Сведение дифференциального уравнения n го порядка к нормальной системе

Сведение к системе дифференциального уравнения 2-ой степени в Xcos

Способ 2: сведение к системе в форме Коши

Рассмотрим более привычный и распространённый способ численного интегрирования обыкновенных дифференциальных уравнений n-го порядка: сведение к системе из n уравнений 1-го порядка, или, как ещё говорят, к нормальной форме или форме Коши.

Решение систем ОДУ без использования визульных блоков, было рассмотрено ранее в материале.

Рассмотрим дифференциальное уравнение второго порядка с заданными начальными условиями:

Введём замену переменных, сводящих уравнение (1) к системе из двух уравнений первой степени:

begin z_1 = y \ z_2=y’ end

получим систему в новых фазовых переменных

(2)begin z_1’=z_2\ z_2′ = -2z_2+0.3z_1\ end (3)begin z_1(0)=1\ z_2(0)=0\ end

Данную систему нам и необходимо замоделировать. Итак, разберём, какие из функциональных бликов Xcos понадобятся, чтобы найти решение задачи Коши системы из двух дифференциальных уравнений 1-ой степени (2) с начальными условиями (3).

Система (2) содержит два д.у. первого порядка, а значит нам понадобятся два блока интегратора. Здесь и в дальнейшем для моделирования дифференциальных уравнений, вместо INTEGRAL_f, будем использовать блок Сведение дифференциального уравнения n го порядка к нормальной системес палитры «Системы с непрерывным временем». Смысловая нагрузка у блока INTEGRAL_m та же, что и у используемого ранее INTEGRAL_f, — поиск первообразной сигнала, подающегося на его вход. Однако блок INTEGRAL_m во-первых, более нагляден, а во-вторых, имеет большее количество настраиваемых внутренних параметров блока.

Итак, приступим к сбору функциональной блок-схемы, реализующей поиск численного решения системы дифференциальных уравнений (2), удовлетворяющего начальным условиям (3). Для создания блок-схемы нам потребуется:

Добавить два блока INTEGRAL_m на рабочую область, дав им названия соответствующих фазовых переменных и задать во внутренних параметрах блоков INTEGRAL_m значения параметра Initial condition (начальные условия), указанные в (7б). Результатом данных действий будет схема, изображенная на рис.38;

Сведение дифференциального уравнения n го порядка к нормальной системе

Рисунок 38. Блоки интеграторов с заданными начальными условиями

Собирать уравнения системы (2) необходимо, начиная с последнего и двигаясь вверх. Второе уравнение системы (2) имеет вид (z_2′ = -2z_2+0.3z_1 )и представляет собой сумму двух слагаемых с разными знаками, первое из которых увеличено в 2 раза, а второе в 0.3 раз.
Поэтому нам потребуется добавить блок сумматора BIGSOM_f, во внутренних параметрах которого указан знаков слагаемых [-1;1] и блоки усилителя GAINBLK_f со значениями 2 и 3 соответственно.
Далее необходимо составить правую част рассматриваемого уравнения, то есть подать на вход BIGSOM_f, советующие слагаемые, как показано на рис. 39.

Сведение дифференциального уравнения n го порядка к нормальной системе

Рисунок 39. Блок-схема правой части второго диф.уравнения системы (2)

Итак, мы получили в сумматоре выражение, которые необходимо проинтегрировать, то есть подать на вход блока-интегратора INTEGRAL_m , соответствующего фазовой переменной, производная которой стоит в левой части рассматриваемого уравнения. В уравнении (z_2′ = -2z_2+0.3z_1 ) слева стоит (z_2′ ), а значит, выход сумматора нужно подсоединить ко входу интегратора, отвечающего за переменную (z_2 )(см. рис. 40).

Сведение дифференциального уравнения n го порядка к нормальной системе

Рисунок 40. Вывод выхода сумматора на вход интегратора

Перейдём к построению первого уравнения системы (2), имеющего вид (z_1’=z_2 ). Фазовая переменная (z_2 ) формируется как выход соответствующего блока интегратора. Распараллелим выход нижнего блока INTEGRAL_m , подав его на вход верхнего блока INTEGRAL_m , который соответствует фазовой переменной (z_1 ). В результате получим схему, изображенную на рисунке 41.

Сведение дифференциального уравнения n го порядка к нормальной системе

Рисунок 41. Блок-схема замкнутой системы двух д.у. 1-ой степени (2)

Далее нам потребуется вывести графики фазовых переменных (z_1, z_2 ), для этого добавьте блоки CMSCOPE, END и CLOCK_c на рабочую область.

По традиции, во внутренних параметрах блока END указать время 10сек., на функциональный вход блока CMSCOPE нужно подать выход блока CLOCK_c с параметрами Period = 0.1, Время инициализации=0, а на регулярные входы осциллографа подать распараллеленные интегральные выходы, соответствующие фазовым переменным (рис. 42).

Сведение дифференциального уравнения n го порядка к нормальной системе

Рисунок 42. Блок-схема поиска численного задачи Коши (2-3) с выводом графиков фазовых переменных

После запуска моделирования и настройки параметров осциллографа, получим графики (рис. 43).

Сведение дифференциального уравнения n го порядка к нормальной системе

Рисунок 43. Графическое решение задачи Коши (2-3)

Итак, основными принципами второго способа численного интегрирования дифференциальных уравнений порядка выше 1 являются:

Сведение дифференциального уравнения n-ой к системе из n уравнений 1-ой степени, путём замены переменных;

Движение снизу вверх при визуализации уравнений получившейся системы;

Параллельное включение в схему блоков INTEGRAL_m, отвечающих за фазовые переменные системы;

Отображение результата численного моделирования на системах координат фазовая переменная – время;

Задание начальных условий в соответствующих блоках-интеграторах;

Задание отрезка интегрирования во внутренних параметрах блока END, начальной точки и шага дискретизации в блоке CLOCK_c;

Возможность выбора численного метода поиска решения дифференциального уравнения в настройкам параметров интегрирования.

Видео:Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентам

Метод исключения — сведение системы ДУ к одному уравнению

Частным случаем канонической системы дифференциальных уравнений является одно уравнение n-го порядка, разрешенное относительно старшей производной.

Введением новых функций

это уравнение заменяется нормальной системой уравнений

Можно утверждать и обратное, что, вообще говоря, нормальная система уравнений первого порядка

эквивалентна одному уравнению порядка . На этом основан один из методов интегрирования систем дифференциальных уравнений — метод исключения .

Проиллюстрируем этот метод на примере системы двух уравнений:

Здесь — постоянные коэффициенты, а и — заданные функции; и — искомые функции. Из первого уравнения системы (1) находим

Подставляя во второе уравнение системы вместо у правую часть (2), а вместо производную от правой части (2), получаем уравнение второго порядка относительно

где — постоянные. Отсюда находим . Подставив найденное выражение для и в (2), найдем .

Пример 1. Проинтегрировать систему уравнений

Решение. Из первого уравнения системы (3) находим , тогда

Подставляя (4) во второе уравнение системы (3), получаем линейное дифференциальное уравнение с постоянными коэффициентами второго порядка

Общее решение уравнения (5)

Находя производную по от (6), получаем

Общее решение системы (3):

Пример 2. Решить задачу Коши для системы

Решение. Из второго уравнения системы (7) находим

Подставляя (9) и (10) в первое уравнение системы (7), получаем уравнение , общее решение которого

Подставляя (11) в (9), найдем . Общее решение системы (7)

При начальных условиях (8) из (12) получим систему уравнений для определения

решая которую, найдем . Подставляя эти значения и в (12), получаем решение поставленной задачи Коши:

Пример 3. Решить систему уравнений

Решение. Из первого уравнения системы находим

Подставляя эти выражения для и во второе уравнение, получаем

Считая , из последнего уравнения имеем и после интегрирования получим . Теперь легко находим

Общее решение данной системы

Замечание. Не всякая система дифференциальных уравнений может быть сведена к одному уравнению более высокого порядка. Например,

не сводится к одному уравнению второго порядка. Ее общее решение .

Видео:16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Сведение общей системы дифференциальных уравнений к нормальной

Здесь мы покажем, что весьма общая система дифференциальных уравнений сводится к нормальной системе и следовательно, для таких систем будет установлена теорема существования и единственности.

Сначала дадим описание общих систем дифференциальных уравнений.

В случае одной неизвестной функции x независимого переменного t дифференциальное уравнение n-го порядка имеет вид:

Сведение дифференциального уравнения n го порядка к нормальной системе

Здесь F — заданная функция от (n+2) переменных. Функция F, вообще говоря, может быть задана не при всех значениях своих аргументов и поэтому говорят об области D задания функции F. Предполагается обычно, что D — открытое множество евклидова пространства размерности n+2, координатами точек в котором являются переменные .

🎥 Видео

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.Скачать

Математика без Ху!ни. Линейное неоднородное уравнение 1 порядка. Метод вариации постоянной.

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядкаСкачать

19. Метод вариации произвольных постоянных. Линейные неоднородные диф уравнения 2-го порядка

Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

11. ДУ, Система ДУ. Сведение к уравнению высшего порядка. В.П. Минорский №2275Скачать

11. ДУ, Система ДУ. Сведение к уравнению высшего порядка. В.П. Минорский №2275

14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Нефёдов Н. Н. - Дифференциальные уравнения - Задача Коши для нормальной системы ОДУ. ДУ n-го порядкаСкачать

Нефёдов Н. Н. - Дифференциальные уравнения - Задача Коши для нормальной системы ОДУ. ДУ n-го порядка

Видеоурок "Линейные однородные диф. уравнения n-го порядка"Скачать

Видеоурок "Линейные однородные диф. уравнения n-го порядка"

Лекция 8 по курсу "Дифференциальные уравнения"Скачать

Лекция 8 по курсу "Дифференциальные уравнения"

18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Дифференциальные уравнения высших порядков, допускающие понижение порядкаСкачать

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера
Поделиться или сохранить к себе: