)cdot 3=(5m+1)cdot 4$$
$$3mcdot 3+5cdot 3=5mcdot 4+1cdot 4$$
В данном случае $9m$ удобно перенести вправо, так как не придется избавляться от минуса. Сделаем перенос слагаемых, приведем подобные и получим ответ.
Задача №5.
При каком значении $a$ уравнение: $3ax=12-x$ имеет корень, равный числу $-9$?
Если подставить вместо переменной $x$ число $-9$, то получим $a$ при котором эта ситуация имеет место.
Обратим внимание на правую часть равенства и воспользуемся свойством:
Если перед скобками стоит знак минус, то при их раскрытии все знаки стоящие в скобках меняются на противоположные.
Разделим обе части уравнения на число $-27$, получим:
Сокращаем правую часть равенства на $3$ и получаем окончательный ответ.
🌟 Видео
Уравнение. 5 класс.Скачать
Решение уравнений, 6 классСкачать
ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Решение системы уравнений методом ГауссаСкачать
Как решают уравнения в России и США!?Скачать