Данная статья раскрывает смысл нахождения и алгоритм для общего решения линейных однородных и неоднородных дифференциальных уравнений второго порядка с подробным просмотром их решений.
Линейное однородное уравнение второго порядка имеет вид y » + p ( x ) · y ‘ + q ( x ) · y = 0 , неоднородное — y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) . F ( x ) , p ( x ) и q ( x ) являются функциями, которые непрерывны из интервала интегрирования x . Частным случаем принято считать p ( x ) = p и q ( x ) = q , то есть при наличии постоянных в записи функции.
- Нахождение общего решения линейных дифференциальных уравнений
- Итоги
- Свойства линейных дифференциальных уравнений 2 порядка
- Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Основные понятия о линейных дифференциальных уравнениях второго порядка и их решениях
- Линейное однородное дифференциальное уравнение второго порядка и его решение
- Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика
- Решить линейное однородное дифференциальное уравнение с постоянными коэффициентами самостоятельно, а затем посмотреть решение
- 🌟 Видео
Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Нахождение общего решения линейных дифференциальных уравнений
Общее решение y 0 для линейного однородного дифференциального уравнения (ЛОДУ) вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = 0 из интервала x при наличии постоянных коэффициентов f 0 ( x ) , f 1 ( x ) , . . . , f n — 1 ( x ) , располагаемых на x , считают линейную комбинацию n линейно независимых частных решений ЛОДУ y j , j = 1 , 2 , . . . , n , где имеются произвольные коэффициенты C j , j = 1 , 2 , . . . , n , то есть y 0 = ∑ j = 1 n C j · y j .
Общим решением y для линейного неоднородного дифференциального уравнения вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = f ( x ) из интервала x при наличии коэффициентов f 0 ( x ) , f 1 ( x ) , . . . , f n — 1 ( x ) и функции f ( x ) является сумма вида y ( n ) + f n — 1 ( x ) · y ( n — 1 ) + . . . + f 0 ( x ) · y = 0 , где y
считается одним из общих решений ЛНДУ.
Отсюда следует, что
- выражение y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 считается общим решением дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 , а y 1 и y 2 считаются линейно независимыми частными решениями;
- y = y 0 + y
обозначают в качестве общего решения уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) , где y
принимает одно из любых частных решений, y 0 соответствует общему решению ЛОДУ.
После чего необходимо находить y 1 , y 2 и y
Если функции простые, то применяется метод подбора.
Линейно независимые функции y 1 и y 2 находятся из
1 ) 1 , x , x 2 , . . . , x n 2 ) e k 1 · x , e k 2 · x , . . . , e k n · x 3 ) e k 1 · x , x · e k 1 · x , . . . , x n 1 · e k 1 · x , e k 2 · x , x · e k 2 · x , . . . , x n 2 · e k 2 · x , . . . e k p · x , x · e k p · x , . . . , x n p · e k p · x .
Линейную независимость проверяют определителем Вронского вида W ( x ) = y 1 ( x ) y 2 ( x ) y 1 ‘ ( x ) y 2 ‘ ( x ) . Когда функции располагаются на интервале х , тогда такой определитель не равен 0 на заданном промежутке.
Когда имеются функции вида y 1 = 1 и y 2 = x , где x принадлежит множеству действительных чисел, то W ( x ) = 1 x 1 ‘ x ‘ = 1 x 0 1 = 1 ≠ 0 ∀ x ∈ R .
Функции вида y 1 = sin x и y 2 = cos x считаются линейно независимы на области действительных чисел, потому как W ( x ) = sin x cos x ( sin x ) ‘ ( cos x ) ‘ = sin x cos x cos x — sin x = = — sin 2 x — cos 2 x = — 1 ≠ 0 ∀ x ∈ R
Функции y 1 = — x — 1 и y 2 = x + 1 считаются линейно независимыми из интервала ( — ∞ ; + ∞ )
W ( x ) = — x — 1 x + 1 — x — 1 ‘ ( x + 1 ) ‘ = — x — 1 x + 1 — 1 1 = = — x — 1 + x + 1 = 0 ∀ x ∈ R
Не всегда можно подобрать y 1 , y 2 , y
. Поэтому следует использовать другой метод. При наличии ненулевого частного решения y 1 ЛОДУ второго порядка y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) , тогда общее решение находится понижением степени и подстановкой y = y 1 · ∫ u ( x ) d x .
Найти общее решение уравнение вида y » — y ‘ + y x = 0 .
Решение
Частное решение записывается как y 1 = x для дифференциального уравнения y » — y ‘ + y x = 0 , когда x не равен 0 . Необходимо перейти к понижению степени при помощи постановки. Тогда получим уравнение вида y = y 1 · ∫ u ( x ) d x = x · ∫ u ( x ) d x , а итоговое значение примет вид интеграла ∫ u ( x ) d x = y x .
По правилу дифференцирования произведения и свойству неопределенного интеграла получаем выражение вида
y ‘ = x · ∫ u ( x ) d x ‘ = x ‘ · ∫ u ( x ) d x + x · ∫ u ( x ) d x ‘ = = ∫ u ( x ) d x + x · u ( x ) = y x + x · u ( x ) y » = ∫ u ( x ) d x + x · u ( x ) ‘ = ∫ u ( x ) d x ‘ + x ‘ · u ( x ) + x · u ‘ ( x ) = = 2 u ( x ) + x · u ‘ ( x )
Производим подстановку в исходное выражение. Запишем равенство вида:
y » — y ‘ + y x = 0 ⇔ 2 u + x · u ‘ — y x — x · u + y x = 0 ⇔ 2 u + x · u ‘ — x · u = 0 ⇔ x · d u d x + u · — x + 2 = 0 ⇔ d u u = 1 — 2 x d x , u = 0
Интегрируем обе части выражения и получаем, что ln u + C 1 = x — 2 ln x + C 2 ⇔ ln u = x + ln 1 x 2 + C 2 — C 1 . Переходим к записи общего вида выражения. Тогда она примет вид u = C · e x x 2 с C являющейся произвольной постоянной.
Ответ: из выражения y = x · ∫ u d x очевидно, что общее решение заданного ЛОДУ примет вид y = x · C · ∫ e x x 2 d x = x · C · ( F ( x ) + C 3 ) , когда F ( x ) считается одной из первообразных функции e x x 2 .
Для решения неоднородного дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) нужно подбирать y
, если возможно найти y 1 и y 2 . Поиск общего решения производится при помощи метода вариации произвольных постоянных.
В таком случаем ЛОДУ принимает вид y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 . Преобразовывая произвольные постоянные для общего решения, ЛНДУ принимает вид y 0 = C 1 ( x ) ⋅ y 1 + C 2 ( x ) ⋅ y 2 , где производные неизвестных функций C 1 ( x ) и C 2 ( x ) можно определить из системы вида C 1 ‘ ( x ) · y 1 + C 2 ‘ ( x ) · y 2 = 0 C 1 ‘ ( x ) · y 1 ‘ + C 2 ‘ ( x ) · y 2 ‘ = f ( x ) , а получение самих функций производится путем интегрирования.
Найти общее решение уравнения y » — y = 2 x .
Решение
Для решения необходимо обратить внимание на его частные решения. Для ЛОДУ y » — y = 0 они являются y 1 = e — x и y 2 = e x , то есть выражение вида y 0 = C 1 · e — x + C 2 · e x . Изменяя постоянные, общее решение получит вид
y = C 1 ( x ) · e — x + C 2 ( x ) · e x .
Необходимо составить систему линейных уравнений и решить
C 1 ‘ ( x ) · y 1 + C 2 ‘ ( x ) · y 2 = 0 C 1 ‘ ( x ) · y 1 ‘ + C 2 ‘ ( x ) · y 2 ‘ = f ( x ) ⇔ C 1 ‘ ( x ) · e — x + C 2 ‘ ( x ) · e x = 0 — C 1 ‘ ( x ) · e — x + C 2 ‘ ( x ) · e x = 2 x
Чтобы разрешить ее, следует применить метод Крамера. Тогда
∆ = e — x e x — e — x e x = e — x · e x + e — x · e x = 2 ∆ C 1 ‘ ( x ) = 0 e x 2 x e x = — ( 2 e ) x ⇒ C 1 ‘ ( x ) = ∆ C 1 ‘ ( x ) ∆ = — 1 2 · 2 e x ∆ C 2 ‘ ( x ) = e — x 0 — e — x 2 x = 2 e x ⇒ C 2 ‘ = ∆ C 2 ‘ ( x ) ∆ = 1 2 · 2 e x
После интегрирования полученных выражений для того, чтобы найти C 1 ( x ) и C 2 ( x ) , запишем, что
C 1 ( x ) = — 1 2 · ∫ ( 2 e ) x d x = — 1 2 · ( 2 e ) x ln ( 2 e ) + C 3 = = — 1 2 · ( 2 e ) x ln 2 + 1 + C 3 C 2 ( x ) = 1 2 · ∫ 2 e x d x = 1 2 · 1 ln 2 e · 2 e x + C 4 = = 1 2 · 1 ln 2 — 1 · 2 e x + C 4
Ответ: общим решением для заданного уравнения получим уравнение вида
y = — 1 2 · ( 2 e ) x ln 2 + 1 + C 3 · e — x + 1 2 · 1 ln 2 — 1 · 2 e x + C 4 · e x .
Видео:15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Итоги
- Поиск общего решения ЛОДУ 2 порядка y » + p ( x ) · y ‘ + q ( x ) · y = 0 выполняется из y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 , где y 1 и y 2 считаются линейно независимыми частными решениями. Для подбора частных решений y 1 и y 2 чаще всего начинается с нахождения общего дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 . Когда подбор невозможен, тогда производится снижение порядка с помощью замены y = y 1 · ∫ u ( x ) d x , причем его решение приведет к общему виду ЛОДУ второго прядка.
- Поиск общего решения ЛНДУ 2 порядка вида y » + p ( x ) · y ‘ + q ( x ) · y = f ( x ) производится с помощью y = y 0 + y
является любым частным решением, а y 0 считают в качестве общего решения ЛОДУ. Нахождение y 0 , то есть общего дифференциального уравнения y » + p ( x ) · y ‘ + q ( x ) · y = 0 , производится первоначально. После чего производится подбор y
. Если необходимо, то в начале производится подбор y 1 и y 2 для определения общего решения ЛНДУ с помощью применения метода вариации произвольных постоянных.
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Свойства линейных дифференциальных уравнений 2 порядка
Линейным называется дифференциальное уравнение n -го порядка , если оно 1-ой степени относительно искомой функции y ( x ) и ее производных , то есть имеет вид:
Если коэффициент P 0 ( x ) ≠ 1, то на него можно поделить и после соответствующих переобозначений получить:
Уравнение (8.43) называется уравнением с переменными коэффициентами. Предположим, что в нем функции , непрерывны на интервале . Тогда для уравнения (8.43) на данном интервале имеет место задача Коши, сформулированная нами ранее.
Примечание. Частным случаем (8.43) является линейное дифференциальное уравнение 2-го порядка с переменными коэффициентами:
Если в уравнении (8.43) f ( x ) ≡ 0, то оно называется однородным, если f ( x ) ≠ 0, то неоднородным.
Теорема 8.3 (о структуре общего решения линейного неоднородного ДУ). Общее решение линейного неоднородного дифференциального уравнения представляет собой сумму общего решения соответствующего однородного и некоторого частного решения неоднородного уравнения . Запишем коротко:
Однородное дифференциальное уравнение, соответствующее неоднородному уравнению (8.43), имеет вид:
Пусть в уравнении (8.45) функции . Тогда оно принимает вид:
и называется линейным однородным дифференциальным уравнением n -го порядка с постоянными коэффициентами , где – функции, n раз дифференцируемые.
Рассмотрим решения уравнений (8.45) и (8.46). Обозначим полную совокупность их линейно независимых решений через . Тогда, по свойству решений однородного уравнения, их линейная комбинация также является решением уравнения (8.45) и (8.46), т о есть общее решение может быть записано в виде:
где ci – константы интегрирования.
Перейдем к конструированию функций . Какого они вида? Так как эти функции в уравнениях (8.45) и (8.46) n раз дифференцируемы, то их конструкция при дифференцировании не меняется. Это возможно в случае экспоненциального вида функций, то есть при
где , . Отсюда, линейная комбинация функций (8.48):
– также решение уравнений (8.45) и (8.46).
Рассмотрим одну из функций (8.48) – функцию y = e λx как решение для уравнения (8.46) с постоянными коэффициентами. Продифференцируем ее n раз:
Так как e λx ≠ 0 , то ( 8.50)
–алгебраическое уравнение n -ой степени относительно λ, называемое характеристическим уравнением для уравнения (8.46). Известно, что уравнение n -ой степени имеет равно n корней как действительных, так и комплексных, с учетом их кратности. Значит, характеристическое уравнение (8.50) дает нам n значений числа λ, ранее обозначенных нами через , которые при подстановке в (8.49) приводит нас к окончательному виду общего решения линейного однородного дифференциального уравнения (8.46) с постоянными коэффициентами.
Рассмотрим наиболее распространенный частный случай уравнения (8.46) – его аналог 2-го порядка:
Для данного уравнения характеристическое уравнение (8.50) принимает вид:
Уравнение (8.52) является квадратным относительно λ. В зависимости от дискриминанта D характеристического уравнения рассматривают три случая, приведенных в таблице 8.1.
Пример 8.17. Найти общее решение уравнений:
а) Составляем характеристическое уравнение λ 2 +2 λ – 15 = 0. Корнями этого уравнения будут λ 1 = –5 и λ 2 = 3 . Тогда, применяя (8.53), получаем общее решение: y=C 1 e – 5x +C 2 e 3x .
б) Составляем характеристическое уравнение λ 2 – 16 λ + 64 = 0.
Решая это уравнение, получим λ 1 = λ 2 = 8 . Так как корни равные, то, применяя (8.54), будем иметь:
в) Характеристическое уравнение λ 2 – 4 λ + 13 = 0 имеет комплексные корни λ 1 = 2+3 i и λ 2 = 2 –3 i . Положив в (8.55) α=2 и β = 3, получим общее решение: .
г) Характеристическое уравнение λ 2 +9 = 0 имеет корни λ 1;2 = ± 3 i . П олагая в (8.55) α=0 и β = 3, получим общее решение
Рассмотрим теперь линейное неоднородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами:
Теорема 8.4. Пусть задано линейное дифференциальное неоднородное уравнение второго порядка с постоянными коэффициентами и п равой частью специального вида
1. Если не является корнем характеристического уравнения соответствующего однородного уравнения, то частное решение уравнения (8.57) имеет вид:
где – многочлены общего вида (с неопределенными коэффициентами).
2. Если – корень характеристического уравнения кратности s , то частное решение уравнения (8.57) имеет вид:
– многочлены общего вида
Рассмотрим в таблице 8.2 некоторые случаи составления частного решения линейного неоднородного дифференциального уравнения (8.57) по специальному виду его правой части.
Пример 8.18. Найти общее решение уравнения .
Решение. Найдем общее решение соответствующего однородного ДУ: . Х арактеристическое уравнение λ 2 +2 λ +1 = 0 имеет корень λ1 = 1 кратности 2 (смотри таблицу 8.1). Значит, yo . o . = c 1 ∙ e x + c 2 ∙ x ∙ e x . Находим частное решение исходного уравнения. В нем правая часть x –4=( x –4)∙ e 0∙ x есть формула вида P 1 ( x )∙ e 0∙ x , причем α= 0 не является корнем характеристического уравнения: α ≠ λ . Поэтому согласно формуле (8.58), частное решение y ч.н. ищем в виде y ч.н. = Q 1 ( x )∙ e 0∙ x , т.е. y ч.н. = Ax + B , где A и B – неопределенные коэффициенты. Тогда
Пример 8.19. Решить уравнение .
уравнения . Характеристическое уравнение λ 2 – 4 λ +13 = 0 имеет корни λ1 = 2+3 i , λ 2 = 2 –3 i (смотри таблицу 8.1). Следовательно, .
Находим частное решение y ч.н. . Правая часть неоднородного уравнения в нашем случае имеет вид
Отсюда, сравнивая коэффициенты при косинусе и синусе, имеем . Следовательно, A = 1, B = – 3 . Поэтому . И наконец, с учетом теоремы 8.3 получаем общее решение заданного линейного неоднородного ДУ в виде:
Пример 8.20. Найти частное решение уравнения , удовлетворяющее начальным условиям .
Решение . Находим общее решение однородного уравнения . Характеристическое уравнение λ 2 – λ – 2 = 0 имеет два корня λ 1 = –1 и λ 2 = 2 (смотри таблицу 8.1) ; тогда yo . o . = C 1 ∙ e – x + C 2 ∙ e 2 x – общее решение соответствующего однородного ДУ.
В правой части заданного уравнения имеется показательная функция. Так как в данном случае α=2 совпадает с одним из корней характеристического уравнения, то частное решение следует искать в виде функции Axe 2 x . Таким образом, y ч.н. = Axe 2 x . Дифференцируя дважды это равенство, по лучим: . Подставим y ч.н. и ее производные в левую часть заданного уравнения и найдем коэффициент A : . Следовательно, частное решение y ч.н. = 3xe 2 x , общее решение
Используя начальные условия, определим значения произвольных постоянных C 1 и C 2 . Дифференцируя общее решение (8.60), получим:
Подставим в общее решение (8.60) значения x = 0 и y = 2, будем иметь 2 = C 1 + C 2 . Подставим в выражение для значения x = 0 и , будем иметь: 13 = – C 1 +2 C 2 +3 ; 10 = – C 1 + C 2 . Из этих уравнений составим систему , из которой находим: C 1 = – 2 и C 2 =4 . Таким образом, есть то частное решение, которое удовлетворяет заданным начальным условиям
Теорема 8.5 (о наложении решений). Если правая часть уравнения (8.56) представляет собой сумму двух функций: , а y 1 ч.н. и y 2 ч.н. – частные решения уравнений и соответственно, то функция
является частным решением данного уравнения
Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами
Видео:Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать
Основные понятия о линейных дифференциальных уравнениях второго порядка и их решениях
Линейным дифференциальным уравнением второго порядка называется уравнение вида
где y — функция, которую требуется найти, а p(x) , q(x) и f(x) — непрерывные функции на некотором интервале (a, b) .
Если правая часть уравнения равна нулю ( f(x) = 0 ), то уравнение называется линейным однородным уравнением. Таким уравнениям и будет в основном посвящена практическая часть этого урока. Если же правая часть уравнения не равна нулю ( f(x) ≠ 0 ), то уравнение называется линейным неоднородным уравнением (смотрите отдельный урок).
В задачах от нас требуется разрешить уравнение относительно y» :
Линейные дифференциальные уравнения второго порядка имеют единственное решение задачи Коши.
Видео:14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать
Линейное однородное дифференциальное уравнение второго порядка и его решение
Рассмотрим линейное однородное дифференциальное уравнение второго порядка:
Если y 1 (x) и y 2 (x) — частные решения этого уравнения, то верны следующие высказывания:
1) y 1 (x) + y 2 (x) — также является решением этого уравнения;
2) Cy 1 (x) , где C — произвольная постоянная (константа), также является решением этого уравнения.
Из этих двух высказываний следует, что функция
также является решением этого уравнения.
Возникает справедливый вопрос: не является ли это решение общим решением линейного однородного дифференциального уравнения второго порядка, то есть таким решением, в котором при различных значениях C 1 и C 2 можно получить все возможные решения уравнения?
Ответ на этот вопрос следуюший: может, но при некотором условии. Это условие о том, какими свойствами должны обладать частные решения y 1 (x) и y 2 (x) .
И это условие называется условием линейной независимости частных решений.
Теорема. Функция C 1 y 1 (x) + C 2 y 2 (x) является общим решением линейного однородного дифференциального уравнения второго порядка, если функции y 1 (x) и y 2 (x) линейно независимы.
Определение. Функции y 1 (x) и y 2 (x) называются линейно независимыми, если их отношение является константой, отличной от нуля:
Однако установить по определению, являются ли эти функции линейно независимыми, часто очень трудоёмко. Существует способ установления линейной независимости с помощью определителя Вронского W(x) :
.
Если определитель Вронского не равен нулю, то решения — линейно независимые. Если определитель Вронского равен нулю, то решения — линейно зависимымые.
Пример 1. Найти общее решение линейного однородного дифференциального уравнения .
Решение. Интегрируем дважды и, как легко заметить, чтобы разность второй производной функции и самой функции была равна нулю, решения должны быть связаны с экспонентой, производная которой равна ей самой. То есть частными решениями являются и .
Так как определитель Вронского
не равен нулю, то эти решения линейно независимы. Следовательно, общее решение данного уравнения можно записать в виде
.
Видео:Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать
Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами: теория и практика
Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида
где p и q — постоянные величины.
На то, что это уравнение второго порядка, указывает наличие второй производной от искомой функции, а на его однородность — нуль в правой части. Постоянными коэффициентами называются уже упомянутые выше величины.
Чтобы решить линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами, нужно сначала решить так называемое характеристическое уравнение вида
которое, как видно, является обычным квадратным уравнением.
В зависимости от решения характеристического уравнения возможны три различных варианта решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами, которые сейчас разберём. Для полной определённости будем считать, что все частные решения прошли проверку определителем Вронского и он во всех случаях не равен нулю. Сомневающиеся, впрочем, могут проверить это самостоятельно.
Корни характеристического уравнения — действительные и различные
Иными словами, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид
.
Пример 2. Решить линейное однородное дифференциальное уравнение
.
Решение. Характеристическое уравнение имеет вид , его корни и — вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид
.
Пример 3. Решить линейное однородное дифференциальное уравнение
.
Решение. Характеристическое уравнение имеет вид , его корни и — вещественные и различные. Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид
.
Корни характеристического уравения — вещественные и равные
То есть, . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид
.
Пример 4. Решить линейное однородное дифференциальное уравнение
.
Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид
Пример 5. Решить линейное однородное дифференциальное уравнение
.
Решение. Характеристическое уравнение имеет равные корни . Соответствующие частные решения уравнения: и . Общее решение данного дифференциального уравения имеет вид
.
Корни характеристического уравнения — комплексные
То есть, , , . В этом случае решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид
.
Пример 6. Решить линейное однородное дифференциальное уравнение
.
Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид
.
Пример 7. Решить линейное однородное дифференциальное уравнение
.
Решение. Характеристическое уравнение имеет комплексные корни и . Соответственно и . Общее решение данного дифференциального уравения имеет вид
.
Решить линейное однородное дифференциальное уравнение с постоянными коэффициентами самостоятельно, а затем посмотреть решение
Пример 8. Решить линейное однородное дифференциальное уравнение
.
Пример 9. Решить линейное однородное дифференциальное уравнение
.
🌟 Видео
18. Линейные неоднородные дифференциальные уравнения 2 порядка с постоянными коэффициентами. часть 3Скачать
Математика без Ху!ни. Линейные неоднородные дифференциальные уравнения 2 порядка.Скачать
19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать
Видеоурок "Линейные дифференциальные уравнения 2-го порядка"Скачать
Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать
Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
17. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами Ч2Скачать
Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать
Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать