Сведение уравнения бернулли к линейному

Дифференциальные уравнения Бернулли в примерах решений

Дифференциальным уравнением Бернулли называется уравнение вида

Сведение уравнения бернулли к линейному,

Таким образом, дифференциальное уравнение Бернулли обязательно содержит функцию y в степени, отличной от нуля и единицы.

В случае, если m = 0 , уравнение является линейным, а в случае, если m = 1 , уравнение является уравнением с разделяющимися переменными.

Дифференциальное уравнение Бернулли можно решить двумя методами.

  1. Переходом с помощью подстановки к линейному уравнению.
  2. Методом Бернулли.

Переход от уравнения Бернулли к линейному уравнению.

Уравнение делим на Сведение уравнения бернулли к линейному:

Сведение уравнения бернулли к линейному,

Сведение уравнения бернулли к линейному.

Обозначим Сведение уравнения бернулли к линейному. Тогда Сведение уравнения бернулли к линейному, откуда Сведение уравнения бернулли к линейному. Переходя к новой переменной, получим уравнение

Сведение уравнения бернулли к линейному,

которое является линейным дифференциальным уравнение первого порядка. Его можно решить методом вариации константы Лагранжа или методом Бернулли.

Решение методом Бернулли.

Решение следует искать в виде произведения двух функций y = uv . Подставив его в дифференциальное уравнение, получим уравнение

Сведение уравнения бернулли к линейному.

Из слагаемых, содержащих функцию u в первой степени, вынесем её за скобки:

Сведение уравнения бернулли к линейному.

Приравняв выражение в скобках нулю, то есть

Сведение уравнения бернулли к линейному,

получим дифференциальное уравнение с разделяющимися переменными для определения функции v .

Функцию u следует находить из дифференциального уравнения

Сведение уравнения бернулли к линейному,

которое также является уравнение с разделяющимися переменными.

Пример 1. Решить дифференциальное уравнение Бернулли

Сведение уравнения бернулли к линейному.

Решение. Решим дифференциальное уравнение двумя методами.

1. Переход от уравнения Бернулли к линейному уравнению. Данное уравнение умножим на y³ :

Сведение уравнения бернулли к линейному.

Введём обозначение Сведение уравнения бернулли к линейному, тогда Сведение уравнения бернулли к линейному, Сведение уравнения бернулли к линейномуи приходим к уравнению

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному.

Решим его методом Бернулли. В последнее уравнение подставим z = uv , z‘ = uv + uv‘ :

Сведение уравнения бернулли к линейному,

Сведение уравнения бернулли к линейному.

Выражение в скобках приравняем нулю и решим полученное дифференциальное уравнение:

Сведение уравнения бернулли к линейному

Полученную функцию v подставим в уравнение:

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному

2. Методом Бернулли. Ищем решение в виде произведения двух функций y = uv . Подставив его и y‘ = uv + uv‘ в данное дифференциальное уравнение, получим

Сведение уравнения бернулли к линейному

Выражение в скобках приравняем нулю и определим функцию v :

Сведение уравнения бернулли к линейному

Полученную функцию v подставим в уравнение и определим функцию u :

Сведение уравнения бернулли к линейному

И, наконец, найдём решение данного дифференциального уравнения:

Сведение уравнения бернулли к линейному

Пример 2. Решить дифференциальное уравнение Бернулли

Сведение уравнения бернулли к линейному.

Решение. Это уравнение, в котором m = −1 . Применив подстановку y = uv , получим

Сведение уравнения бернулли к линейному

Выражение в скобках приравняем нулю и определим функцию v :

Сведение уравнения бернулли к линейному

Полученную функцию v подставим в уравнение и определим функцию u :

Сведение уравнения бернулли к линейному

Таким образом, получаем решение данного дифференциального уравнения:

Сведение уравнения бернулли к линейному.

Пример 3. Решить дифференциальное уравнение Бернулли

Сведение уравнения бернулли к линейному.

Решение. Это уравнение можно решить, используя подстановку y = uv . Получаем

Сведение уравнения бернулли к линейному

Приравняем нулю выражение в скобках и решим полученное уравнение с разделяющимися переменными:

Сведение уравнения бернулли к линейному

Подставляем v в данное уравнение и решаем полученное уравнение:

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному

и проинтегрируем обе части уравнения:

Сведение уравнения бернулли к линейному

Далее используем подстановку

Сведение уравнения бернулли к линейному:

Сведение уравнения бернулли к линейному.

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному

Таким образом, получаем функцию u :

Сведение уравнения бернулли к линейному.

и решение данного дифференциального уравнения:

Сведение уравнения бернулли к линейному

Пример 4. Решить задачу Коши для дифференциального уравнения

Сведение уравнения бернулли к линейному

при условии Сведение уравнения бернулли к линейному.

Решение. Перепишем уравнение, перенося в левую сторону линейные слагаемые, а в правую — нелинейные:

Сведение уравнения бернулли к линейному.

Это уравнение Бернулли, которое можно решить, используя подстановку y = uv , y‘ = uv + uv‘ :

Сведение уравнения бернулли к линейному

Выражение в скобках приравняем нулю и решим дифференциальное уравнение с разделяющимися переменными:

Сведение уравнения бернулли к линейному

Подставим функцию v в данное уравнение и решим полученное дифференциальное уравнение:

Сведение уравнения бернулли к линейному

Вычислим каждый интеграл отдельно. Первый:

Сведение уравнения бернулли к линейному.

Второй интеграл интегрируем по частям. Введём обозначения:

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному

Приравниваем друг другу найденные значения интегралов и находим функцию u :

Сведение уравнения бернулли к линейному

Таким образом, общее решение данного дифференциального уравнения:

Сведение уравнения бернулли к линейному.

Используем начальное условие, чтобы определить значение константы:

Сведение уравнения бернулли к линейному

Ищем частное решение, удовлетворяющее начальному условию:

Сведение уравнения бернулли к линейному

В результате получаем следующее частное решение данного дифференциального уравнения:

Сведение уравнения бернулли к линейному.

И напоследок — пример с альтернативным обозначением производных — через дробь.

Пример 5. Решить дифференциальное уравнение Бернулли

Сведение уравнения бернулли к линейному.

Решение. Решим это уравнение первым из представленных в теоретической части методом — переходом к линейному уравнению. Разделив данное уравнение почленно на y³ , получим

Сведение уравнения бернулли к линейному.

Введём новую функцию Сведение уравнения бернулли к линейному. Тогда

Сведение уравнения бернулли к линейному.

Подставляя эти значения в уравнение, полученное на первом шаге, получим линейное уравнение:

Сведение уравнения бернулли к линейному.

Найдём его общий интеграл:

Сведение уравнения бернулли к линейному,

Сведение уравнения бернулли к линейному.

Подставляя эти значение в полученное линейное уравнение, получаем

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному.

Приравниваем нулю выражение в скобках:

Сведение уравнения бернулли к линейному

Для определения функции u получаем уравнение

Сведение уравнения бернулли к линейному.

Сведение уравнения бернулли к линейному

Интегрируем по частям:

Сведение уравнения бернулли к линейному

Таким образом, общий интеграл данного уравнения

Сведение уравнения бернулли к линейному

Сведение уравнения бернулли к линейному.

Видео:Уравнение Бернулли Метод БернуллиСкачать

Уравнение Бернулли  Метод Бернулли

Дифференциальное уравнение Бернулли и методы его решения

Сведение уравнения бернулли к линейному

Видео:10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Решение дифференциального уравнения Бернулли приведением к линейному уравнению

Рассмотрим дифференциальное уравнение Бернулли:
(1) ,
где n ≠ 0 , n ≠ 1 , p и q – функции от x .
Разделим его на y n . При y ≠ 0 или n 0 имеем:
(2) .
Это уравнение сводится к линейному с помощью замены переменной:
.
Покажем это. По правилу дифференцирования сложной функции:
;
.
Подставим в (2) и преобразуем:
;
.
Это – линейное, относительно z , дифференциальное уравнение. После его решения, при n > 0 , следует рассмотреть случай y = 0 . При n > 0 , y = 0 также является решением уравнения (1) и должно входить в ответ.

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Решение методом Бернулли

Рассматриваемое уравнение (1) также можно решить методом Бернулли. Для этого ищем решение исходного уравнения в виде произведения двух функций:
y = u·v ,
где u и v – функции от x . Дифференцируем по x :
y′ = u′ v + u v′ .
Подставляем в исходное уравнение (1):
;
(3) .
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(4) .
Уравнение (4) – это уравнение с разделяющимися переменными. Решаем его и находим частное решение v = v ( x ) . Подставляем частное решение в (3). Поскольку оно удовлетворяет уравнению (4), то выражение в круглых скобках обращается в нуль. Получаем:
;
.
Здесь v – уже известная функция от x . Это уравнение с разделяющимися переменными. Находим его общее решение, а вместе с ним и решение исходного уравнения y = uv .

Видео:Уравнения Бернулли. Дифференциальны уравненияСкачать

Уравнения Бернулли. Дифференциальны уравнения

Примеры решений дифференциального уравнения Бернулли

Пример 1

Решить уравнение
(П1.1)

Это дифференциальное уравнение Бернулли. Решаем его методом Бернулли. Ищем решение в виде произведения двух функций: . Тогда
. Подставляем в (П1.1):
;
(П1.2) .
Одну из этих функций мы можем выбрать произвольным образом. Выберем v так, чтобы выражение в круглых скобках равнялось нулю:
(П1.3) .
Тогда подставляя (П1.3) в (П1.2), мы получим дифференциальное уравнение с разделяющимися переменными:
(П1.4) .

Сначала мы определим функцию v . Нам нужно найти любое, отличное от нуля, решение уравнения (П1.3). Решаем его. Для этого разделяем переменные и интегрируем.
;
;
;
;
.
Отсюда , или . Возьмем решение с и знаком ′плюс′. Тогда , или .

Итак, мы нашли функции u и v . Находим искомую функцию y :
.
Заменим постоянную интегрирования: . Тогда общее решение исходного уравнения (П1.1) примет вид:
.

Когда мы делили на u , то предполагали, что . Теперь рассмотрим случай . Тогда . Нетрудно видеть, что постоянная функция также является решением исходного уравнения (П1.1) ⇑.

Общее решение уравнения: .
Уравнение также имеет решение .

Пример 2

На первый взгляд, кажется, что это дифференциальное уравнение не похоже на уравнение Бернулли. Если считать x независимой переменной, а y – зависимой (то есть если y – это функция от x ), то это так. Но если считать y независимой переменной, а x – зависимой, то легко увидеть, что это – уравнение Бернулли.

Итак, считаем что x является функцией от y . Подставим в исходное уравнение и умножим на :
;
;
(П2.1) .
Это – уравнение Бернулли с n = 2 . Оно отличается от рассмотренного выше, уравнения (1), только обозначением переменных ( x вместо y ). Решаем методом Бернулли. Делаем подстановку:
x = u v ,
где u и v – функции от y . Дифференцируем по y :
.
Подставим в (П2.1):
;
(П2.2) .
Ищем любую, отличную от нуля функцию v ( y ) , удовлетворяющую уравнению:
(П2.3) .
Разделяем переменные и интегрируем:
;
;
.
Поскольку нам нужно любое решение уравнения (П2.3), то положим C = 0 :
; ; .
Возьмем решение со знаком ′плюс′:
.
Подставим в (П2.2) учитывая, что выражение в скобках равно нулю (ввиду (П2.3)):
;
;
.
Разделяем переменные и интегрируем. При u ≠ 0 имеем:
;
(П2.4) ;
.
Во втором интеграле делаем подстановку :
;
.
Интегрируем по частям:
;
.
Подставляем в (П2.4):
.
Возвращаемся к переменной x :
;
;
.

Автор: Олег Одинцов . Опубликовано: 07-08-2012 Изменено: 29-10-2020

Видео:Метод Лагранжа & Метод Бернулли ★ Решение линейных неоднородных дифференциальных уравненийСкачать

Метод Лагранжа & Метод Бернулли ★ Решение линейных неоднородных дифференциальных уравнений

Дифференциальное уравнение Бернулли

Статья раскрывает методы решения дифференциального уравнения Бернулли. В заключении будут рассмотрены решения примеров с подробным объяснением.

Видео:Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Приведение к линейному уравнению 1 порядка

Дифференциальное уравнение Бернулли записывается как y ‘ + P ( x ) · y = Q ( x ) · y n . Если n = 1 , тогда его называют с разделяющими переменными. Тогда уравнение запишется как y ‘ + P ( x ) · y = Q ( x ) · y ⇔ y ‘ = Q ( x ) — P ( x ) · y .

Для того, чтобы решить такое уравнение, необходимо первоначально привести к линейному неоднородному дифференциальному уравнению 1 порядка с новой переменной вида z = y 1 — n . Проделав замену, получаем, что y = z 1 1 — n ⇒ y ‘ = 1 1 — n · z n 1 — n · z ‘ .

Отсюда вид уравнения Бернулли меняется:

y ‘ + P ( x ) · y = Q ( x ) · y n 1 1 — n · z 1 1 — n · z ‘ + P ( x ) · z 1 1 — n = Q ( x ) · z 1 1 — n z ‘ + ( 1 — n ) · P ( x ) · z = ( 1 — n ) · Q ( x )

Этот процесс вычисления и подстановки способствует приведению к линейному неоднородному дифференциальному уравнению первого порядка. В итоге проводим замену и получаем его решение.

Найти общее решение для уравнения вида y ‘ + x y = ( 1 + x ) · e — x · y 2 .

Решение

По условию имеем, что n = 2 , P ( x ) = x , Q ( x ) = ( 1 + x ) · e — x . Необходимо ввести новую переменную z = y 1 — n = y 1 — 2 = 1 y , отсюда получим, что y = 1 z ⇒ y ‘ = — z ‘ z 2 . Провести замену переменных и получить ЛНДУ первого порядка. Запишем, как

y ‘ + x y = ( 1 + x ) · e — x · y 2 — z ‘ z 2 + x z = ( 1 + x ) · e — x · 1 z 2 z ‘ — x z = — ( 1 + x ) · e — x

Следует проводить решение при помощи метода вариации произвольной постоянной.

Проводим нахождение общего решения дифференциального уравнения вида:

d z d x — x z = 0 ⇔ d z z = x d x , z ≠ 0 ∫ d z z = ∫ x d x ln z + C 1 = x 2 2 + C 2 e ln z + C 1 = e x 2 2 + C 2 z = C · e x 2 2 , C = e C 2 — C 1

Где z = 0 , тогда решение дифференциального уравнения считается z ‘ — x z = 0 , потому как тождество становится равным нулю при нулевой функции z . Данный случай записывается как z = C ( x ) · e x 2 2 , где С = 0 . Отсюда имеем, что общим решением дифференциального уравнения z ‘ — x z = 0 считается выражение z = C · e x 2 2 при С являющейся произвольной постоянной.

Необходимо варьировать переменную для того, чтобы можно было принять
z = C ( x ) · e x 2 2 как общее решение дифференциального уравнения вида z ‘ — x z = — ( 1 + x ) · e — x .

Отсюда следует, что производится подстановка вида

C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — 1 + x · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · x · e x 2 2 — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 = — ( 1 + x ) · e — x 2 2 — x C ( x ) = ∫ — ( 1 + x ) · e — x 2 2 — x d x = ∫ e — x 2 2 — x d — x 2 2 — x = e — x 2 x — x + C 3

С 3 принимает значение произвольной постоянной. Следовательно:

z = C x · e x 2 2 = e — x 2 2 — x + C 3 · e x 2 2 = e — x + C 3 · e x 2 2

Дальше производится обратная замена. Следует, что z = 1 y считается за y = 1 z = 1 e — x + C 3 · e x 2 2 .

Ответ: это решение считается решением исходного дифференциального уравнения Бернулли.

Видео:Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

Представление произведением функций u ( x ) и v ( x )

Имеется другой метод решения дифференциального уравнения Бернулли, который основывается на том, что функцию представляют при помощи произведения функций u ( x ) и v ( x ) .

Тогда получаем, что y ‘ = ( u · v ) ‘ = u ‘ · v + u · v ‘ . Производим подстановку в уравнение Бернулли y ‘ + P ( x ) · y = Q ( x ) · y n и упростим выражение:

u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) · u · v n u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · u · v n

Когда в качестве функции берут ненулевое частное решение дифференциального уравнения v ‘ + P ( x ) · v = 0 , тогда придем к равенству такого вида

u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · ( u · v ) n ⇔ u ‘ · v = Q ( x ) · ( u · v ) n .

Отсюда следует определить функцию u .

Решить задачу Коши 1 + x 2 · y ‘ + y = y 2 · a r c t g x , y ( 0 ) = 1 .

Решение

Переходим к нахождению дифференциального уравнения вида 1 + x 2 · y ‘ = y · a r c t g x , которое удовлетворяет условию y ( 0 ) = 1 .

Обе части неравенства необходимо поделить на x 2 + 1 , после чего получим дифференциальное уравнение Бернулли y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .

Перейдем к поиску общего решения.

Принимаем y = u · v , отсюда получаем, что y ‘ = u · v ‘ = u ‘ · v + u · v ‘ и уравнение запишем в виде

y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + u · v x 2 + 1 = u · v 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c t g x x 2 + 1

Проведем поиск частного решения с наличием разделяющих переменных v ‘ + v x 2 + 1 = 0 , отличных от нуля. Получим, что

d v v = — d x x 2 + 1 , v ≠ 0 ∫ d v v = — ∫ d x x 2 + 1 ln v + C 1 = — a r c t g x + C 2 v = C · e — a r c t g x , C = e C 2 — C 1

В качестве частного решения необходимо брать выражение вида v = e — a r c r g x . Преобразуем и получим, что

u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c r g x x 2 + 1 u ‘ · v + u · 0 = u 2 · v 2 · a r c t g x x 2 + 1 u ‘ = u 2 · v · a r c t g x x 2 + 1 u ‘ = u 2 · e — a r c t g x · a r c t g x x 2 + 1 ⇔ d u u 2 = e — a r c t g x · a r c t g x x 2 + 1 d x , u ≠ 0 ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x x 2 + 1 d x ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x d ( a r c t g x )

Имеем, что u = 0 рассматривается как решение дифференциального уравнения. Далее необходимо решить каждый из полученных интегралов по отдельности.

Интеграл с левой стороны, имеющего вид ∫ d u u 2 , необходимо найти по таблице первообразных. Получаем, что

∫ d u u 2 = — 1 u + C 3 .

Чтобы найти интеграл вида ∫ e — a r c t g x · a r c t g x d ( a r c t g x ) , принимаем значение a r c t g x = z и применяем метод интегрирования по частям. Тогда имеем, что

∫ e — a r c t g x · a r c t g x d ( a r c t g x ) = a r c t g x = z = = ∫ e — z · z d z = u 1 = z , d v 1 = e — z d z d u 1 = d z , v 1 = — e — z = = — z · e — z + ∫ e — z d z = — z · e — z — e — z + C 4 = = — e — z · ( z + 1 ) + C 4 = — e — a r c t g x · ( a r c t g x + 1 ) + C 4

— 1 u + C 3 = — e — a r c t g x · a r c t g x + 1 + C 4 1 u = e — a r c r g x · a r c t g x + 1 + C 3 — C 4 u = 1 e — a r c r g x · ( a r c t g x + 1 ) + C

Отсюда находим, что

y = u · v = e — a r c t g x e — a r c r g x · ( a r c t g x + 1 ) + C и y = 0 · v = 0 · e — a r c r g x = 0 являются решениями дифференциального уравнения Бернулли вида y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .

На данном этапе следует переходить к поиску частного решения, которое удовлетворяет начальному условию. Получим, что

y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + C , тогда запись примет вид y 0 = e — a r c t g 0 e — a r c t g 0 · a r c t g 0 + 1 + C = 1 1 + C .

Очевидно, что 1 1 + C = 1 ⇔ C = 0 . Тогда искомой задачей Коши будет являться полученное уравнение вида y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + 0 = 1 a r c t g x + 1 .

🎬 Видео

Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать

Дифференциальные уравнения, 5 урок, Уравнение Бернулли

Линейные дифференциальные уравнения (Метод Бернулли)Скачать

Линейные дифференциальные уравнения (Метод Бернулли)

Урок 134. Применения уравнения Бернулли (ч.1)Скачать

Урок 134. Применения уравнения Бернулли (ч.1)

Линейные дифференциальные уравнения 1 порядка. Уравнения БернуллиСкачать

Линейные дифференциальные уравнения 1 порядка. Уравнения Бернулли

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Уравнения БернуллиСкачать

Уравнения Бернулли

Определяем тип ДУ 1Скачать

Определяем тип ДУ 1

8. Дифференциальные уравнения, линейные относительно х и х'Скачать

8. Дифференциальные уравнения, линейные относительно х и х'

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядкаСкачать

Дифференциальные уравнения, 4 урок, Линейные дифференциальные уравнения первого порядка

Дифференциальные уравнения Бернулли (продолжение)| poporyadku.schoolСкачать

Дифференциальные уравнения Бернулли (продолжение)| poporyadku.school

Дифференциальные уравнения Бернулли| poporyadku.schoolСкачать

Дифференциальные уравнения Бернулли| poporyadku.school

Уравнение БернуллиСкачать

Уравнение Бернулли
Поделиться или сохранить к себе: