Свойства коэффициентов в квадратном уравнении

этап. Свойства коэффициентов для быстрого нахождения корней квадратного уравнения.

Свойство 1. Если в уравнении ах 2 + bх +с = 0, а + b + с = 0, то один из его корней равен 1, а другой, в соответствии с теоремой Виета, равен с/а.

Доказательство: Имеем а+b+с=0, тогда b= — (а+с). Найдем дискриминант D=b 2 -4ас= а 2 +2ас+с 2 — 4ас = а 2 — 2ас+с 2 =(а — с) 2 . Формула корней этого квадратного уравнения имеет вид: Свойства коэффициентов в квадратном уравнении Свойства коэффициентов в квадратном уравнении. Отсюда имеем Свойства коэффициентов в квадратном уравненииЧто и требовалось доказать.

Пример 1: х 2 + х – 2 = 0; а = 1, в = 1, с = -2. Так как 1+1–2 =0, то х1 =1, х2 = -2.

Свойство 2. Если в уравнении ах 2 + bх + с = 0, а – b + с = 0 или b=a+c, то один из его корней равен –1, а другой –с/а .

Доказательство: Имеем а — b+с=0, тогда b= а+с. Найдем дискриминант D=b 2 -4ас= а 2 +2ас+с 2 — 4ас = а 2 — 2ас+с 2 =(а — с) 2 . Формула корней этого квадратного уравнения имеет вид: Свойства коэффициентов в квадратном уравнении Свойства коэффициентов в квадратном уравнении. Отсюда имеем Свойства коэффициентов в квадратном уравненииЧто и требовалось доказать.

Пример 2 : х 2 – х – 2 = 0. Так как 1 – (- 1 ) + ( -2 ) = 0, то х1 = -1, х2 = 2.

Свойство 3. Если a = c, b = a 2 + 1, то x1 = — a, x2 = -1/a.

Доказательство: Имеем a = c, b = a 2 + 1. Найдем дискриминант D=b 2 -4ас= а 4 +2а 2 +1 — 4а 2 = а 4 — 2а 2 +1=(а 2 — 1) 2 . Формула корней этого квадратного уравнения имеет вид: Свойства коэффициентов в квадратном уравнении. Отсюда имеем Свойства коэффициентов в квадратном уравненииЧто и требовалось доказать.

Пример 3. 3х 2 +10х+3=0, а=3, b=10, с=3. Так как а=с=3, b=3 2 +1=10, то х1= -3, х2=-1/3.

Свойство 4. Если a = c, b = -(a 2 + 1), то x1 = a, x2 = 1/a.

Доказательство: Имеем a = c, b = -(a 2 + 1). Найдем дискриминант D=b 2 -4ас= а 4 +2а 2 +1 — 4а 2 = а 4 — 2а 2 +1=(а 2 — 1) 2 . Формула корней этого квадратного уравнения имеет вид: Свойства коэффициентов в квадратном уравнении. Отсюда имеем Свойства коэффициентов в квадратном уравненииЧто и требовалось доказать.

Пример 4. 3х 2 — 10х+3=0, а=3,b=-10,с=3. Так как а=с=3, b=-(3 2 +1)=-10, то х1=3, х2=1/3.

Приём переброски.

Свойства коэффициентов в квадратном уравнении, первый коэффициент в качестве множителя «перебрасываем к -3», получим уравнение Свойства коэффициентов в квадратном уравнении

Корни 9 и -2 . Делим числа 9 и ( -2) на 6:
Свойства коэффициентов в квадратном уравнении

Ответ: Свойства коэффициентов в квадратном уравнении

6 этап. Практическая направленность.

Задания, при решении которых необходимо умение решать квадратные уравнения.

Уровень А. 1. Найдите сумму и произведение корней уравнения: Свойства коэффициентов в квадратном уравнении2. Пользуясь теоремой, обратной теореме Виета, составьте квадратное уравнение, корни которого равны 2 и 5.
Уровень В. 2. Найдите сумму и произведение корней уравнения: Свойства коэффициентов в квадратном уравнении2. Пользуясь теоремой, обратной теореме Виета, составьте квадратное уравнение, корни которого равны Свойства коэффициентов в квадратном уравнениии Свойства коэффициентов в квадратном уравнении.
Уровень С. Решите уравнение и выполните проверку по теореме, обратной теореме Виета: Свойства коэффициентов в квадратном уравнении Свойства коэффициентов в квадратном уравнении

С помощью квадратных уравнений можно решать многие текстовые задачи. Вот одна из задач знаменитого индийского математика XII в. Бхаскары, решить ее можно с помощью квадратного уравнения.

На две партии разбившись, забавлялись обезьяны.

Часть восьмая их в квадрате в роще весело резвилась;

Криком радостным двенадцать воздух свежий оглашали…

Вместе сколько, ты мне скажешь, обезьян там было в роще?

1. Проводя исследование, выяснили, что кроме традиционных методов решения квадратного уравнения , которые мы узнали на уроках математики, существуют еще не менее интересные, а главные полезные свойства, практически устного решения квадратного уравнения.

2. Исследовательскую работу по математике планируем продолжать и далее.

3. Результаты своего исследования я представила в виде карточки-памятки( приложение 1) по решению квадратного уравнения.

· А.П.Ершова, В.В.Голобородько, А.С.Ершова «Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса», «ИЛЕКСА»,Москва,2003 .

· М.Б.Миндюк, Н.Г.Миндюк «Разноуровневые дидактические материалы по алгебре, 8 класс», «ГЕНЖЕР»,Москва,2002.

· «Алгебра 7-9 .Тематические зачеты»

· Г.И.Ковалева «Уроки математики в 8 классе»,издательство «БРАТЬЯ ГРИНИНЫ»,Волгоград, 2001.

Видео:Свойства коэффициентов квадратного уравненияСкачать

Свойства коэффициентов квадратного уравнения

Урок по алгебре в 8-м классе “Свойства коэффициентов квадратного уравнения”

Разделы: Математика

Цели урока:

Образовательная (учебная).

Сформировать умения и навыки метода устного решения квадратных уравнений.

Воспитательные.

Показать учащимся, что математические понятия не изолированы друг от друга, а представляют определенную систему знаний, все звенья которой находятся во взаимной связи.

— Формирование общественных навыков:

  1. Вычислительных;
  2. Эстетических навыков при оформлении записей;
  3. Приобретение навыков исследовательской работы.

— Формирование качеств личности.

  1. Трудолюбия;
  2. Самостоятельности;
  3. Ответственности за принятое решение.

Развивающие задачи:

  1. Развитие мыслительной деятельности: умения анализировать, обобщать, классифицировать;
  2. Развитие творческой деятельности: интуиции, смекалки.

Актуализация знаний.

На доске записано: ах 2 + bх + с, где а Свойства коэффициентов в квадратном уравнении0

— Что написано на доске? (Квадратный трехчлен)
— А теперь что написано на доске? ах 2 + bх + с = 0, где а Свойства коэффициентов в квадратном уравнении0 (Квадратное уравнение)
— Всегда ли имеют ли корни квадратный трехчлен и квадратное уравнение? (Нет, не всегда)
— От чего зависит количество корней? (От дискриминанта)
— Как найти дискриминант квадратного трехчлена или квадратного уравнения? (Д = в 2 – 4ас)
— Сколько корней в зависимости от дискриминанта может иметь квадратный трехчлен или квадратное уравнение? (Два различных корня, два одинаковых корня или нет корней).
— Как найти корни квадратного трехчлена или квадратного уравнения? 1,2 = Свойства коэффициентов в квадратном уравнении)
— По какой формуле можно квадратный трехчлен разложить на линейные множители? (ах 2 + bх + с =а(х – х1)(х – х2))

1. Найдите корни квадратного трехчлена: 5х 2 + 8х + 3;
(Ответ: Свойства коэффициентов в квадратном уравнении)

2. Решите квадратное уравнение: х 2 + 6х + 8 = 0;
(Ответ: -4 и -2)

3. Разложите на линейные множители квадратный трехчлен: 3х 2 – 10х + 8;
(Ответ: 3(х — 2)(х — Свойства коэффициентов в квадратном уравнении))

Введение знаний.

— Решая математические задачи, часто приходится встречаться с квадратными уравнениями. Поэтому помимо основных формул для вычисления корней таких уравнений полезно знать методы устного решения. Это помогает не только экономить время, но и развивать внимание. Конечно, не каждое квадратное уравнение можно решить с помощью свойства его коэффициентов, но в школьных учебниках многие уравнения решаются таким способом.

Свойства коэффициентов квадратного уравнения.

Пусть ах 2 + bх + с = 0, где а Свойства коэффициентов в квадратном уравнении0

  1. Если а + b + с = 0, то х1 = 1, х2 = Свойства коэффициентов в квадратном уравнении;
  2. Если а + с = b, то х1 = -1, х2 = —Свойства коэффициентов в квадратном уравнении.

Пример 1. Решить уравнение: 341х 2 + 290х – 51 = 0

Решение. Имеем: а = 341, b = 290, с = -51.

341 + (-51) = 290, т.е. а + с = b. Следовательно, х1 = -1, х2 = Свойства коэффициентов в квадратном уравнении.

Пример 2. Решить уравнение: 67х 2 – 75х + 8 = 0.

Решение. Замечаем, что 67 + 8 = 75, следовательно, х1 = Свойства коэффициентов в квадратном уравнении= 1, х2 = Свойства коэффициентов в квадратном уравнении.

Пример 3. Решить уравнение: 19х 2 + 15х – 34 = 0.

Решение. Так как 19 + 15 – 34 = 0, то искомые числители дробей равны 19 и -34, тогда, х1 = Свойства коэффициентов в квадратном уравнении= 1, х2 = —Свойства коэффициентов в квадратном уравнении.

Задания для закрепления.

  1. 3х 2 – 5х + 2 = 0;
  2. 2х 2 + 3х + 1 = 0;
  3. 5х 2 + 9х –14 = 0;
  4. 5х 2 + х – 6 = 0;
  5. 5х 2 + 4х — 9 = 0;
  6. х 2 + 29х – 30 = 0;
  7. х 2 — 2000х – 2001 = 0;
  8. 72х 2 + 69х – 3 = 0;
  9. 83х 2 – 97х + 14 = 0.

Квадратное уравнение с коэффициентом 1 при х 2 ( т.е.а = 1) называют приведенным квадратным уравнением.

— Посмотрите на таблицу. Все ли уравнения , записанные в ней, являются приведенными квадратными уравнениями?

УравнениеabcДх1х2х12х1 х2
х 2 – 7х + 12 =0
х 2 – 8х + 12 =0
х 2 – 12х+11 =0
х 2 + 7х – 8 =0
х 2 – 5х + 12 =0
х 2 – х — 12 =0
х 2 – 2х – 3 =0
х 2 + 5х – 14 =0
х 2 + 18х+32 =0
х 2 +5х + 4 =0
х 2 – 7х + 10 =0
х 2 – 7х + 15 =0
х 2 + 2х — 8 =0
х 2 + 5х – 6 =0
х 2 + 3х — 4 =0
х 2 + 5х — 24 =0
х 2 – х – 20 =0
х 2 – 2х + 9 =0
х 2 + 9х + 14 =0
х 2 + 14х — 32=0

(Далее решаем уравнения из таблицы и все последовательно заполняем)

Сообщаю, что домашнее задание – закончить заполнение таблицы.

Подведение итогов обучения.

Видео:СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 классСкачать

СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 класс

Свойства коэффициентов в квадратном уравнении

Этот способ решения помогает не только сэкономить время, но и развить внимание.

Дано квадратное уравнение ax 2 + bx + c = 0 . Если a + b + c = 0 (сумма коэффициентов), то

Свойства коэффициентов в квадратном уравнении

Дано квадратное уравнение ax 2 + bx + c = 0 . Если a — b + c = 0 (сумма коэффициентов), когда b взято с противоположным знаком или a + c = b, то

341x 2 + 290x — 51 = 0

Здесь, a = 341, b = 290, c = -51.

Проверим удовлетворяют ли коэффициенты условию

341 — 51 = 290. Получим а + с = b. Следовательно, мы

можем воспользоваться свойством 2.

Если в квадратном уравнении ax 2 + bx + c = 0 . Коэффициент b представлен в виде 2k, т.е. является четным числом, то формулу корней уравнения можно переписать в более простом виде

📽️ Видео

СВОЙСТВО КОЭФФИЦИЕНТОВ КВАДРАТНОГО УРАВНЕНИЯСкачать

СВОЙСТВО КОЭФФИЦИЕНТОВ КВАДРАТНОГО УРАВНЕНИЯ

СВОЙСТВО КОЭФФИЦИЕНТОВ КВАДРАТНОГО УРАВНЕНИЯСкачать

СВОЙСТВО КОЭФФИЦИЕНТОВ КВАДРАТНОГО УРАВНЕНИЯ

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

СВОЙСТВО КОЭФФИЦИЕНТОВ 😉 #егэ #егэ #математика #профильныйегэ #shorts #образованиеСкачать

СВОЙСТВО КОЭФФИЦИЕНТОВ 😉 #егэ #егэ #математика #профильныйегэ #shorts #образование

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Квадратные уравнения #shorts Как решать квадратные уравненияСкачать

Квадратные уравнения #shorts  Как решать квадратные уравнения

коэффициенты в квадратном уравненииСкачать

коэффициенты в квадратном уравнении

Квадратные уравнения: Свойства коэффициентовСкачать

Квадратные уравнения: Свойства коэффициентов

Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

ЕГЭ-2018. Задание В-5. Решение квадратного уравнения по сумме коэффициентов.Скачать

ЕГЭ-2018. Задание В-5. Решение квадратного уравнения  по сумме коэффициентов.

Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать

Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Решение квадратных уравнений. Свойства коэффициентовСкачать

Решение квадратных уравнений. Свойства коэффициентов

Как быстро решить квадратное уравнение. Замечательные свойства коэффициентов.Скачать

Как быстро решить квадратное уравнение. Замечательные свойства коэффициентов.

Как решать квадратные уравнения? ЧАСТЬ 7 - СВОЙСТВА КОЭФФИЦИЕНТОВ | Подготовка к ОГЭ и ЕГЭСкачать

Как решать квадратные уравнения? ЧАСТЬ 7 - СВОЙСТВА КОЭФФИЦИЕНТОВ | Подготовка к ОГЭ и ЕГЭ
Поделиться или сохранить к себе: