СВИНЕЦ (лат. Plumbum), Pb, химический элемент IV группы периодической системы Менделеева, атомный номер 82, атомная масса 207,2.
Свинец обычно имеет грязно-серый цвет, хотя свежий его разрез имеет синеватый отлив и блестит. Однако блестящий металл быстро покрывается тускло-серой защитной пленкой оксида. Плотность свинца (11,34 г/см3) в полтора раза больше, чем у железа, вчетверо больше, чем у алюминия; даже серебро легче свинца. Недаром в русском языке «свинцовый» – синоним тяжелого: «Ненастной ночи мгла по небу стелется одеждою свинцовой»; «И как свинец пошел ко дну» – эти пушкинские строки напоминают, что со свинцом неразрывно связано понятие гнета, тяжести.
Свинец очень легко плавится – при 327,5° С, кипит при 1751° С и заметно летуч уже при 700° С. Этот факт очень важен для работающих на комбинатах по добыче и переработке свинца. Свинец – один из самых мягких металлов. Он легко царапается ногтем и прокатывается в очень тонкие листы. Свинец сплавляется со многими металлами. С ртутью он дает амальгаму, которая при небольшом содержании свинца жидкая.
По химическим свойствам свинец – малоактивный металл: в электрохимическом ряду напряжений он стоит непосредственно перед водородом. Поэтому свинец легко вытесняется другими металлами из растворов его солей. Если опустить в подкисленный раствор ацетата свинца цинковую палочку, свинец выделяется на ней в виде пушистого налета из мелких кристалликов, имеющего старинного название «сатурнова дерева». Если затормозить реакцию, обернув цинк фильтровальной бумагой, вырастают более крупные кристаллы свинца. Наиболее типична для свинца степень окисления +2; соединения свинца(IV) значительно менее устойчивы. В разбавленных соляной и серной кислотах свинец практически не растворяется, в том числе из-за образования на поверхности нерастворимой пленки хлорида или сульфата. С крепкой серной кислотой (при концентрации более 80%) свинец реагирует с образованием растворимого гидросульфата Pb(HSO4)2, а в горячей концентрированной соляной кислоте растворение сопровождается образованием комплексного хлорида H4PbCl6. Разбавленной азотной кислотой свинец легко окисляется:
Pb + 4HNO3 = Pb(NO3)2 + 2NO2 + H2O.
Разложение нитрата свинца(II) при нагревании – удобный лабораторный метод получения диоксида азота:
2Pb(NO3)2 = 2PbO + 4NO2 + O2.
В присутствии кислорода свинец растворяется также в ряде органических кислот. При действии уксусной кислоты образуется легкорастворимый ацетат Pb(CH3COO)2 (старинное название – «свинцовый сахар»). Свинец заметно растворим также в муравьиной, лимонной и винной кислотах. Растворимость свинца в органических кислотах могло раньше приводить к отравлениям, если пищу готовили в посуде, луженной или паянной свинцовым припоем. Растворимые соли свинца (нитрат и ацетат) в воде гидролизуются:
Pb(NO3)2 + H2O = Pb(OH)NO3 + HNO3.
Взвесь основного ацетата свинца («свинцовая примочка») имеет ограниченное медицинское применение в качестве наружного вяжущего средства. Свинец медленно растворяется и в концентрированных щелочах с выделением водорода:
Pb + 2NaOH + 2H2O = Na2Pb(OH)4 + H2
что указывает на амфотерные свойства соединений свинца. Белый гидроксид свинца(II), легко осаждаемый из растворов его солей, также растворяется как в кислотах, так и в сильных щелочах:
Pb(OH)2 + 2HNO3 = Pb(NO3)2 + 2H2O;
Pb(OH)2 + 2NaOH = Na2Pb(OH)4
При стоянии или нагревании Pb(OH)2 разлагается с выделением PbO. При сплавлении PbO со щелочью образуется плюмбит состава Na2PbO2. Из щелочного раствора тетрагидроксоплюмбата натрия Na2Pb(OH)4 тоже можно вытеснить свинец более активным металлом. Если в такой нагретый раствор положить маленькую гранулу алюминия, быстро образуется серый пушистый шарик, который насыщен мелкими пузырьками выделяющегося водорода и потому всплывает. Если алюминий взять в виде проволоки, выделяющийся на ней свинец превращает ее в серую «змею». При нагревании свинец реагирует с кислородом, серой и галогенами. Так, в реакции с хлором образуется тетрахлорид PbCl4 – желтая жидкость, дымящая на воздухе из-за гидролиза, а при нагревании разлагающаяся на PbCl2 и Cl2. (Галогениды PbBr4 и PbI4 не существуют, так как Pb(IV) – сильный окислитель, который окислил бы бромид- и иодид-анионы.) Тонкоизмельченный свинец обладает пирофорными свойствами – вспыхивает на воздухе. При продолжительном нагревании расплавленного свинца он постепенно переходит сначала в желтый оксид PbO (свинцовый глет), а затем (при хорошем доступе воздуха) – в красный сурик Pb3O4 или 2PbO·PbO2. Это соединение можно рассматривать также как свинцовую соль ортосвинцовой кислоты Pb2[PbO4]. С помощью сильных окислителей, например, хлорной извести, соединения свинца(II) можно окислить до диоксида:
Pb(CH3COO)2 + Ca(ClO)Cl + H2O = PbO2 + CaCl2 + 2CH3COOH
Диоксид образуется также при обработке сурика азотной кислотой:
Pb3O4 + 4HNO3 = PbO2 + 2Pb(NO3)2 + 2H2O.
Если сильно нагревать коричневый диоксид, то при температуре около 300° С он превратится в оранжевый Pb2O3 (PbO·PbO2), при 400° С – в красный Pb3O4, а выше 530° С – в желтый PbO (разложение сопровождается выделением кислорода). В смеси с безводным глицерином свинцовый глет медленно, в течение 30–40 минут реагирует с образованием водоупорной и термостойкой твердой замазки, которой можно склеивать металл, стекло и камень. Диоксид свинца – сильный окислитель. Струя сероводорода, направленная на сухой диоксид, загорается; концентрированная соляная кислота окисляется им до хлора:
PbO2 + 4HCl = PbCl2 + Cl2 + H2O,
сернистый газ – до сульфата:
PbO2 + SO2 = PbSO4,
а соли Mn2+ – до перманганат-ионов:
5PbO2 + 2MnSO4 + H2SO4 = 5PbSO4 + 2HMnO4 + 2H2O.
Диоксид свинца образуется, а затем расходуется при зарядке и последующем разряде самых распространенных кислотных аккумуляторов. Соединения свинца(IV) обладают еще более типичными амфотерными свойствами. Так, нерастворимый гидроксид Pb(OH)4 бурого цвета легко растворяется в кислотах и щелочах:
Pb(OH)4 + 6HCl = H2PbCl6;
Pb(OH)4 + 2NaOH = Na2Pb(OH)6.
Диоксид свинца, реагируя со щелочью, также образует комплексный плюмбат(IV):
PbO2 + 2NaOH + 2H2O = Na2[Pb(OH)6].
Если же PbO2 сплавить с твердой щелочью, образуется плюмбат состава Na2PbO3. Из соединений, в которых свинец(IV) входит в состав катиона, наиболее важен тетраацетат. Его можно получить кипячением сурика с безводной уксусной кислотой:
Pb3O4 + 8CH3COOH = Pb(CH3COO)4 + 2Pb(CH3COO)2 + 4H2O.
При охлаждении из раствора выделяются бесцветные кристаллы тетраацетата свинца. Другой способ – окисление ацетата свинца(II) хлором:
2Pb(CH3COO)2 + Cl2 = Pb(CH3COO)4 + PbCl2.
Водой тетраацетат мгновенно гидролизуется до PbO2 и CH3COOH. Тетраацетат свинца находит применение в органической химии в качестве селективного окислителя. Например, он весьма избирательно окисляет только некоторые гидроксильные группы в молекулах целлюлозы, а 5-фенил-1-пентанол под действием тетраацетата свинца окисляется с одновременной циклизацией и образованием 2-бензилфурана. Органические производные свинца – бесцветные очень ядовитые жидкости. Один из методов их синтеза – действие алкилгалогенидов на сплав свинца с натрием:
4C2H5Cl + 4PbNa = (C2H5)4Pb + 4NaCl + 3Pb
Действием газообразного HCl можно отщеплять от тетразамещенных свинца один алкильный радикал за другим, заменяя их на хлор. Соединения R4Pb разлагаются при нагревании с образованием тонкой пленки чистого металла. Такое разложение тетраметилсвинца было использовано для определения времени жизни свободных радикалов. Тетраэтилсвинец – антидетонатор моторного топлива.
Используют для изготовления пластин для аккумуляторов (около 30% выплавляемого свинца), оболочек электрических кабелей, защиты от гамма-излучения (стенки из свинцовых кирпичей), как компонент типографских и антифрикционных сплавов, полупроводниковых материалов
Видео:химическая реакция соляной кислоты и нитрата свинца (ll)Скачать
Олово и свинец (стр. 2 )
Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 |
Со свинцом разбавленные соляная и серная кислоты практически не взаимодействуют даже при нагревании. Отчасти это объясняется образованием на поверхности металла плохо растворимой пленки хлорида или сульфата свинца. Гораздо лучше идет реакция с горячей концентрированной соляной кислотой, при этом и олово, и свинец связываются в хорошо растворимые комплексные кислоты, которые устойчивы только в виде сильнокислых водных растворах:
Концентрированная серная кислота при комнатной температуре переводит оба металла в пассивное состояние, а при нагревании растворяет их с образованием сульфата четырехвалентного олова и гидросульфата свинца (II):
С азотной кислотой любой концентрации свинец реагирует, как правило, при нагревании, превращаясь в результате реакции в нитрат двухвалентного свинца:
Олово под действием азотной кислоты может образовывать различные продукты, в данном случае играют роль концентрация кислоты и температурный режим реакции. С разбавленной азотной кислотой при низких температурах (немногим больше 0оС) получается нитрат двухвалентного олова:
а при нагревании и с разбавленной, и с концентрированной кислотой образуется нерастворимая в воде оловянная кислота, которая содержит в своем составе четырехвалентное олово:
Холодная концентрированная азотная кислота ни с оловом, ни со свинцом не реагирует (явление пассивации металлов).
Примечательным является тот факт, что свинец при комнатной температуре гораздо лучше растворяется в большинстве органических кислот, обладающих меньшей химической активностью по сравнению с соляной или серной кислотой:
Это объясняется образованием легко растворимых органических солей свинца, которые не осаждаются на поверхности металла и не препятствуют протеканию дальнейшей реакции.
С разбавленными растворами сильных оснований олово и свинец не взаимодействуют, зато медленно растворяются в концентрированных щелочах с выделением водорода, что указывает на амфотерные свойства соединений металлов. Продуктами реакции являются гидроксильные комплексные соединения – производные от двухвалентного свинца и олова обеих валентностей. Какое именно валентное состояние проявит олово, зависит от условий протекания реакции: при комнатной температуре или при незначительном нагревании получаются соединения двухвалентного олова, при кипячении – четырехвалентного:
Как уже отмечалось ранее, в своих соединениях олово проявляет валентности II и IV в примерно одинаковой мере. При обычных условиях оба вида соединений вполне устойчивы. Но под действием любых окислителей двухвалентное олово переходит в четырехвалентное состояние, т. е. соединения олова (II) являются сильными восстановителями. Вещества, содержащие четырехвалентное олово, не проявляют каких-либо значимых окислительных свойств.
Из всего перечисленного можно сделать вывод, что для олова все же более характерна валентность IV.
Четырехвалентное олово может существовать в виде простого катиона Sn4+, но чаще оно образует различные комплексные анионы или кислотные остатки. Олово со степенью окисления +2 существует в основном в виде катиона Sn2+, но и оно может произвести комплексные соединения. Другими словами, склонность к комплексообразованию более выражена у олова (IV).
Катионы Sn2+ и Sn4+ в растворе бесцветны, поэтому большинство обычных солей и комплексных соединений олова не окрашено. Лишь некоторые оловосодержащие вещества имеют какую-либо окраску: например, сине-черный оксид SnO, коричневый сульфид SnS, желтый дисульфид SnS2.
Оксид олова (II) SnO не образуется при непосредственном взаимодействии олова и кислорода, продуктом этой реакции является диоксид олова SnO2. Поэтому SnO получают косвенными методами – например, разложением гидроксида олова (II) при незначительном нагревании на открытом воздухе:
В данном случае следует избегать слишком сильного нагревания, иначе двухвалентное олово окислится до четырехвалентного состояния.
По своим химическим свойствам оксид олова (II) относится к амфотерным соединениям, но все же его основные свойства преобладают над кислотными. Он гораздо легче взаимодействует с сильными кислотами, чем с сильными основаниями (щелочами). Продуктами реакции SnO с кислотами являются соответствующие соли двухвалентного олова:
Лишь при нагревании с окисляющими кислотами (например, с концентрированной серной или азотной кислотами) оксид двухвалентного олова может образовать соединения олова (IV):
С растворами щелочей оксид двухвалентного олова реагирует крайне медленно с образованием гидроксостаннитов – комплексных соединений, в которых в роли центрального атома выступает катион Sn2+:
Кроме гидроксостаннитов, существуют другой тип солей, содержащих двухвалентное олово в составе кислотного остатка, – станниты, состав которых соответствует общей формуле Me2SnO2 (где Me – одновалентный металл). Их получают высокотемпературным взаимодействием оксида олова (II) с оксидами активных металлов, например щелочных или щелочноземельных:
Реакцию необходимо проводить в инертной атмосфере, в противоположном случае SnO окислится до оксида олова (IV) и конечным продуктом реакции будет станнат CaSnO3.
Оксид олова (II), как и подавляющее большинство соединений двухвалентного олова, устойчив только при обычных условиях. Если же его нагреть до приблизительно 300-400оС, он сгорает, превращаясь в диоксид олова:
Оксид олова (IV) SnO2 встречается в природе в виде минерала касситерит (важнейшая оловянная руда в металлургической промышленности). В лабораториях его обычно получают окислением олова кислородом воздуха:
Это белое кристаллическое вещество, нерастворимое в воде и при обычных условиях не взаимодействующее с большинством реагентов. По своим химическим свойствам оксид олова (IV) относится, как и оксид олова (II) к амфотерным соединениям. Но в отличие от SnO у SnO2 преобладают кислотные свойства. Оксид четырехвалентного олова легко вступает в реакцию с расплавленными щелочами:
С кислотами реакция идет значительно хуже: во-первых, необходимо использовать только концентрированные растворы кислот; во-вторых, приходится кипятить реакционную смесь в течение длительного промежутка времени:
Кроме того, оксиду олова (IV) присущи слабые окислительные свойства: при нагревании с такими восстановителями, как углерод или водород, он восстанавливается до металла:
Первая из указанных реакций применяется в металлургии для выплавки олова из его основной руды – касситерита.
Гидроксид олова (II) Sn(OH)2 выделяется в виде белого практически нерастворимого в воде осадка при добавлении карбоната щелочного металла или небольшого количества щелочей к растворам солей двухвалентного олова:
Гидроксид олова (II) является амфотерным соединением и способен реагировать как с сильными кислотами, так и с сильными основаниями. В первом случае в результате реакции образуются соли олова (II), во втором – гидроксостанниты:
Гидроксид олова (II), как и все слабые основания, термически нестабилен и уже при незначительном нагревании начинает отщеплять воду, превращаясь в оксид олова (II):
Видео:химическая реакция оксида свинца (ll) и соляной кислотыСкачать
Свинец плюс соляная кислота уравнение реакции
ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ
Чаще всего в химической практике используются такие сильные кислоты как серная H 2 SO 4 , соляная HCl и азотная HNO 3 . Далее рассмотрим отношение различных металлов к перечисленным кислотам.
Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl . Ввиду невысокой его растворимости в воде, концентрация соляной кислоты при обычных условиях не превышает 38%. Поэтому независимо от концентрации соляной кислоты процесс диссоциации ее молекул в водном растворе протекает активно:
HCl H + + Cl —
Образующиеся в этом процессе ионы водорода H + выполняют роль окислителя, окисляя металлы, расположенные в ряду активности левее водорода. Взаимодействие протекает по схеме:
Me + HCl соль + H 2 ↑
При этом соль представляет собой хлорид металла ( NiCl 2 , CaCl 2 , AlCl 3 ), в котором число хлорид-ионов соответствует степени окисления металла.
Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления:
2 Al + 6 HCl → 2 AlCl 3 + 3 H 2 ↑
2│ Al 0 – 3 e — → Al 3+ — окисление
3│2 H + + 2 e — → H 2 – восстановление
Соляная кислота пассивирует свинец ( Pb ). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца ( II ), который защищает металл от дальнейшего воздействия кислоты:
В промышленности получают серную кислоту очень высокой концентрации (до 98%). Следует учитывать различие окислительных свойств разбавленного раствора и концентрированной серной кислоты по отношению к металлам.
Разбавленная серная кислота
В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:
H2SO4 H + + HSO4 —
HSO4 — H + + SO4 2-
Образующиеся ионы Н + выполняют функцию окислителя.
Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).
Химическая реакция протекает по схеме:
1│2Al 0 – 6e — → 2Al 3+ — окисление
3│2 H + + 2 e — → H 2 – восстановление
Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления:
Свинец ( Pb ) не растворяется в серной кислоте (если ее концентрация ниже 80%) , так как образующаяся соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.
Концентрированная серная кислота
В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера, находящаяся в высшей степени окисления ( S +6 ). Концентрированная H 2 SO 4 окисляет все металлы, стандартный электродный потенциал которых меньше потенциала окислителя – сульфат-иона SO 4 2- (0,36 В). В связи с этим, с концентрированной серной кислотой реагируют и некоторые малоактивные металлы.
Процесс взаимодействия металлов с концентрированной серной кислотой в большинстве случаев протекает по схеме:
Me + H 2 SO 4 (конц.) соль + вода + продукт восстановления H 2 SO 4
Продуктами восстановления серной кислоты могут быть следующие соединения серы:
Практика показала, что при взаимодействии металла с концентрированной серной кислотой выделяется смесь продуктов восстановления, состоящая из H 2 S , S и SO 2. Однако, один из этих продуктов образуется в преобладающем количестве. Природа основного продукта определяется активностью металла: чем выше активность, тем глубже процесс восстановления серы в серной кислоте.
Взаимодействие металлов различной активности с концентрированной серной кислотой можно представить схемой:
Алюминий ( Al ) и железо ( Fe ) не реагируют с холодной концентрированной H 2 SO 4 , покрываясь плотными оксидными пленками, однако при нагревании реакция протекает.
Концентрированная серная кислота является сильным окислителем, поэтому при взаимодействии с ней металлов, обладающих переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты:
📹 Видео
Качественная реакция ионов свинца с соляной кислотойСкачать
Реакция НИТРАТА СВИНЦА и СОЛЯНОЙ КИСЛОТЫ. Опыты по химии дома. Chemical experiment with leadСкачать
Реакция СВИНЦА и КОНЦЕНТРИРОВАННОЙ СЕРНОЙ КИСЛОТЫ. Получение СУЛЬФАТА СВИНЦА.Простые опыты по химии.Скачать
Соляная кислота. Свойства и особенности. То чего вы не знали.Скачать
РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать
Олово - Металл, РАЗРУШАЮЩИЙ САМ СЕБЯ!Скачать
Синтез АЦЕТАТА СВИНЦА. Растворение СВИНЦА в УКСУСНОЙ КИСЛОТЕ. Опыты по химии. Chemical experimentsСкачать
Опыты по химии. Соляная кислота и металлыСкачать
Несколько опытов с ДИОКСИДОМ СВИНЦАСкачать
Марганцевая Кислота - HMnO4. Реакция Оксида Свинца(4), Сульфата Марганца(2) и 40 Серной кислоты.Скачать
Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
"Золотой дождь". Получение кристаллов йодида свинца (химия)Скачать
КИСЛОТЫ В ХИМИИ — Химические Свойства Кислот. Реакция Кислот с Основаниями, Оксидами и МеталламиСкачать
Химическая реакция йода и алюминия.Скачать
8 класс. Составление уравнений химических реакций.Скачать
Реакция нейтрализации. Урок 26. Химия 7 класс.Скачать
Химия | Молекулярные и ионные уравненияСкачать
Взаимодействие уксусной кислоты с металламиСкачать