Сущность регрессионного анализа выбор уравнений описывающих зависимость

Прогнозирование. Регрессионный анализ, его реализация и прогнозирование

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ

Сущность метода регрессионного анализа

Одним из методов, используемых для прогнозирования, является регрессионный анализ.

Регрессия – это статистический метод, который позволяет найти уравнение, наилучшим образом описывающее совокупность данных, заданных таблицей.

XX1X2XiXn
YY1Y2YiYn

Сущность регрессионного анализа выбор уравнений описывающих зависимость

На графике данные отображаются точками. Регрессия позволяет подобрать к этим точкам кривую у=f(x), которая вычисляется по методу наименьших квадратов и даёт максимальное приближение к табличным данным.

По полученному уравнению можно вычислить (сделать прогноз) значение функции у для любого значения х , как внутри интервала изменения х из таблицы(интерполяция), так и вне его (экстраполяция).

Линейная регрессия

Линейная регрессия дает возможность наилучшим образом провести прямую линию через точки одномерного массива данных (рис.13.1 а). Уравнение с одной независимой переменной, описывающее прямую линию, имеет вид:

Сущность регрессионного анализа выбор уравнений описывающих зависимость

где:x – независимая переменная;

y – зависимая переменная;

m – характеристика наклона прямой;

b – точка пересечения прямой с осью у.

Например, имея данные о реализации товаров за год с помощью линейной регрессии можно получить коэффициенты прямой (1) и, предполагая дальнейший линейный рост, получить прогноз реализации на следующий год.

Нелинейная регрессия

Нелинейная регрессия позволяет подбирать к табличным данным нелинейное уравнение (рис. 13.1 рис. 13.1, б.) – параболу, гиперболу и др. Excel реализует нелинейность в виде экспоненты, т.е. подбирает кривую вида:

Сущность регрессионного анализа выбор уравнений описывающих зависимость,

которая позволяет наилучшим образом провести экспоненциальную кривую по точкам данных, которые изменяются нелинейно.

Так, например, данные о росте населения почти всегда лучше описываются не прямой линией, а экспоненциальной кривой. При этом нужно помнить, что достоверное прогнозирование возможно только на участках подъёма или спуска кривой (при отрицательных значениях х), т.к. сама кривая (2) изменяется монотонно, без точек перегиба. Например, делать экспоненциальный прогноз для функции, изменяющейся синусоидально, можно только на участках подъёма или спуска функции, для чего её разбивают на соответствующие интервалы.

Множественная регрессия

Множественная регрессия представляет собой анализ более одного набора данных аргумента х и даёт более реалистичные результаты.

Множественный регрессионный анализ также может быть как линейным, так и экспоненциальным. Уравнение регрессии (1) и (2) примут соответственно вид (3) и (4):

Сущность регрессионного анализа выбор уравнений описывающих зависимость( 3)
Сущность регрессионного анализа выбор уравнений описывающих зависимость( 4)

С помощью множественной регрессии, например, можно оценить стоимость дома в некотором районе, основываясь на данных его площади, размерах участка земли, этажности, вида из окон и т.д.

Использование функций регрессии

В Excel имеется 5 функций для линейной регрессии: ЛИНЕЙН(…)(LINEST), ТЕНДЕНЦИЯ(…), ПРЕДСКАЗ(…), НАКЛОН(…), СТОШУХ(…)) и 2 функции для экспоненциальной регрессии – ЛГРФПРИБЛ(…) и РОСТ(…).

Рассмотрим некоторые из них.

Функция ЛИНЕЙН((LINEST) вычисляет коэффициент m и постоянную b для уравнения прямой (1). Синтаксис функции:

Известные_значения_у и известные_значения_х – это множество значений у и необязательное множество значений х (их вводить необязательно), которые уже известны для соотношения (1).

Константа – это логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0. Если константа имеет значение ИСТИНА или опущено, то b вычисляется обычным образом.

Статистика – это логическое значение, которое указывает требуется ли вывести дополнительную статистику по регрессии.

Если статистика имеет значение ЛОЖЬ (или 0), то функция ЛИНЕЙН возвращает только значения коэффициентов m и b , в противном случае выводится дополнительная регрессионная статистика в виде табл. 13.1 таблица 13.1:

Таблица 13.1. Общий вид выводимого массива статистических показателей при использовании функции ЛИНЕЙН((LINEST)

mnmn-1m2m1b
sensen-1se2se1seb
r 2sey#Н/Д#Н/Д#Н/Д
Fdf#Н/Д#Н/Д#Н/Д
ssregssresid#Н/Д#Н/Д#Н/Д

где: se1 , se2,…,sen – стандартные значения ошибок для коэффициентов m1 , m2,…, mn ;

seb – стандартное значение ошибки для постоянной b (seb равно #Н/Д, т.е. «нет допустимого значения», если конст. имеет значение ЛОЖЬ);

r 2 – коэффициент детерминированности. Сравниваются фактические значения у и значения, получаемые из уравнения прямой; по результатам сравнения вычисляется коэффициент детерминированности, нормированный от 0 до 1. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями у. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений у;

sey – стандартная ошибка для оценки у (предельное отклонение для у);

F – F-cтатистика, или F-наблюдаемое значение. Она используется для определения того, является ли наблюдаемая взаимосвязь между зависимой и независимой переменными случайной или нет;

df – степени свободы. Степени свободы полезны для нахождения F-критических значений в статистической таблице. Для определения уровня надёжности модели нужно сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН;

ssreg – регрессионная сумма квадратов;

ssresid – остаточная сумма квадратов;

#Н/Д – ошибка, означающая «нет доступного значения».

Любую прямую можно задать её наклоном m и у-пересечением:

Наклон ( m ). Для того, чтобы определить наклон прямой, обычно обозначаемый через m , нужно взять 2 точки прямой (х1,у1) и (х2,у2); тогда наклон равен m=(y2-y1)/(x2-x1 ).

у-пересечение ( b ) прямой, обычно обозначаемое через b , является значение у для точки, в которой прямая пересекает ось у.

Уравнение прямой имеет вид: у=mx+b. Если известны значения m и b , то можно вычислить любую точку на прямой, подставляя значения у или х в уравнение. Можно также использовать функцию ТЕНДЕНЦИЯ ( TREND ) (см. ниже).

Если для функции у имеется только одна независимая переменная х, можно получить наклон и у-пересечение непосредственно, используя следующие формулы:

Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точными являются модель, используемая функцией ЛИНЕЙН, и значения, получаемые из уравнения прямой.

В случае экспоненциальной регрессии аналогом функции (5) является функция ЛГРФПРИБЛ(LOGEST):

которая отличается лишь тем, что вычисляет коэффициенты m и b для экспоненциальной кривой (2).

Функция ТЕНДЕНЦИЯ(TREND) имеет вид:

возвращает числовые значения, лежащие на прямой линии, наилучшим образом аппроксимирующие известные табличные данные.

Новые_значения_х – это те, для которых необходимо вычислить соответствующие значения у.

Если параметр новые_значения_х пропущен, то считается, что он совпадает с известными х. Назначение остальных параметров функции ТЕНДЕНЦИЯ совпадает с описанными выше.

В случае экспоненциальной регрессии аналогом функции (7) является функция РОСТ(GROWTH):

возвращает стандартную погрешность регрессии – меру погрешности предсказываемого значения у для заданного значения х.

Правила ввода функций

Формулы(5)-(8) являются табличными, т.е. они заменяют собой несколько обычных формул и возвращают не один результат, а массив результатов. Поэтому необходимо соблюдать следующие правила:

  1. Перед вводом одной из формул (5)-(8) выведите блок ячеек, точно совпадающей по размеру с величиной возвращаемого формулой массива результатов. Например, при использовании функции ЛИНЕЙН с выводом статистики нужно выделить массив ячеек, равный табл. 13.1, если параметр статистики равен ЛОЖЬ, достаточно выделить одну строку табл. 13.1.
  2. Наберите функцию в строке формул. При этом слова на русском языке можно набирать строчными буквами, т.к. они являются ключевыми и при вводе Exсel автоматически переведет их в заглавные. Имена ячеек автоматически вводятся латинским шрифтом. Вместо слова ИСТИНА можно вводить числа от 1 до 9 (не 0), а вместо слова ЛОЖЬ – число 0. Если в результате, выполнения функции выводится одно число, можно вводить формулы не вручную, а использовать аппарат Мастера функций.
  3. Одновременно нажмите клавиши Shift+Ctrl+Enter . Результаты вычислений заполнят выделенные ячейки.

Линия тренда

Excel позволяет наглядно отображать тенденцию данных с помощью линии тренда, которая представляет собой интерполяционную кривую, описывающую отложенные на диаграмме данные.

Для того, чтобы дополнить диаграмму исходных данных линией тренда, необходимо выполнить следующие действия:

  • выделить на диаграмме ряд данных, для которого требуется построить линию тренда;
  • щелкнуть правой кнопкой мыши и выбрать команду Добавить линию тренда;
  • в открывшемся окне задать метод интерполяции (линейный, полиномиальный, логарифмический и т. д.), а также через команду Параметры – другие параметры (например, вывод уравнения кривой тренда, коэффициента детерминированности r 2 , направление и количество периодов для экстраполяции (прогноза) и др.);
  • нажать кнопку Закрыть.

Чтобы отобразить на графике (гистограмме и др.) новые, прогнозируемые в результате регрессионного анализа данные, нужно:

  • определить их с помощью функции ТЕНДЕНЦИЯ, РОСТ или другим способом,
  • выделить на диаграмме нужную кривую, щелкнув по ней правой кнопкой мыши,
  • в появившемся окне выбрать команду Выбрать данные…, в появившемся окне выбрать диапазон ячеек с новыми данными вручную или протащив по ним курсор при нажатой левой клавише мыши, нажать ОК.

На диаграмме появится продолжение кривой, построенной по новым данным.

Простая линейная регрессия

Пример 1. Функция ТЕНДЕНЦИЯ(TREND)

а) Предположим, что фирма может приобрести земельный участок в июле. Фирма собирает информацию о ценах за последние 12 месяцев, начиная с марта, на типичный земельный участок. Название первого столбца «Месяц» с данными о номерах месяцев записано в ячейке А1, а второго столбца «Цена» – в ячейке В1. Номера месяцев с 1 по 12 (известные значения х) записаны в ячейки А2…А13. Известные значения у содержат множество известных значений (133 890 руб., 135 000 руб., 135 790 руб., 137 300 руб., 138 130 руб., 139 100 руб., 139 900 руб., 141 120 руб., 141 890 руб., 143 230 руб., 144 000 руб., 145 290 руб.), которые находятся в ячейках В2;В13 соответственно (данные условия). Новые значения х, т.е. числа 13, 14,15,16,17 введём в ячейки А14…А18. Для того чтобы определить ожидаемые значения цен на март, апрель, май, июнь, июль, выделим любой интервал ячеек, например, B14:B18 (по одной ячейке для каждого месяца) и в строке формул введем функцию:

После нажатия клавиш Ctrl+ Shift+Enter данная функция будет выделена как формула вертикального массива, а в ячейках B14:B18 появится результат: .

Таким образом, в июле фирма может ожидать цену около 150 244 руб.

б) Тот же результат будет получен, если вводить в формулу не все массивы переменных х и у, а использовать часть массивов, которые предусматриваются автоматически по умолчанию. Тогда формула (10) примет вид:

В формуле (11) используется массив по умолчанию (1:2:3:4:5:6:7:8:9:10:11:12) для аргумента «известные_значения_х», соответствующий 12 месяцам, для которых имеются данные по продажам. Он должен был бы быть помещен в формуле (11) между двумя знаками ;;. Массив (13:14:15:16:17) соответствует следующим 5 месяцам, для которых и получен массив результатов (146172:147190:148208:149226:150244).

Элементы массивов разделяет знак «:», который указывает на то, что они расположены по столбцам.

в) Аргумент «новые значения х» можно задать другим массивом ячеек, например, В14:В18, в которые предварительно записаны те же номера месяцев 13,14,15,16,17. Тогда вводимая в строку формул функция примет вид =ТЕНДЕНЦИЯ(В2:В13;;В14:В18).

Пример 2. Функция ЛИНЕЙН

а) Дана таблица изменения температуры в течение шести часов, введённая в ячейки D2 :E7 (табл. 13.2 таблица 13.2).

Требуется определить температуру во время восьмого часа.

Таблица 13.2. Данные для примера 1

DE
1х-№часау-t о , град.
212
323
434
547
6512
7618

Выделим ячейки D8:E12 для вывода результата, введем в строку ввода формулу =ЛИНЕЙН(Е2:Е7;D2:D7;1;1), нажмем клавиши Сtrl+Shift+Enter, в выделенных ячейках появится результат:

3,142857-3,3333333
0,5408482,106302
0,8940882,2625312
33,767444
172,857120,47619

Таким образом, коэффициент m=3,143 со стандартной ошибкой 0,541, а свободный член b=-3,333 со стандартной ошибкой 2,106, т.е. функция, описывающая данные табл. 13.2 таблица 13.2, имеет вид

Стандартные ошибки показывают максимально возможное отклонение параметра от рассчитанной величины. Для у оно составляет 2,263, т.е. реальное значение у может лежать в пределах Сущность регрессионного анализа выбор уравнений описывающих зависимость.

Точность приближения к табличным данным (коэффициент детерминированности r 2 ) составляет 0,894 или 89,4%, что является высоким показателем. При х=8 получим: у=3,143*8-3,333=21,81 град.

б) Тот же результат можно получить, использовав функцию =ТЕНДЕНЦИЯ(Е2:Е7;;G2:G5) для, например, следующих четырёх часов, предварительно введя в ячейки G2 :G5 числа с 7 до 10. Выделив ячейки Н2:Н5, введя в строку формул эту функцию и нажав Сtrl+Shift+Enter, получим в выделенных ячейках массив , т.е. для восьмого часа значение Сущность регрессионного анализа выбор уравнений описывающих зависимостьград.

в) Функция ПРЕДСКАЗ ( FORECAST ) – позволяет предсказать значение у для нового значения х по известным значениям х и у, используя линейное приближение зависимости у=f(x).

Для данных примера 2 ввод формулы =ПРЕДСКАЗ(8;Е2:Е7;D2:D7) выводит в заранее выделенной ячейке результат 21,809. Новое значение х может быть задано не числом, а ячейкой, в которую записано это число.

Отличие функции ПРЕДСКАЗ от функции ТЕНДЕНЦИЯ заключается в том, что ПРЕДСКАЗ прогнозирует значения функции линейного приближения только для одного нового значения х.

Экспоненциальная регрессия

Пример 3

а) Функция ЛГРФПРИБЛ.

Рассмотрим условие примера 2.

Поскольку функция в табл. 13.2 таблица 13.2 носит явно нелинейный характер, целесообразно искать ее приближение в виде не прямой линии, как в примере 2, а в виде нелинейной кривой. Из всех видов нелинейности (гипербола, парабола, и др.) Excel реализует только экспоненциальное приближение вида у=b*mx c помощью функции ЛГРФПРИБЛ, которая рассчитывает для этого уравнения значения b и m .

Выделим для результата блок ячеек F8:G12 , введём в строку формул Функцию =ЛГРФПРИБЛ(Е2:Е7;D2:D7;1;1), нажмем клавиши Сtrl+Shift+Enter, в выделенных ячейках появится результат:

1,566280151,196513
0,020382990,07938
0,991813340,085268
484,5996874
3,523359210,029083

Таким образом, коэффициент m=1,566, а b=1,197, т.е. уравнение приближающей кривой имеет вид:

Сущность регрессионного анализа выбор уравнений описывающих зависимость

со стандартными ошибками для m, b , и у равными 0,02, 0,079 и 0,085 соответственно. Коэффициент детерминированности r 2 =0,992, т.е. полученное уравнение даёт совпадение с табличными данными с вероятностью 99,2%.

Поскольку интерполяция табл. 13.2 таблица 13.2 экспоненциальной кривой даёт более точное приближение (99,2%) и с меньшими стандартными ошибками для m, b и у, в качестве приближающего уравнения принимаем уравнение (13).

При х=8 получим у=1,197*34,363=41,131 град.

б) Функция РОСТ вычисляет прогнозируемое по экспоненциальному приближению значение у для новых значений х, имеет формат:

Выделим блок ячеек F14: F17 , введём формулу =РОСТ(Е2:Е7;D2:D7;G2:G5;ИСТИНА), в выделенных ячейках появится массив чисел , т.е. при х=8 значение функции у=43,34 град. Это значение немного отличается от вычисленного в п. а), поскольку функция РОСТ использует для расчетов линию экспонециального тренда.

Примечание. При выборе экспоненциальной приближающей кривой следует учитывать, что интерполировать ею можно только участки, где функция монотонно возрастает или убывает (при отрицательном аргументе х), т.е. функцию, имеющую точки перегиба (например, параболу, синусоиду, кривую рис. 2 – т. А и др.) следует разбить на участки монотонного изменения от одной точки перегиба до другой и каждый участок интерполировать отдельно. Для рисунка 2 функцию нужно разбить на 2 участка – от начала до т. А и от т. А до конца кривой.

Множественная линейная регрессия

Пример 4

Предположим, что коммерческий агент рассматривает возможность закупки небольших зданий под офисы в традиционном деловом районе. Агент может использовать множественный регрессионный анализ для оценки цены здания под офис на основе следующих переменных:

у – оценочная цена здания под офис;

х1 – общая площадь в квадратных метрах;

х2 – количество офисов;

х3 – количество входов;

х4 – время эксплуатации здания в годах.

Агент наугад выбирает 11 зданий из имеющихся 1500 и получает следующие данные:

АВСDЕ
1х1— площадь, м2х2 – офисых3 – входых4 – срок, лету – цена, у.е.
22310222042000
323332212144000
4235631,533151000
523793243151000
624022353139000
724254323169000
8244821,599126000
924712234142000
1024943323163000
1125174455169000
1225402322149000

«Пол-входа» означает вход только для доставки корреспонденции.

В этом примере предполагается, что существует линейная зависимость между каждой независимой переменной (х1234) и зависимой переменной (у), т.е. ценой зданий под офис в данном районе.

  • выделим блок ячеек А14:Е18 (в соответствии с табл. 13.1 таблица 13.1),
  • введём формулу =ЛИНЕЙН(Е2:Е12;А2:D12;ИСТИНА;ИСТИНА), —
  • нажмём клавиши Ctrl+Shift+Enter ,
  • в выделенных ячейках появится результат:
АВСDE
14-234,2372553,21012529,768227,641352317,83
1513,2680530,6691400,0668385,4293712237,36
160,99674970,5784#Н/Д#Н/Д#Н/Д
17459,7536#Н/Д#Н/Д#Н/Д
1817323933195652135#Н/Д#Н/Д#Н/Д

Уравнение множественной регрессии Сущность регрессионного анализа выбор уравнений описывающих зависимостьтеперь может быть получено из строки 14:

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Теперь агент может определить оценочную стоимость здания под офис в том же районе, которое имеет площадь 2500 м 2 , три офиса, два входа, зданию 25 лет, используя следующее уравнение:

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Это значение может быть вычислено с помощью функции ТЕНДЕНЦИЯ:

При интерполяции с помощью функции

для получения уравнения множественной экспоненциальной регрессии выводится результат:

0,998357521,01737921,08301861,000170481510,335
0,000148370,00650410,00487246,033Е-050,1365601
0,991588750,0105158#Н/Д#Н/Д#Н/Д
176,8325486#Н/Д#Н/Д#Н/Д
0,078218510,0006635#Н/Д#Н/Д#Н/Д
#Н/Д#Н/Д#Н/Д#Н/Д#Н/Д

Коэффициент детерминированности здесь составляет 0,992 (99,2%), т.е. меньше, чем при линейной интерполяции, поэтому в качестве основного следует оставить уравнение множественной регрессии (14).

Таким образом, функции ЛИНЕЙН, ЛГРФПРИБЛ, НАКЛОН определяют коэффициенты, свободные члены и статистические параметры для уравнений одномерной и множественной регрессии, а функции ТЕНДЕНЦИЯ, ПРЕДСКАЗ, РОСТ позволяют получить прогноз новых значений без составления уравнения регрессии по значениям тренда.

ЗАДАНИЕ

Вариант задания к данной лабораторной работе включает две задачи. Для каждой из них необходимо составить и определить:

  1. Таблицу исходных данных, а также значений, полученных методами линейной и экспоненциальной регрессии.
  2. Коэффициенты в уравнениях прямой и экспоненциальной кривой (функции ЛИНЕЙН и ЛГРФПРИБЛ), напишите уравнения прямой и экспоненциальной кривой для простой и множественной регрессии.
  3. Погрешности (ошибки) прямой и экспоненциальной кривой, вычислений для коэффициентов и функций, коэффициенты детерминированности. Оценить, какой тип регрессии наилучшим образом подходит для вашего варианта задания.
  4. Прогноз изменения данных, выполненный с использованием линейной и экспоненциальной регрессии (функции ТЕНДЕНЦИЯ, ПРЕДСКАЗ, РОСТ).
  5. Построить гистограмму (или график) исходных данных для задачи 1 (одномерная регрессия), отобразить на ней линию тренда, а также соответствующее ей уравнение и коэффициент детерминированности.

Варианты заданий (номер варианта соответствует номеру компьютера).

  1. На рынке наблюдается стойкое снижение цен на компьютеры. Сделать прогноз, на сколько необходимо будет снизить цену на компьютеры в следующем месяце в вашей фирме, чтобы как минимум сравнять её с ценой на аналогичные компьютеры в конкурирующей фирме, если известна динамика изменения цен на них в конкурирующей фирме за последние 12 месяцев.

Для выполнения задания нужно ввести ряд из 12 ячеек с ценами конкурирующей фирмы, сделать прогноз цены на следующий месяц и др. (см. Задание).

  1. Известна структура расходов фирмы на рекламу в газетах, на радио, в журналах, на телевидении, на наружную рекламу (в процентах от общей суммы), а также оборот фирмы в каждом за последние 6 месяцев. Какой оборот можно ожидать в следующем месяце, если предполагается следующая структура расходов на рекламу: газеты-40%, журналы-40%, радио-5%, телевидение-14%, наружная реклама-1%.

Для выполнения задания нужно составить таблицу со столбцами вида:

Месяцх1-газеты,%х2-журн.,%х3-рад.,%х4-телев.,%х5-нар. рекл.,%Оборот, $
1373412105410000
2383710116411500
339389137413700
440398158417050
541407169420000
6424251710425000

и сделать множественный регрессионный прогноз (см. Задание).

  1. Имеются данные об объеме продаж в расчете на душу населения по хлебу и молоку и данные по годовым доходам на душу за 10 лет. По каждому товару построить модели регрессии для объемов продаж и функции размера доходов. Сделать прогноз о продажах и доходах на следующий год.

Для выполнения задания нужно составить таблицу вида:

Годы1234567891011
х1-хлеб, кг23,526,727,930,131,535,738,340,141,542,8
х2-молоко, л20,452223,825,927,42933,536,838,139,5
У-доход, р.66007200840010500127501473016240170001805018250

и получить два уравнения – у=f(x1) и у=f(x2), сделать прогноз на следующий год для рядов х1, х2, у и др. (см. Задание).

  1. Руководство фирмы провело оценку качеств пяти рекламных агентов по следующим признакам: х1 – эрудиция, х2 – знание предметной области. Полученные средние оценки, нормированные от 0 до 1, были сопоставлены с оценками эффективности деятельности агентов (% успешных сделок от количества возможных). Определить эффективность для агента с усреднёнными качествами. Сравнить её со средней эффективностью упомянутых 5 агентов.

Исходные данные нужно ввести в таблицу вида:

АВСDEFG
1х1-эрудициях2-энергичностьх3-людих4-внешностьх5-знанияЭффективность
2Агент 10,80,20,40,61,076%
3Агент 20,740,30,390,580,9578%
4Агент 30,670,410,350,50,8379%
5Агент 60,590,590,330,470,880%
6Агент 50,50,70,30,40,7481%
7Средняя эффективность пяти агентов
8Средний агент0,50,50,50,50,5

Массив ячеек В2-F6 заполняется произвольными числами от 0 до 1, столбец G2 -G6 – процентами удачных сделок по принципу «Чем выше уровень качеств агента, тем выше эффективность его работы», в ячейке G7 должна быть формула для вычисления среднего значения ячеек G2:G6 , в ячейке G8 нужно вычислить значение эффективности для среднего агента по формуле, полученной в результате множественного регрессионного анализа работы пяти агентов. Остальные пункты – см. Задание.

  1. Автосалон имеет данные о количестве проданных автомобилей «Мерседес» и «БМВ» за последние 4 квартала. Учитывая тенденцию изменения объёма продаж, определить, каких автомобилей нужно закупить больше («Мерседес» или «БМВ») в следующем квартале?

Для выполнения задания нужно составить и заполнить таблицу вида:

Х12345
Мерседес ( Y1 )10121518
БМВ ( Y2 )9101417

сделать прогноз продаж на новый квартал и выполнить другие пункты задания.

  1. Известны следующие данные о 5 недавно проданных подержанных автомобилях: у – стоимость продажи, х1 – стоимость аналогичного нового автомобиля, х2 – год выпуска, х3 – пробег, х4 – количество капитальных ремонтов, х5 – экспертные заключения о состоянии кузова и техническом состоянии автомобилей (по 10-бальной шкале). Определить, сколько может стоить автомобиль с соответствующими характеристиками: 340 000, 1998г., 140000км., 1, 6 (см. пример 4).
  1. Определить минимально необходимый тираж журнала и возможный доход от размещения в нём рекламы в следующем месяце, если известны данные об объёмах продаж этого журнала и доходах от размещения рекламы за последние 12 месяцев (считать, что расценки на рекламу не менялись).

Для выполнения задания нужно составить таблицу вида:

Месяц123456789101112
Тираж,тыс.100120121,7124,2128130,1133,45136141142,1143,8145
Доход,тыс. руб.128135138142147154159161163168170,5172

и заполнить ячейки за 12 месяцев условными данными. По этим данным нужно сделать линейный и экспоненциальный прогноз и др. (см. Задание).

  1. В целях привлечения покупателей и увеличения оборота фирма проводит стратегию ежемесячного снижения цен на свой товар. На основании данных о динамике изменения цен, объемов продаж в данной фирме и ещё в 3 конкурирующих фирмах за последние 12 месяцев сделать прогноз о том, возрастает ли объём продаж у данной фирмы при очередном снижении цен в следующем месяце, если предположить, что цены и объёмы у конкурентов в следующем месяце будут средние за рассматриваемый период.

Для выполнения задания нужно составить таблицу вида:

Мес.ФирмаКонкурент 1Конкурент 2Конкурент 3
1У-объёмх1-ценах2-объёмх3-ценах4-объёмх5-ценах6-объёмх7-цена
2100001875120001720125001740119701700
3110001850123401705126201735121001690
4115701810127501675127401710123501645
5118501750129101630129601695125001615
6121001685131001615130001674126301580
7123401630135701600132101625129201545
8127501615138201575133201610131501520
9129101600139801515134601560133001500
10131001575140001500136001525136101490
11132301530140701495137801500138501485
12134701510141201488139001460140001475
13
  1. На основании данных о курсе американского доллара и немецкой марки в первом полугодии сделать прогноз о соотношении данных валют на второе полугодие. Во что будет выгоднее вкладывать деньги в конце года?

Для выполнения задания нужно составить таблицу вида:

Месяц123456789101112
Доллар24,524,925,726,928,028,829,329,730,530,931,8
Марка72,176,379,685,389,790,993,296,4100,2101,6104,9

и сделать линейный прогноз на следующие 6 месяцев и др. (см. Задание).

  1. Известны данные за последние 6 месяцев о том, сколько раз выходила реклама фирмы, занимающейся недвижимостью, на телевидении – х1, радио – х2, в газетах и журналах – х3, а также количество звонков –у1 и количество совершённых сделок – у2. Какое соотношение количества совершённых сделок к количеству звонков у (в %) можно ожидать в следующем месяце, если известно, сколько раз выйдет реклама в каждом из перечисленных средств массовой информации.

Для выполнения задания нужно составить и заполнить таблицу вида:

ABCDE
1месяцх1х2х3y=у2/у1*100%
2115102478%
3216112380%
4318122281%
5419122284%
6521132185%
7622142089%
87

и выполнить применительно к таблице пункты Задания.

  1. Для некоторого региона известен среднегодовой доход населения, а также данные о структуре расходов (тыс. руб. в год) за последние 5 лет по следующим статьям: питание – х1, жильё – х2, одежда – х3, здоровье – х4, транспорт – х5, отдых – х6, образование – х7. На основании известных данных провести анализ потребительского кредита (или накопления) в следующем 6 году.

Для выполнения задания нужно составить и заполнить таблицу вида

Годых1х2х3х4х5х6х7Расход Сущность регрессионного анализа выбор уравнений описывающих зависимостьДоходКредит(Y)
1521,310,35418,621,43,1
25,22,21,21,20,44,84,519,5222,5
35,52,51,11,40,64,64,920,623,42,8
45,82,70,91,614,25,621,825,84
5730,821,246,524,726,21,5
67,53,30,72,21,53,8726,527,5

В ячейках столбца Сущность регрессионного анализа выбор уравнений описывающих зависимость) должны быть записаны формулы, вычисляющие суммы всех расходов х12+…+х7 в каждом году, в ячейках столбца Доход – соответствующие среднегодовые доходы, в ячейках столбца Кредит – формулы разности содержимого ячеек с ежегодными доходами и затратами, т.е. Кредит = Доход- Сущность регрессионного анализа выбор уравнений описывающих зависимость. Затем для столбца Кредит нужно выполнить регрессионный прогноз на следующий год и другие пункты Задания.

  1. Для 10 однокомнатных квартир, расположенных в одном районе, известны следующие данные: общая площадь – х1, жилая площадь – х2, площадь кухни – х3, наличие балкона – х4, телефона – х5, этаж – х6, а также стоимость – y . Определить, сколько может стоить однокомнатная квартира в этом районе без балкона, без телефона, расположенная на 1-ом этаже, общей площадью 28 м 2 , жилой – 16 м 2 , с кухней 6 м 2 .
КвартирыX1X2X3X4X5Стоимость ( y )
1413371242000
240307,72340000
3453780547000
446,33491649500
5503691451000
653409,51755000
75641100962000
860471221062300
965491421269000
10705814,521472000
112816601
  1. Определить возможный прирост населения (кол-во человек на 1000 населения) в 2011 году, если известны данные о кол-ве родившихся и умерших на 1000 населения в 1997-2006 годах.
Годы19971998199920002001200220032004200520062011
Родились100110130155170174180185190200
Умерли108115135160178180186190197205
  1. После некоторого спада наметился рост объёмов продаж матричных принтеров. Используя данные об объёмах продаж, ценах на матричные, струйные и лазерные принтеры, а также на их расходные материалы за последние 6 месяцев, определить возможный спрос на матричные принтеры в следующем месяце.

Проанализируйте, связано ли увеличение спроса на матричные принтеры с уменьшением спроса на струйные и лазерные.

Матричные принтерыСтруйные принтерыЛазерные принтеры
Спрос у1Цена х1Рас.мат. z1Спрос у2Цена х2Рас.мат. z/2Спрос у3Цена х3Рас.мат. z3
156417217426238455813125171558
258425017924239857011129841612
36042891822324015989132591789
46542971942024566498136871865
56943052051925127227140131998
67543182131825437686145872200
744562201726017795147892245

Необходимо сделать прогноз на седьмой месяц по уравнению у1=f(x1,z1), получить уравнение y=(у2,x2, z2, у3, x3, z2 ) и проанализировать его. Если слагаемые у2 и у3 входят в регрессионное уравнение со знаком «-«, то уменьшение спросов у2 и у3 ведёт к увеличению спроса у1.

  1. Построить прогноз развития спроса населения на телевизоры, если известна динамика продаж телевизоров (тыс. шт.) и динамика численности населения (тыс. чел.) за 10 лет. По данным таблицы сделать прогноз по обоим рядам на следующий год. Выполнить другие пункты задания.
Годы20012002200320042005200620072008200920102011
Динамика населения (тыс. чел)21,526,131,534,945,150,85659,463,967,1
Динамика продаж (тыс. шт.)2,52,93,43,94,14,855,65,96,2
  1. Размещая рекламу в 4-х изданиях, фирма собрала сведения о поступивших на нее откликов – у и сопоставила их с данными об изданиях: х1 – стоимость издания, х2 – стоимость одного блока рекламы, х3 – тираж, х4 – объём аудитории, х5 – периодичность, х6 – наличие телепрограммы. Какое количество откликов можно ожидать на рекламу в издании со следующими характеристиками: 15000 руб., 10$, 1000 экз., 25000 чел., 4 раза в месяц, без телепрограммы.

Пользуясь данными таблицы

Изданиях1х2х3х4х5х6Отклики, у
110000137001500041108
212500128502200081115
31589011,896028000100120
41785011120032000261128
5150001010002500040

необходимо сделать прогноз при заданных характеристиках.

  1. Размещая свою рекламу в 2-х печатных изданиях одновременно, фирма собрала сведения о количестве поступивших звонков и количестве заключенных сделок по объявлениям в каждом из указанных изданий за последние 12 месяцев. Определить, в каком из изданий и насколько эффективность размещения рекламы в следующем месяце будет больше?
МесяцыИздание 1Издание 2
ЗвонкиСделкиЗвонкиСделки
1986611279
21057214385
31057515090
411080130100
51259012075
614010011580
71369512882
81378713278
914510213888
101237514392
111307915097
121398815597
13

Эффективность определяется как сделки/звонки. Сделать линейный и экспоненциальный прогнозы по обоим изданиям.

  1. Пусть комплект мягкой мебели (диван + 2 кресла) характеризуется стоимостью комплектующих: х1— деревянные подлокотники, х2 – велюровое покрытие, х3 – кресло-кровать, х4 – угловой диван, х5 – раскладывающийся диван, х6 – место для хранения белья. По данным о стоимости 5 комплектов сделать вывод о возможной стоимости комплекта с обычным раскладывающимся диваном, с местом для белья, без деревянных подлокотников и велюрового покрытия, с креслом кроватью.

Пользуясь данными таблицы

Признаких1х2х3х4х5х6У -стоимость
Комплект 125054025004300640080013850 руб.
Комплект 232065030004800700098015770 руб.
Комплект 3400730390060008500110016730 руб.
Комплект 44521300430075009200205024350 руб.
Комплект 5550175064001245016700430042150 руб.
Комплект 66708002750670088001000

сделать прогноз и выполнить другие пункты задания.

  1. Для 2-х радиостанций известны данные об изменении объёма аудитории и динамике роста цен за 1 минуту эфирного времени за последние 12 месяцев. Определить, для какой радиостанции стоимость одного контакта со слушателем будет меньше?
МесяцРадиостанция 1Радиостанция 2
АудиторияЦена 1 мин.АудиторияЦена 1 мин.
125000080003000007560
254000065004500006340
358000064604900006250
465000063005500006000
573000060606100005730
675000060006900005300
780000054007500005100
884000053207800005000
989000051308700004700
1095000050009000004650
11100000048009400004600
121108000470010250004540
13
Контакт

В строке «Контакт» в ячейках С8 и D8 должны быть записаны формулы = С7/В7 и =Е7/D7 соответственно, вычисляющие стоимость 1 мин. Эфира для одного слушателя в прогнозируемом месяце. Прогноз нужно выполнить для линейного и экспоненциального приближений и выбрать более достоверный, а также сделать другие пункты Задания.

  1. На основании данных ежемесячных исследований известна динамика рейтинга банка (в условных единицах) за последние 6 месяцев в следующих сферах:
  2. менеджмент и технология – х1;
  3. менеджеры и персонал – х2;
  4. культура банковского обслуживания – х3;
  5. имидж банка на рынке финансовых услуг – х4;
  6. реклама банка – х5.

Определить возможное изменение количества вкладчиков данного банка в следующем месяце, если известны значения сфер рейтинга и количество вкладчиков в каждом из рассматриваемых 6 месяцев.

Видео:Корреляционно-регрессионный анализ многомерных данных в ExcelСкачать

Корреляционно-регрессионный анализ многомерных данных в Excel

R — значит регрессия

Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин — Машинного Обучения и Больших Данных. Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии. Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале — уметь отличить сигнал от шума.

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Для этой цели мы будем использовать язык программирования и среду разработки R, который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.

Видео:Математика #1 | Корреляция и регрессияСкачать

Математика #1 | Корреляция и регрессия

Введение в регрессионный анализ

Если имеется корреляционная зависимость Сущность регрессионного анализа выбор уравнений описывающих зависимостьмежду переменными y и x , возникает необходимость определить функциональную связь между двумя величинами. Зависимость среднего значения Сущность регрессионного анализа выбор уравнений описывающих зависимостьназывается регрессией y по x .

Основу регрессионного анализа составляет метод наименьших квадратов (МНК), в соответствии с которым в качестве уравнения регресии берется функция Сущность регрессионного анализа выбор уравнений описывающих зависимостьтакая, что сумма квадратов разностей Сущность регрессионного анализа выбор уравнений описывающих зависимостьминимальна.

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.

Вид функции Сущность регрессионного анализа выбор уравнений описывающих зависимость, как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений Сущность регрессионного анализа выбор уравнений описывающих зависимостьвокруг регрессии Сущность регрессионного анализа выбор уравнений описывающих зависимостьявляется дисперсия.

Сущность регрессионного анализа выбор уравнений описывающих зависимость

  • k — число коэффициентов в системе уравнений регрессии.

Чаще всего используется модель линейной регрессии, а все нелинейные зависимости Сущность регрессионного анализа выбор уравнений описывающих зависимостьприводят к линейному виду с помощью алгебраических ухищрений, различных преобразования переменных y и x .

Линейная регрессия

Уравнения линейной регрессии можно записать в виде

Сущность регрессионного анализа выбор уравнений описывающих зависимость

В матричном виде это выгладит

Сущность регрессионного анализа выбор уравнений описывающих зависимость

  • y — зависимая переменная;
  • x — независимая переменная;
  • β — коэффициенты, которые необходимо найти с помощью МНК;
  • ε — погрешность, необъяснимая ошибка и отклонение от линейной зависимости;

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Случайная величина Сущность регрессионного анализа выбор уравнений описывающих зависимостьможет быть интерпретирована как сумма из двух слагаемых:

  • Сущность регрессионного анализа выбор уравнений описывающих зависимостьполная дисперсия (TSS).
  • Сущность регрессионного анализа выбор уравнений описывающих зависимостьобъясненная часть дисперсии (ESS).
  • Сущность регрессионного анализа выбор уравнений описывающих зависимостьостаточная часть дисперсии (RSS).

Еще одно ключевое понятие — коэффициент корреляции R 2 .

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Видео:Парная регрессия: линейная зависимостьСкачать

Парная регрессия: линейная зависимость

Ограничения линейной регрессии

Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.

  1. Линейность, собственно. Увеличение, или уменьшение вектора независимых переменных в k раз, приводит к изменению зависимой переменной также в k раз.
  2. Матрица коэффициентов обладает полным рангом, то есть векторы независимых переменных линейно независимы.
  3. Экзогенность независимых переменныхСущность регрессионного анализа выбор уравнений описывающих зависимость. Это требование означает, что математическое ожидание погрешности никоим образом нельзя объяснить с помощью независимых переменных.
  4. Однородность дисперсии и отсутствие автокорреляции. Каждая εi обладает одинаковой и конечной дисперсией σ 2 и не коррелирует с другой εi. Это ощутимо ограничивает применимость модели линейной регрессии, необходимо удостовериться в том, что условия соблюдены, иначе обнаруженная взаимосвязь переменных будет неверно интерпретирована.

Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.

Неоднородность дисперсии
Сущность регрессионного анализа выбор уравнений описывающих зависимость

При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.

Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.

  • Автокорреляция проверяется статистикой Дарбина-Уотсона (0 ≤ d ≤ 4). Если автокорреляции нет, то значения критерия d≈2, при позитивной автокорреляции d≈0, при отрицательной — d≈4.
  • Неоднородность дисперсии — Тест Уайта, Сущность регрессионного анализа выбор уравнений описывающих зависимость, при Сущность регрессионного анализа выбор уравнений описывающих зависимостьchi_$» data-tex=»inline»/> нулевая гипотеза отвергается и констатируется наличие неоднородной дисперсии. Используя ту же Сущность регрессионного анализа выбор уравнений описывающих зависимостьможно еще применить тест Бройша-Пагана.
  • Мультиколлинеарность — нарушения условия об отсутствии взаимной линейной зависимости между независимыми переменными. Для проверки часто используют VIF-ы (Variance Inflation Factor).

Сущность регрессионного анализа выбор уравнений описывающих зависимость

В этой формуле Сущность регрессионного анализа выбор уравнений описывающих зависимость— коэффициент взаимной детерминации между Сущность регрессионного анализа выбор уравнений описывающих зависимостьи остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.

Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова, согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.

Видео:РЕГРЕССИОННЫЙ АНАЛИЗ общая идея | АНАЛИЗ ДАННЫХ #16Скачать

РЕГРЕССИОННЫЙ АНАЛИЗ общая идея | АНАЛИЗ ДАННЫХ #16

Как преодолеть эти ограничения

Нарушения одной или нескольких ограничений еще не приговор.

  1. Нелинейность регрессии может быть преодолена преобразованием переменных, например через функцию натурального логарифма ln .
  2. Таким же способом возможно решить проблему неоднородной дисперсии, с помощью ln , или sqrt преобразований зависимой переменной, либо же используя взвешенный МНК.
  3. Для устранения проблемы мультиколлинеарности применяется метод исключения переменных. Суть его в том, что высоко коррелированные объясняющие переменные устраняются из регрессии, и она заново оценивается. Критерием отбора переменных, подлежащих исключению, является коэффициент корреляции. Есть еще один способ решения данной проблемы, который заключается в замене переменных, которым присуща мультиколлинеарность, их линейной комбинацией. Этим весь список не исчерпывается, есть еще пошаговая регрессия и другие методы.

К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.

Видео:Эконометрика. Линейная парная регрессияСкачать

Эконометрика. Линейная парная регрессия

Линейная регрессия плюсов на Хабре

Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.

Загружает данные из tsv файла.

  • points — Рейтинг статьи
  • reads — Число просмотров.
  • comm — Число комментариев.
  • faves — Добавлено в закладки.
  • fb — Поделились в социальных сетях (fb + vk).
  • bytes — Длина в байтах.

Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях. Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная — нет надобности исключать ни одну из независимых переменных.

Теперь собственно сама модель, используем функцию lm .

В первой строке мы задаем параметры линейной регрессии. Строка points

. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points

reads , набор переменных — points

Перейдем теперь к расшифровке полученных результатов.

  • Intercept — Если у нас модель представлена в виде Сущность регрессионного анализа выбор уравнений описывающих зависимость, то тогда Сущность регрессионного анализа выбор уравнений описывающих зависимость— точка пересечения прямой с осью координат, или intercept .
  • R-squared — Коэффициент детерминации указывает насколько тесной является связь между факторами регрессии и зависимой переменной, это соотношение объясненных сумм квадратов возмущений, к необъясненным. Чем ближе к 1, тем ярче выражена зависимость.
  • Adjusted R-squared — Проблема с Сущность регрессионного анализа выбор уравнений описывающих зависимостьв том, что он по любому растет с числом факторов, поэтому высокое значение данного коэффициента может быть обманчивым, когда в модели присутствует множество факторов. Для того, чтобы изъять из коэффициента корреляции данное свойство был придуман скорректированный коэффициент детерминации .
  • F-statistic — Используется для оценки значимости модели регрессии в целом, является соотношением объяснимой дисперсии, к необъяснимой. Если модель линейной регрессии построена удачно, то она объясняет значительную часть дисперсии, оставляя в знаменателе малую часть. Чем больше значение параметра — тем лучше.
  • t value — Критерий, основанный на t распределении Стьюдента . Значение параметра в линейной регрессии указывает на значимость фактора, принято считать, что при t > 2 фактор является значимым для модели.
  • p value — Это вероятность истинности нуль гипотезы, которая гласит, что независимые переменные не объясняют динамику зависимой переменной. Если значение p value ниже порогового уровня (.05 или .01 для самых взыскательных), то нуль гипотеза ложная. Чем ниже — тем лучше.

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.

Проверим значения параметров линейной регрессии.

Как видим в целом отзывчивость модели возросла, параметры подтянулись и стали более шелковистыми , F-статистика выросла, так же как и скорректированный коэффициент детерминации .

Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.

И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.

Видео:Множественная регрессияСкачать

Множественная регрессия

В заключение

Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.

Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.

Видео:Множественная регрессия в ExcelСкачать

Множественная регрессия в Excel

Реферат: Уравнение регрессии

Видео:Парная нелинейная регрессияСкачать

Парная нелинейная регрессия

ВВЕДЕНИЕ

Изучение корреляционных зависимостей основывается на исследовании таких связей между переменными, при которых значения одной переменной, ее можно принять за зависимую переменную, «в среднем» изменяются в зависимости от того, какие значения принимает другая переменная, рассматриваемая как причина по отношению к зависимой переменной. Действие данной причины осуществляется в условиях сложного взаимодействия различных факторов, вследствие чего проявление закономерности затемняется влиянием случайностей. Вычисляя средние значения результативного признака для данной группы значений признака-фактора, отчасти элиминируется влияние случайностей. Вычисляя параметры теоретической линии связи, производится дальнейшее их элиминирование и получается однозначное (по форме) изменение «y» с изменением фактора «x».

Для исследования стохастических связей широко используется метод сопоставления двух параллельных рядов, метод аналитических группировок, корреляционный анализ, регрессионный анализ и некоторые непараметрические методы. В общем виде задача статистики в области изучения взаимосвязей состоит не только в количественной оценке их наличия, направления и силы связи, но и в определении формы (аналитического выражения) влияния факторных признаков на результативный. Для ее решения применяют методы корреляционного и регрессионного анализа.

Видео:РЕГРЕССИОННЫЙ АНАЛИЗ STATISTICA #12Скачать

РЕГРЕССИОННЫЙ АНАЛИЗ STATISTICA #12

ГЛАВА 1. УРАВНЕНИЕ РЕГРЕССИИ: ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Видео:Множественная регрессия в Excel и мультиколлинеарностьСкачать

Множественная регрессия в Excel и мультиколлинеарность

1.1. Уравнение регрессии: сущность и типы функций

Регрессия (лат. regressio- обратное движение, переход от более сложных форм развития к менее сложным) — одно из основных понятий в теории вероятности и математической статистике, выражающее зависимость среднего значения случайной величины от значений другой случайной величины или нескольких случайных величин. Это понятие введено Фрэнсисом Гальтоном в 1886. [9]

Теоретическая линия регрессии — это та линия, вокруг которой группируются точки корреляционного поля и которая указывает основное направление, основную тенденцию связи. [2, с.256]

Теоретическая линия регрессии должна отображать изменение средних величин результативного признака «y» по мере изменения величин факторного признака «x» при условии полного взаимопогашения всех прочих – случайных по отношению к фактору «x» — причин. Следовательно, эта линия должна быть проведена так, чтобы сумма отклонений точек поля корреляции от соответствующих точек теоретической линии регрессии равнялась нулю, а сумма квадратов этих отклонений была ба минимальной величиной.

y=f(x) — уравнение регрессии — это формула статистической связи между переменными.

Прямая линия на плоскости (в пространстве двух измерений) задается уравнением y=a+b*х. Более подробно: переменная y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную x. Константу иногда называют также свободным членом, а угловой коэффициент — регрессионным или B-коэффициентом. [8]

Важным этапом регрессионного анализа является определение типа функции, с помощью которой характеризуется зависимость между признаками. Главным основанием должен служить содержательный анализ природы изучаемой зависимости, ее механизма. Вместе с тем теоретически обосновать форму связи каждого из факторов с результативным показателем можно далеко не всегда, поскольку исследуемые социально-экономические явления очень сложны и факторы, формирующие их уровень, тесно переплетаются и взаимодействуют друг с другом. Поэтому на основе теоретического анализа нередко могут быть сделаны самые общие выводы относительно направления связи, возможности его изменения в исследуемой совокупности, правомерности использования линейной зависимости, возможного наличия экстремальных значений и т.п. Необходимым дополнением такого рода предположений должен быть анализ конкретных фактических данных.

Приблизительно представление о линии связи можно получить на основе эмпирической линии регрессии. Эмпирическая линия регрессии обычно является ломанной линией, имеет более или менее значительный излом. Объясняется это тем, что влияние прочих неучтенных факторов, оказывающих воздействие на вариацию результативного признака, в средних погашается неполностью, в силу недостаточно большого количества наблюдений, поэтому эмпирической линией связи для выбора и обоснования типа теоретической кривой можно воспользоваться при условии, что число наблюдений будет достаточно велико. [2, с.257]

Одним из элементов конкретных исследований является сопоставление различных уравнений зависимости, основанное на использовании критериев качества аппроксимации эмпирических данных конкурирующими вариантами моделей Наиболее часто для характеристики связей экономических показателей используют следующие типы функций:

1. Линейная: Сущность регрессионного анализа выбор уравнений описывающих зависимость

2. Гиперболическая:Сущность регрессионного анализа выбор уравнений описывающих зависимость

4. Параболическая: Сущность регрессионного анализа выбор уравнений описывающих зависимость

5. Степенная: Сущность регрессионного анализа выбор уравнений описывающих зависимость

6. Логарифмическая:Сущность регрессионного анализа выбор уравнений описывающих зависимость

7. Логистическая: Сущность регрессионного анализа выбор уравнений описывающих зависимость[2, c.258]

Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.

Для нахождения параметров а и b уравнения регрессии используют метод наименьших квадратов. При применении метода наименьших квадратов для нахождения такой функции, которая наилучшим образом соответствует эмпирическим данным, считается, что сумка квадратов отклонений эмпирических точек от теоретической линии регрессии должна быть величиной минимальной.

Критерий метода наименьших квадратов можно записать таким образом:

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Следовательно, применение метода наименьших квадратов для определения параметров a и b прямой, наиболее соответствующей эмпирическим данным, сводится к задаче на экстремум. [2, c.258]

Относительно оценок можно сделать следующие выводы:

1. Оценки метода наименьших квадратов являются функциями выборки, что позволяет их легко рассчитывать.

2. Оценки метода наименьших квадратов являются точечными оценками теоретических коэффициентов регрессии.

3. Эмпирическая прямая регрессии обязательно проходит через точку x, y.

4. Эмпирическое уравнение регрессии построено таким образом, что сумма отклонений Сущность регрессионного анализа выбор уравнений описывающих зависимость.

Графическое изображение эмпирической и теоретической линии связи представлено на рисунке 1.

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Параметр b в уравнении – это коэффициент регрессии. При наличии прямой корреляционной зависимости коэффициент регрессии имеет положительное значение, а в случае обратной зависимости коэффициент регрессии – отрицательный. Коэффициент регрессии показывает на сколько в среднем изменяется величина результативного признака «y» при изменении факторного признака «x» на единицу. Геометрически коэффициент регрессии представляет собой наклон прямой линии, изображающей уравнение корреляционной зависимости, относительно оси «x» (для уравнения Сущность регрессионного анализа выбор уравнений описывающих зависимость).

Раздел многомерного статистического анализа, посвященный восстановлению зависимостей, называется регрессионным анализом. Термин «линейный регрессионный анализ» используют, когда рассматриваемая функция линейно зависит от оцениваемых параметров (от независимых переменных зависимость может быть произвольной). Теория оценивания

неизвестных параметров хорошо развита именно в случае линейного регрессионного анализа. Если же линейности нет и нельзя перейти к линейной задаче, то, как правило, хороших свойств от оценок ожидать не приходится. Продемонстрируем подходы в случае зависимостей различного вида. Если зависимость имеет вид многочлена (полинома). Если расчёт корреляции характеризует силу связи между двумя переменными, то регрессионный анализ служит для определения вида этой связи и дает возможность для прогнозирования значения одной (зависимой) переменной отталкиваясь от значения другой (независимой) переменной. Для проведения линейного регрессионного анализа зависимая переменная должна иметь интервальную (или порядковую) шкалу. В то же время, бинарная логистическая регрессия выявляет зависимость дихотомической переменной от некой другой переменной, относящейся к любой шкале. Те же условия применения справедливы и для пробит-анализа. Если зависимая переменная является категориальной, но имеет более двух категорий, то здесь подходящим методом будет мультиномиальная логистическая регрессия можно анализировать и нелинейные связи между переменными, которые относятся к интервальной шкале. Для этого предназначен метод нелинейной регрессии. [10]

Видео:Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2Скачать

Нелинейная регрессия в MS Excel. Как подобрать уравнение регрессии? Некорректное значение R^2

ГЛАВА 2 . МОДЕЛИ РЕГРЕССИИ

Видео:Эконометрика. Оценка значимости уравнения регрессии. Критерий ФишераСкачать

Эконометрика. Оценка значимости уравнения регрессии. Критерий Фишера

2.1. Парная линейная регрессия

Можно выделить три основных класса моделей, которые применяются для анализа и прогнозирования экономических процессов:

1. модели временных рядов,

2. регрессионные модели с одним уравнением,

3. системы одновременных уравнений.

Модель с одной объясняющей и одной объясняемой переменными – модель парной регрессии. Если объясняющих (факторных) переменных используется две или более, то говорят об использовании модели множественной регрессии. При этом, в качестве вариантов могут быть выбраны линейная, экспоненциальная, гиперболическая, показательная и другие виды функций, связывающие эти переменные.

Линейная регрессия представляет собой линейную функцию между условным математическим ожиданием Сущность регрессионного анализа выбор уравнений описывающих зависимостьзависимой переменной Y и одной объясняющей переменной X:

Сущность регрессионного анализа выбор уравнений описывающих зависимость,

где Сущность регрессионного анализа выбор уравнений описывающих зависимость— значения независимой переменной в i-ом наблюбдении, i=1,2,…,n. Принципиальной является линейность уравнения по параметрам Сущность регрессионного анализа выбор уравнений описывающих зависимость, Сущность регрессионного анализа выбор уравнений описывающих зависимость. Так как каждое индивидуальное значение Сущность регрессионного анализа выбор уравнений описывающих зависимостьотклоняется от соответствующего условного математического ожидания, тогда вданную формулу необходимо ввести случайное слагаемое Сущность регрессионного анализа выбор уравнений описывающих зависимость, тогда получим:

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Данное соотношение называется теоретической линейной регрессионной моделью, а Сущность регрессионного анализа выбор уравнений описывающих зависимостьи Сущность регрессионного анализа выбор уравнений описывающих зависимость— теоретическими параметрами (теоретическими коэффициентами) регрессии, Сущность регрессионного анализа выбор уравнений описывающих зависимость— случайным отклонением. Следовательно, индивидуальные значения Сущность регрессионного анализа выбор уравнений описывающих зависимостьпредставляются в виде суммы двух компонент – систематической Сущность регрессионного анализа выбор уравнений описывающих зависимостьи случайной Сущность регрессионного анализа выбор уравнений описывающих зависимость[12]

Для определения значений теоретических коэффициентов регрессии необходимо знать и использовать все значения переменных Xи Y генеральной совокупности, что невозможно. задачи регрессионного линейного анализа состоят в том, чтобы по имеющимся статистическим данным (Сущность регрессионного анализа выбор уравнений описывающих зависимость), i=1,…,nдля переменных Xи Y:

1. получить наилучшие оценки неизвестных параметров Сущность регрессионного анализа выбор уравнений описывающих зависимостьи Сущность регрессионного анализа выбор уравнений описывающих зависимость;

2. проверить статистические гипотезы о параметрах модели;

3. проверить, достаточно ли хорошо модель согласуется со статистическими данными.

Парная линейная регрессия — это причинная модель статистической связи линейной между двумя количественными переменными «x» и «у», представленная уравнением Сущность регрессионного анализа выбор уравнений описывающих зависимость, где х — переменная независимая, y — переменная зависимая. Коэффициент регрессии «b» и свободный член уравнения регрессии «a» вычисляются по формулам:

Сущность регрессионного анализа выбор уравнений описывающих зависимость

Сущность регрессионного анализа выбор уравнений описывающих зависимость,

где r — коэффициент линейной корреляции Пирсона для переменных x и y; sx и sy — стандартные отклонения для переменных x и y; x,y — средние арифметические для переменных x и y.

🎥 Видео

Эконометрика Линейная регрессия и корреляцияСкачать

Эконометрика  Линейная регрессия и корреляция

РЕГРЕССИОННЫЙ АНАЛИЗ этапы | АНАЛИЗ ДАННЫХ #17Скачать

РЕГРЕССИОННЫЙ АНАЛИЗ этапы | АНАЛИЗ ДАННЫХ #17

24.02.24 Зеркальный коридор| Полнолуние в Деве. Мощная дата для улучшения судьбы и чистки кармыСкачать

24.02.24 Зеркальный коридор| Полнолуние в Деве. Мощная дата для улучшения судьбы и чистки кармы

Что такое линейная регрессия? Душкин объяснитСкачать

Что такое линейная регрессия? Душкин объяснит

Корреляционно-регрессионный анализ. ЭтапыСкачать

Корреляционно-регрессионный анализ. Этапы

Коэффициент линейной регрессии, 2 способаСкачать

Коэффициент линейной регрессии, 2 способа

Лекция 8. Линейная регрессияСкачать

Лекция 8. Линейная регрессия

Тема 6 Регрессионный анализСкачать

Тема 6  Регрессионный анализ
Поделиться или сохранить к себе:
Название: Уравнение регрессии
Раздел: Рефераты по маркетингу
Тип: реферат Добавлен 12:45:18 01 июля 2011 Похожие работы
Просмотров: 1700 Комментариев: 19 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать