Свойства графиков функций квадратного уравнения

Квадратичная функция и ее график

В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.

Функция вида Свойства графиков функций квадратного уравнения, где Свойства графиков функций квадратного уравнения0″ title=»a0″/> Свойства графиков функций квадратного уравненияназывается квадратичной функцией.

В уравнении квадратичной функции:

aстарший коэффициент

bвторой коэффициент

ссвободный член.

Графиком квадратичной функции является квадратичная парабола, которая для функции Свойства графиков функций квадратного уравненияимеет вид:

Свойства графиков функций квадратного уравнения

Обратите внимание на точки, обозначенные зелеными кружками — это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции Свойства графиков функций квадратного уравнения, составим таблицу:

Свойства графиков функций квадратного уравнения

Внимание! Если в уравнении квадратичной функции старший коэффициент Свойства графиков функций квадратного уравнения, то график квадратичной функции имеет ровно такую же форму, как график функции Свойства графиков функций квадратного уравненияпри любых значениях остальных коэффициентов.

График функции Свойства графиков функций квадратного уравненияимеет вид:

Свойства графиков функций квадратного уравнения

Для нахождения координат базовых точек составим таблицу:

Свойства графиков функций квадратного уравнения

Обратите внимание, что график функции Свойства графиков функций квадратного уравнениясимметричен графику функции Свойства графиков функций квадратного уравненияотносительно оси ОХ.

Итак, мы заметили:

Если старший коэффициент a>0 , то ветви параболы напрaвлены вверх .

Если старший коэффициент a , то ветви параболы напрaвлены вниз .

Второй параметр для построения графика функции — значения х, в которых функция равна нулю, или нули функции. На графике нули функции Свойства графиков функций квадратного уравнения— это точки пересечения графика функции Свойства графиков функций квадратного уравненияс осью ОХ.

Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции Свойства графиков функций квадратного уравненияс осью ОХ, нужно решить уравнение Свойства графиков функций квадратного уравнения.

В случае квадратичной функции Свойства графиков функций квадратного уравнениянужно решить квадратное уравнение Свойства графиков функций квадратного уравнения.

В процессе решения квадратного уравнения мы находим дискриминант: Свойства графиков функций квадратного уравнения, который определяет число корней квадратного уравнения.

И здесь возможны три случая:

1. Если Свойства графиков функций квадратного уравненияСвойства графиков функций квадратного уравнения,то уравнение Свойства графиков функций квадратного уравненияне имеет решений, и, следовательно, квадратичная парабола Свойства графиков функций квадратного уравненияне имеет точек пересечения с осью ОХ. Если Свойства графиков функций квадратного уравнения0″ title=»a>0″/>Свойства графиков функций квадратного уравнения,то график функции выглядит как-то так:

Свойства графиков функций квадратного уравнения

2. Если Свойства графиков функций квадратного уравненияСвойства графиков функций квадратного уравнения,то уравнение Свойства графиков функций квадратного уравненияимеет одно решение, и, следовательно, квадратичная парабола Свойства графиков функций квадратного уравненияимеет одну точку пересечения с осью ОХ. Если Свойства графиков функций квадратного уравнения0″ title=»a>0″/>Свойства графиков функций квадратного уравнения,то график функции выглядит примерно так:

Свойства графиков функций квадратного уравнения

3 . Если Свойства графиков функций квадратного уравнения0″ title=»D>0″/>Свойства графиков функций квадратного уравнения,то уравнение Свойства графиков функций квадратного уравненияимеет два решения, и, следовательно, квадратичная парабола Свойства графиков функций квадратного уравненияимеет две точки пересечения с осью ОХ:

Свойства графиков функций квадратного уравнения, Свойства графиков функций квадратного уравнения

Если Свойства графиков функций квадратного уравнения0″ title=»a>0″/>Свойства графиков функций квадратного уравнения,то график функции выглядит примерно так:

Свойства графиков функций квадратного уравнения

Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.

Свойства графиков функций квадратного уравнения

Следующий важный параметр графика квадратичной функции — координаты вершины параболы:

Свойства графиков функций квадратного уравнения

Свойства графиков функций квадратного уравнения

Свойства графиков функций квадратного уравнения

Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.

И еще один параметр, полезный при построении графика функции — точка пересечения параболы Свойства графиков функций квадратного уравненияс осью OY.

Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы Свойства графиков функций квадратного уравненияс осью OY, нужно в уравнение параболы вместо х подставить ноль: Свойства графиков функций квадратного уравнения.

То есть точка пересечения параболы с осью OY имеет координаты (0;c).

Итак, основные параметры графика квадратичной функции показаны на рисунке:

Свойства графиков функций квадратного уравнения

Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.

1. Функция задана формулой Свойства графиков функций квадратного уравнения.

Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции Свойства графиков функций квадратного уравнения

1. Направление ветвей параболы.

Так как Свойства графиков функций квадратного уравнения0″ title=»a=2>0″/>Свойства графиков функций квадратного уравнения,ветви параболы направлены вверх.

2. Найдем дискриминант квадратного трехчлена Свойства графиков функций квадратного уравнения

Свойства графиков функций квадратного уравнения0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/> Свойства графиков функций квадратного уравненияСвойства графиков функций квадратного уравнения

Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.

Для того, чтобы найти их координаты, решим уравнение: Свойства графиков функций квадратного уравнения

Свойства графиков функций квадратного уравнения, Свойства графиков функций квадратного уравнения

3. Координаты вершины параболы:

Свойства графиков функций квадратного уравнения

Свойства графиков функций квадратного уравнения

4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.

Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:

Свойства графиков функций квадратного уравнения

Этот способ можно несколько упростить.

1. Найдем координаты вершины параболы.

2. Найдем координаты точек, стоящих справа и слева от вершины.

Воспользуемся результатами построения графика функции

Свойства графиков функций квадратного уравнения

Кррдинаты вершины параболы

Свойства графиков функций квадратного уравнения

Свойства графиков функций квадратного уравнения

Ближайшие к вершине точки, расположенные слева от вершины имеют абсциссы соответственно -1;-2;-3

Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2

Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:

Свойства графиков функций квадратного уравнения

Нанесем эти точки на координатную плоскость и соединим плавной линией:

Свойства графиков функций квадратного уравнения

2 . Уравнение квадратичной функции имеет вид Свойства графиков функций квадратного уравнения— в этом уравнении Свойства графиков функций квадратного уравнения— координаты вершины параболы

или в уравнении квадратичной функции Свойства графиков функций квадратного уравненияСвойства графиков функций квадратного уравнения, и второй коэффициент — четное число.

Построим для примера график функции Свойства графиков функций квадратного уравнения.

Вспомним линейные преобразования графиков функций. Чтобы построить график функции Свойства графиков функций квадратного уравнения, нужно

  • сначала построить график функции Свойства графиков функций квадратного уравнения,
  • затем одинаты всех точек графика умножить на 2,
  • затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • а затем вдоль оси OY на 4 единицы вверх:

Свойства графиков функций квадратного уравнения

Теперь рассмотрим построение графика функции Свойства графиков функций квадратного уравнения. В уравнении этой функции Свойства графиков функций квадратного уравнения, и второй коэффициент — четное число.

Выделим в уравнении функции полный квадрат: Свойства графиков функций квадратного уравнения

Следовательно, координаты вершины параболы: Свойства графиков функций квадратного уравнения. Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):

Свойства графиков функций квадратного уравнения

3 . Уравнение квадратичной функции имеет вид y=(x+a)(x+b)

Построим для примера график функции y=(x-2)(x+1)

1. Вид уравнения функции позволяет легко найти нули функции — точки пересечения графика функции с осью ОХ:

(х-2)(х+1)=0, отсюда Свойства графиков функций квадратного уравнения

2. Координаты вершины параболы: Свойства графиков функций квадратного уравнения

Свойства графиков функций квадратного уравнения

3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.

Нанесем эти точки на координатную плоскость и построим график:

Свойства графиков функций квадратного уравнения

График квадратичной функции.

Перед вами график квадратичной функции вида Свойства графиков функций квадратного уравнения.

Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции Свойства графиков функций квадратного уравненияот значения коэффициента Свойства графиков функций квадратного уравнения,
— сдвига графика функции Свойства графиков функций квадратного уравнениявдоль оси Свойства графиков функций квадратного уравненияот значения Свойства графиков функций квадратного уравнения,

— сдвига графика функции Свойства графиков функций квадратного уравнениявдоль оси Свойства графиков функций квадратного уравненияот значения Свойства графиков функций квадратного уравнения
— направления ветвей параболы от знака коэффициента Свойства графиков функций квадратного уравнения
— координат вершины параболы Свойства графиков функций квадратного уравненияот значений Свойства графиков функций квадратного уравненияи Свойства графиков функций квадратного уравнения:

И.В. Фельдман, репетитор по математике.Свойства графиков функций квадратного уравнения

Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать

Всё о квадратичной функции. Парабола | Математика TutorOnline

Квадратичная функция. Построение параболы

Свойства графиков функций квадратного уравнения

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать

ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график Парабола

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Видео:Квадратичная функция и ее график. 8 класс.Скачать

Квадратичная функция и ее график. 8 класс.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:

  • a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
  • b — второй коэффициент, который отвечает за смещение параболы от центра координат.
  • с — свободный член, который соответствует координате пересечения параболы с осью ординат.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :

Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D 0,то график выглядит так:
  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>

На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

Свойства графиков функций квадратного уравнения

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Видео:ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКАСкачать

ФУНКЦИЯ y = √¯x ( корень из х ) МАТЕМАТИКА

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Видео:ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 классСкачать

ГРАФИК ФУНКЦИЙ — Сдвиги Графика Функции, Как строить Графики Функции // Алгебра 8 класс

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.

D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x 2 + 3x — 5 = 0 2 + 3x — 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=»>

  1. Координаты вершины параболы:
  1. Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
  2. Нанести эти точки на координатную плоскость и построить график параболы:
    2 + 3x — 5 = 0″ height=»671″ src=»https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC» width=»602″>

Видео:Построение графика квадратичной функцииСкачать

Построение графика квадратичной функции

Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x — 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>

Видео:Функция y=√x, ее свойства и график. 8 класс.Скачать

Функция y=√x, ее свойства и график. 8 класс.

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид уравнения позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

Свойства графиков функций квадратного уравнения

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная.

Отметим эти точки на координатной плоскости и соединим плавной прямой.

Видео:ТЕПЕРЬ ТЫ ЛЕГКО ПОЙМЕШЬ свойства квадратичной функции — ПараболаСкачать

ТЕПЕРЬ ТЫ ЛЕГКО ПОЙМЕШЬ свойства квадратичной функции — Парабола

Квадратичная функция.

Видео-уроки по теме «График квадратичной функции — парабола» расположены в конце страницы.

Квадратным трёхчленом называется многочлен 2-ой степени, то есть выражение вида ax 2 + bx + c, где a ≠ 0, b, c — (обычно заданные) действительные числа, называемые его коэффициентами, x — переменная величина.

Обратите внимание: коэффициент a может быть любым действительным числом, кроме нуля. Действительно, если a = 0, то ax 2 + bx + c = 0·x 2 + bx + c = 0 + bx + c = bx + c. В этом случае в выражении не остаётся квадрата, поэтому его нельзя считать квадратным трёхчленом. Однако, такие выражения-двучлены как, например, 3x 2 − 2x или x 2 + 5 можно рассматривать как квадратные трёхчлены, если дополнить их недостающими одночленами с нулевыми коэффициентами: 3x 2 − 2x = 3x 2 − 2x + 0 и x 2 + 5 = x 2 + 0x + 5.

Если стоит задача, определить значения переменной х, при которых квадратный трёхчлен принимает нулевые значения, т.е. ax 2 + bx + c = 0, то имеем квадратное уравнение.

Если существуют действительные корни x1 и x2 некоторого квадратного уравнения, то соответствующий трёхчлен можно разложить на линейные множители: ax 2 + bx + c = a(xx1)(xx2)

Замечание: Если квадратный трёхчлен рассматривать на множестве комплексных чисел С, которое, возможно, вы еще не изучали, то на линейные множители его можно разложить всегда.

Когда стоит другая задача, определить все значения, которые может принимать результат вычисления квадратного трёхчлена при различных значениях переменной х, т.е. определить y из выражения y = ax 2 + bx + c, то имеем дело с квадратичной функцией.

При этом корни квадратного уравнения являются нулями квадратичной функции.

Квадратный трёхчлен также можно представить в виде
Свойства графиков функций квадратного уравнения
Это представление удобно использовать при построении графика и изучении свойств квадратичной функции действительного переменного.

Квадратичной функцией называется функция, заданная формулой y = f(x), где f(x) — квадратный трёхчлен. Т.е. формулой вида

где a ≠ 0, b, c — любые действительные числа. Или преобразованной формулой вида

Свойства графиков функций квадратного уравнения.

Графиком квадратичной функции является парабола, вершина которой находится в точке Свойства графиков функций квадратного уравнения.

Обратите внимание: Здесь не написано, что график квадратичной функции назвали параболой. Здесь написано, что графиком функции является парабола. Это потому, что такую кривую математики открыли и назвали параболой раньше (от греч. παραβολή — сравнение, сопоставление, подобие), до этапа подробного изучения свойств и графика квадратичной функции.

Парабола — линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельной одной из образующих этого конуса.

Свойства графиков функций квадратного уравнения

Парабола обладает еще одним интересным свойством, которое также используется как её определение.

Парабола представляет собой множество точек плоскости, расстояние от которых до определенной точки плоскости, называемой фокусом параболы, равно расстоянию до определенной прямой, называемой директрисой параболы.

Свойства графиков функций квадратного уравнения

Построить эскиз графика квадратичной функции можно по характерным точкам.
Например, для функции y = x 2 берем точки

x0123
y0149

Соединяя их от руки, строим правую половинку параболы. Левую получаем симметричным отраженим относительно оси ординат.

Для построения эскиза графика квадратичной функции общего вида в качестве характерных точек удобно брать координаты её вершины, нули функции (корни уравнения), если они есть, точку пересечения с осью ординат (при x = 0, y = c) и симметричную ей относительно оси параболы точку (−b/a; c).

xb/2ax1x20b/a
y−(b 2 − 4ac)/4a00сс
при D ≥ 0

Но в любом случае по точкам можно построить только эскиз графика квадратичной функции, т.е. приблизительный график. Чтобы построить параболу точно, нужно использовать её свойства: фокус и директрису.
Вооружесь бумагой, линейкой, угольником, двумя кнопками и крепкой нитью. Прикрепите одну кнопку примерно в центре листа бумаги — в точке, которая будет фокусом параболы. Вторую кнопку прикрепите к вершине меньшего угла угольника. На основаниях кнопок закрепите нить так, чтобы её длина между кнопками равнялась большому катету угольника. Начертите прямую линию, непроходящую через фокус будущей параболы, — директрису параболы. Приложите линейку к директрисе, а угольник к линейке так, как показано на рисунке. Перемещайте угольник вдоль линейки, одновременно прижимая карандаш к бумаге и к угольнику. Следите за тем, чтобы нить была натянута.

Свойства графиков функций квадратного уравненияСвойства графиков функций квадратного уравнения

Измерьте расстояние между фокусом и директрисой (напоминаю — расстояние между точкой и прямой определяется по перпендикуляру). Это фокальный параметр параболы p. В системе координат, представленной на правом рисунке, уравнение нашей параболы имеет вид: y = x 2 /2p. В масштабе моего рисунка получился график функции y = 0,15x 2 .

Замечание: чтобы построить заданную параболу в заданном масштабе, делать нужно всё то же самое, но в другом порядке. Начинать нужно с осей координат. Затем начертить директрису и определить положение фокуса параболы. И только потом конструировать инструмент из угольника и линейки. Например, чтобы на клетчатой бумаге построить параболу, уравнение которой у = x 2 , нужно расположить фокус на расстоянии 0,5 клеточки от директрисы.

Свойства графиков функций квадратного уравнения

Свойства функции у = x 2

  1. Область определения функции — вся числовая прямая: D(f) = R = (−∞; ∞).
  2. Область значений функции — положительная полупрямая: E(f) = [0; ∞).
  3. Функция у = x 2 четная: f(−x) = (−x) 2 = x 2 = f(x) .
    Ось ординат является осью симметрии параболы.
  4. На промежутке (−∞; 0) функция монотонно убывает.
    На промежутке (0; + ∞) функция монотонно возрастает.
  5. В точке x = 0 достигает минимального значения.
    Точка с координатами (0;0) является вершиной параболы.
  6. Функция непрерывна на всей области определения.
  7. Асимптот не имеет.
  8. Нули функции: y = 0 при x = 0.

Свойства квадратичной функции общего вида.

  1. Область определения функции — вся числовая прямая: D(f) = R = (−∞; ∞).
  2. Область значений функции зависит от знака коэффициента a.
    При a > 0 ветви параболы направлены вверх, функция имеет наименьшее (ymin), но не имеет наибольшего значения: E(f) = [ ymin; ∞) ;
    при aE(f) = (−∞; ymax ] .
  3. В общем случае функция у = ax 2 + bx + c не является ни четной, ни нечетной.
    Осью симметрии параболы является прямая x = −b/2a .
    Функция будет четной только в случае, когда эта прямая совпадает с осью Oy, т.е. при b = 0.
  4. При a > 0 функция монотонно убывает на промежутке (−∞; −b/2a) и монотонно возрастает на промежутке (−b/2a; ∞).
    При a 0 — минимум функции.

Оба значения определяются по формуле y = − b 2 − 4ac _______ . 4a

Точка с координатами Свойства графиков функций квадратного уравненияявляется вершиной параболы.

  • Функция непрерывна на всей области определения.
  • Асимптот не имеет.
  • Парабола пересекает ось ординат в точке (0;c).
    Если квадратный трёхчлен имеет дейтсивтельные корни x1x2, то парабола пересекает ось абсцисс в точках (x1;0) и (x2;0).
    При x1 = x2 парабола касается оси абсциcс в точке (x1;0).
  • Производная квадратичной функции вычисляется по формуле (ax 2 + bx + c)’ = 2ax + b.

    График квадратичной функции, заданной общей формулой, лучше всего строить и изучать пользуясь Правилами преобразования графиков функций.
    Для этого нужно сначала перейти от формулы y = ax 2 + bx + c к виду, удобному для преобразований, y = m(kx + l) 2 + n, где k, l, m, n — числа, зависящие от a, b, c, т.е. к виду
    Свойства графиков функций квадратного уравнения.
    Затем взять за основу параболу y = x 2 и применить к ней следующие преобразования:

    • Параллельный перенос (сдвиг) исходной параболы на l = b/2a единиц влево (если l 2 − 4ac)/4a единиц вверх или вниз в зависимости от знака n (при n >0 вверх).

    Формулы для такого перехода можно выучить наизусть, а можно научиться выделять полный квадрат из трёхчлена с заданными коэффициентами. Это умение весьма полезно также для решения некоторых уравнений и неравенств, для вычисления интегралов и т.д.

    Рассмотрим пример:
    Пусть y = 3x 2 − 5x + 2
    1) Объединяем в скобки первые два слагаемых и выносим за скобки коэффициент при х 2 .
    2) В скобках умножим и одновременно разделим на 2 коэффициент при x.
    3) Сравним с формулой возведения двучлена в квадрат: имеем внутри скобок квадрат числа x, удвоенное произведение x на дробь 5/6. Чтобы применить эту формулу не хватает второго квадрата, поэтому добавим недостающее слагаемое 5 2 /6 2 и одновременно вычтем его, чтобы сохранилось исходное значение выражения.
    4) Сворачиваем квадрат по формуле и раскрываем большую скобку.
    5) Оставшиеся числовые дроби приводим к общему знаменателю и складываем.
    Свойства графиков функций квадратного уравнения

    Итак, чтобы построить график функции y = 3x 2 − 5x + 2 из графика y = x 2 нужно последний сдвинуть по оси Ox вправо на 5/6 ≈ 0,83 единицы. Затем растянуть вдоль оси Oy в 3 раза и, наконец, опустить по оси Oy на 1/12 ≈ 0,08 единицы.
    Посмотрите, что получилось.
    Свойства графиков функций квадратного уравнения

    Если Вы являетесь моим учеником или подписчиком, то можете поработать с интерактивными версиями этих графиков.

    Упражнение:
    Постройте по характерным точкам эскиз графика функции y = x 2 .
    Методом преобразования получите эскиз графика функции y = −x 2 + 4x + 6 .
    Посмотрите в каких точках график этой функции пересекает ось Ox и сравните их координаты (абсциссы) с корнями уравнения −x 2 + 4x + 6 = 0 , вычисленными через дискриминант. Насколько точным оказалось ваше графическое решение уравнения?

    Преобразуем выражение с выделением полного квадрата:
    Свойства графиков функций квадратного уравнения
    Строим график функции
    Свойства графиков функций квадратного уравнения.

    Для этого применяем следующие шаги: сдвиг на 2 клетки вправо, разворот ветвей вниз (вершина — точка, относительно которой поворачиваем), поднимаем вершину и, соответственно, всю параболу вверх на 10 клеточек. Вот что должно получиться
    Свойства графиков функций квадратного уравнения.

    Визуально определяем корни. Парабола пересекает ось Ox примерно на одну пятую часть клетки левее минус единицы и настолько же правее пятерки, т.е. x1 ≈ −1,2 , x2 ≈ 5,2 .

    Решение по формулам нахождения корней квадратного уравнения дает ответы x1 = 2 − √10 __ , x2 = 2 + √10 __ .
    С помощью калькулятора вычисляем x1 = −1,162277660. , x2 = 5,162277660.

    Парабола — очень интересная кривая, квадратичная функция часто встречается при описании различных природных явлений, экономических процессов.

    Видео:Как запомнить графики функцийСкачать

    Как запомнить графики функций

    Видеоуроки с параболой.

    Графики квадратичной функции и коэффициенты квадратного трёхчлена.

    Положение и вид параболы в зависимости от знака и значения коэффициента а — коэффициента при х 2 .

    Положение и вид параболы в зависимости от знака и значения коэффициента b — коэффициента при х.

    Положение и вид параболы в зависимости от знака и значения параметра c.

    Построение параболы по характерным точкам.

    Быстрое построение параболы как графика квадратичной функции.

    Другие случаи. Примеры построения.

    Задачи на анализ графика квадратичной функции.

    Задания вида «Установить соответствие между коэффициентами квадратного трёхчлена и приведенными графиками квадратичной функции» встречаются в ОГЭ по математике в 9-ом классе, а также необходимы сдающим ЕГЭ за 11 класс в качестве промежуточного действия.

    Свойства графиков функций квадратного уравнения

    Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

    Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

    Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.

    🔥 Видео

    Графики сложных функций на ОГЭ по математике №22. Подробный разбор основных видов!Скачать

    Графики сложных функций на ОГЭ по математике №22. Подробный разбор основных видов!

    Свойства функций. Алгебра, 9 классСкачать

    Свойства функций. Алгебра, 9 класс

    Квадратичная функция за 5 минутСкачать

    Квадратичная функция за 5 минут

    Построение графика квадратичной функции. Алгебра, 9 классСкачать

    Построение графика квадратичной функции. Алгебра, 9 класс

    Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

    Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

    Алгебра 9 класс (Урок№10 - Построение графика квадратичной функции.)Скачать

    Алгебра 9 класс (Урок№10 - Построение графика квадратичной функции.)

    Графики функций. Задание №11 | Математика ОГЭ 2023 | УмскулСкачать

    Графики функций. Задание №11 | Математика ОГЭ 2023 | Умскул

    ГРАФИК ФУНКЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

    ГРАФИК ФУНКЦИИ 😉 #егэ #математика #профильныйегэ #shorts #огэ

    Функция у=х² и у=х³ и их графики. Алгебра, 7 классСкачать

    Функция у=х² и у=х³ и их графики. Алгебра, 7 класс

    Функция квадратного корня, его график и свойства (1) Функция корень из xСкачать

    Функция квадратного корня, его график и свойства (1) Функция корень из x

    Функции и их свойства #6Скачать

    Функции и их свойства #6
    Поделиться или сохранить к себе: