Суммарное уравнение световой фазы и темновой фазы

Видео:ФОТОСИНТЕЗ: процесс, световая и темновая фаза | ЕГЭ биологияСкачать

ФОТОСИНТЕЗ: процесс, световая и темновая фаза | ЕГЭ биология

Лекция № 12. Фотосинтез. Хемосинтез

Видео:Световая фаза фотосинтеза. Фотофосфорилирование. 11 класс.Скачать

Световая фаза фотосинтеза. Фотофосфорилирование. 11 класс.

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Суммарное уравнение световой фазы и темновой фазы

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Видео:Фотосинтез у растений | самое простое объяснениеСкачать

Фотосинтез у растений | самое простое объяснение

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

Радикалы •ОН объединяются, образуя воду и свободный кислород:

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

2Н + + 2е — + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

Суммарное уравнение световой фазы и темновой фазы

1 — строма хлоропласта; 2 — тилакоид граны.

Видео:Световая фаза фотосинтеза.Скачать

Световая фаза фотосинтеза.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

Видео:ФОТОСИНТЕЗ ЗА 4 МИНУТЫ||СВЕТОВАЯ/ТЕМНОВАЯ ФАЗЫСкачать

ФОТОСИНТЕЗ ЗА 4 МИНУТЫ||СВЕТОВАЯ/ТЕМНОВАЯ ФАЗЫ

С3-фотосинтез

Суммарное уравнение световой фазы и темновой фазы

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Видео:Темновая фаза фотосинтеза. 11 класс.Скачать

Темновая фаза фотосинтеза. 11 класс.

Фотодыхание

Суммарное уравнение световой фазы и темновой фазы

Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

Видео:Фотосинтез за 6 минут (даже меньше)Скачать

Фотосинтез за 6 минут (даже меньше)

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

Суммарное уравнение световой фазы и темновой фазы Суммарное уравнение световой фазы и темновой фазы

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

Видео:ЦТ А6 Фотосинтез. Световая и темновая фазыСкачать

ЦТ А6 Фотосинтез. Световая и темновая фазы

Значение фотосинтеза

Купить проверочные работы
и тесты по биологии

Суммарное уравнение световой фазы и темновой фазы Суммарное уравнение световой фазы и темновой фазы

Суммарное уравнение световой фазы и темновой фазы Суммарное уравнение световой фазы и темновой фазы

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Видео:Фотосинтез за 10 минут | ЕГЭ по биологииСкачать

Фотосинтез за 10 минут | ЕГЭ по биологии

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+ ).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Смотреть оглавление (лекции №1-25)

Видео:15. Особенности темновой фазы фотосинтезаСкачать

15. Особенности темновой фазы фотосинтеза

Фотосинтез

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Суммарное уравнение световой фазы и темновой фазы

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Суммарное уравнение световой фазы и темновой фазы

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

Суммарное уравнение световой фазы и темновой фазы

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Суммарное уравнение световой фазы и темновой фазы

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

Образовавшиеся при фотолизе воды протоны (H + ) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Суммарное уравнение световой фазы и темновой фазы

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД + превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Суммарное уравнение световой фазы и темновой фазы

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Суммарное уравнение световой фазы и темновой фазы

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Суммарное уравнение световой фазы и темновой фазы

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

Суммарное уравнение световой фазы и темновой фазы

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S +4 O3) 2- —> (S +6 O4) 2-
  • Железобактерии — окисляют Fe +2 —>Fe +3
  • Водородные бактерии — окисляют H2 —> H +1 2O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Суммарное уравнение световой фазы и темновой фазы

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Видео:Светозависимая (световая) стадия фотосинтеза (видео 4)| Фотосинтез | БиологияСкачать

Светозависимая (световая) стадия фотосинтеза (видео 4)| Фотосинтез | Биология

Фотосинтез

Презентация к уроку

Задачи: Сформировать знания о реакциях пластического и энергетического обменов и их взаимосвязи; вспомнить особенности строения хлоропластов. Дать характеристику световой и темновой фазы фотосинтеза. Показать значение фотосинтеза как процесса, обеспечивающего синтез органических веществ, поглощение углекислого газа и выделение кислорода в атмосферу.

Тип урока: лекция.

Оборудование:

  1. Средства наглядности: таблицы по общей биологии;
  2. ТСО: компьютер; мультимедиапроектор.

План лекции:

  1. История изучения процесса.
  2. Эксперименты по фотосинтезу.
  3. Фотосинтез, как анаболический процесс.
  4. Хлорофилл и его свойства.
  5. Фотосистемы.
  6. Световая фаза фотосинтеза.
  7. Темновая фаза фотосинтеза.
  8. Лимитирующие факторы фотосинтеза.

Видео:Фотосинтез от А до Я | Биология ЕГЭ 2023 | УмскулСкачать

Фотосинтез от А до Я | Биология ЕГЭ 2023 | Умскул

Ход лекции

История изучения фотосинтеза

1630 год начало изучения фотосинтеза. Ван Гельмонт доказал, что растения образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей и ивой, и отдельно само дерево, он показал, что через 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Он решил, что пищу дерево получает из воды. В настоящее время мы знаем, что используется углекислый газ.

В 1804 году Соссюр установил, что в процессе фотосинтеза велико значение воды.

В 1887 году открыты хемосинтезирующие бактерии.

В 1905 году Блэкман установил, что фотосинтез состоит из двух фаз: быстрой – световой и ряда последовательных медленных реакций темновой фазы.

Эксперименты по фотосинтезу

3 опыт доказывает значение фотосинтеза (рис.3.)

Суммарное уравнение световой фазы и темновой фазыСуммарное уравнение световой фазы и темновой фазы

Фотосинтез, как анаболический процесс

  1. Ежегодно в результате фотосинтеза образуется 150 млрд. тонн органического вещества и 200 млрд. тонн свободного кислорода.
  2. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез. Поддерживает современный состав атмосферы, необходимый для существования современных форм жизни.
  3. Фотосинтез препятствует увеличению концентрации углекислого газа, предотвращая перегрев Земли вследствие парникового эффекта.
  4. Фотосинтез – основа всех цепей питания на Земле.
  5. Запасенная в продуктах энергия – основной источник энергии для человечества.

Сущность фотосинтеза заключается в превращении световой энергии солнечного луча в химическую энергию в виде АТФ и НАДФ·Н2.

Суммарное уравнение фотосинтеза:

Существует два главных типа фотосинтеза:

1 опыт доказывает значение солнечного света (рис. 1.)2 опыт доказывает значение углекислого газа для фотосинтеза (рис. 2.)
Суммарное уравнение световой фазы и темновой фазыСуммарное уравнение световой фазы и темновой фазы
анаэробныйаэробный
Характерен для фотосинтезирующих бактерий (подцарство Настоящие бактерии). Фотосинтезирующим пигментом у них является бактериохлорофилл. Кислород не выделяется.Характерен для всех оксифотобактерий и зеленых растений. Фотосинтез в растениях осуществляется в хлоропластах содержащих хлорофилл. Кислород выделяется.

Хлорофилл и его свойства

Суммарное уравнение световой фазы и темновой фазы
Рис.4. Структурная формула хлорофилла а
Молекула хлорофилла имеет эмпирическую формулу: С55Н72О5N4Мg. Атомы С, Н, О, N соединены в сложное порфириновое кольцо. Хлорофилл близок по строению к гемоглобину крови, только в гемме в центре молекулы атом Fe, а в хлорофилле атом Мg, связанный с одним или четырьмя атомами азота. Молекула хлорофилла имеет длинный «хвост» — остаток спирта фитола, который содержит цепь из 20 углеродных атомов.

Виды хлорофилла

Хлорофилл имеет модификации а, в, с, d. Отличаются они структурным строением и спектром поглощения света. Например: хлорофилл в содержит на один атом кислорода больше и на два атома водорода меньше, чем хлорофилл а.

Все растения и оксифотобактерии имеют как основной пигмент желто-зеленый хлорофилл а, а как дополнительный хлорофилл в.

Другие пигменты растений

Некоторые другие пигменты способны поглощать солнечную энергию и передавать ее в хлорофилл, вовлекая ее тем самым в фотосинтез.

У большинства растений есть темно оранжевый пигмент – каротин, который в животном организме превращается в витамин А и желтый пигмент – ксантофилл.

Фикоцианин и фикоэритрин – содержат красные и сине-зеленые водоросли. У красных водорослей эти пигменты принимают более активное участие в процессе фотосинтеза, чем хлорофилл.

Хлорофилл минимально поглощает свет в сине-зеленой части спектра. Хлорофилл а, в- в фиолетовой области спектра, где длина волны 440 нм. Уникальная функция хлорофилла состоит в том, что он интенсивно поглощает солнечную энергию и передает ее другим молекулам.

Пигменты поглощают определенную длину волны, не поглощенные участки солнечного спектра отражаются, что обеспечивает окраску пигмента. Зеленый свет не поглощается, поэтому хлорофилл зеленый.

Пигменты – это химические соединения, которые поглощают видимый свет, что приводит электроны в возбужденное состояние. Чем меньше длина волны, тем больше энергия света и больше его способность переводить электроны в возбужденное состояние. Это состояние неустойчиво и вскоре вся молекула возвращается в свое обычное низкоэнергетическое состояние теряя при этом энергию возбуждения. Эта энергия может быть использована на флуоресценцию.

Фотосистемы

Пигменты растений участвующие в фотосинтезе «упакованы» в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц – фотосинтетических систем: фотосистемы I и фотосистемы II.

Каждая система состоит из набора вспомогательных пигментов (от 250 до 400 молекул), передающих энергию на одну молекулу главного пигмента и она называется реакционным центром. В нем энергия Солнца используется для фотохимических реакций.

Суммарное уравнение световой фазы и темновой фазы
Рис.5. Фотосистемы
Фотосистема I имеет более мелкие частицы, чем фотосистема II. Частицы фотосистемы II связаны с гранами.
Энергия захватывается как бы в ловушку со вспомогательных (антенных) пигментов на главный. Это может быть хлорофилл а – Р690 или Р700 (Р – пигмент, а 690-700 – максимально поглощенная длина волны в нм). Р690 и Р700 – энергетические ловушки

Суммарное уравнение световой фазы и темновой фазыСуммарное уравнение световой фазы и темновой фазы

Фотосинтез
Световая фаза
Фотофизический этап
Световая фаза
Фотохимический этап
Темновая фаза или
цикл Кальвина
Поглощение квантов света пигментами, идет возбуждение электронов в этих молекулах и передача возбуждения от одной молекулы к другой.Преобразование энергии света в энергию химических связей АТФ и НАДФ.Н2. Идет в фотосинтетических мембранах.Идет за счет энергии, которая образовалась в световой фазе. Суть процесса: включение углекислого газа в образование органических веществ.

Световая фаза идет обязательно с участием света, темновая фаза и на свету и в темноте. Световой процесс происходит в тилакоидах хлоропластов, темновой – в строме, т.е. эти процессы пространственно разобщены.

Световая фаза фотосинтеза

В 1958 году Арнон и его сотрудники изучили световую фазу фотосинтеза. Они установили, что источником энергии при фотосинтезе является свет, а так как на свету в хлорофилле происходит синтез из АДФ+Ф.к. → АТФ, то этот процесс называется фосфорилированием. Оно сопряжено с переносом электронов в мембранах.

Роль световых реакций: 1. Синтез АТФ – фосфорилирование. 2. Синтез НАДФ.Н2.

Путь переноса электронов называется Z-схемой.

Z-схема. Нециклическое и циклическое фотофосфорилирование (рис. 6.)

Суммарное уравнение световой фазы и темновой фазы

Начало процесса. Поглощение квантов света. Квант света попадает на ФС II, находящуюся в мембранах тилакоидов гран и приводит к возбуждению пигментов – это возбуждение передается от одной молекулы антенного пигмента к другой вплоть до реакционного центра. Все электроны собираются вокруг ловушки и отдают энергию виде электронов в электроннотранспортную цепь. Электрон, поглотив фотон, отрывается от молекулы хлорофилла и переходит на более высокий энергетический уровень присоединяясь к молекулам-переносчикам. Затем он двигается по электроннотранспортной цепи переходя от одного переносчика к другому (от пластохинона к пластоцианину) постепенно растрачивая энергию. Часть этой энергии растрачивается на синтез АТФ.

Нециклическое фотофосфорилирование. Растратив энергию электрон достигает ФСI, где он опять поглощает фотон и снова поднимается еще на более высокий энергетический уровень, и пройдя через несколько переносчиков (ферредоксин) передается конечному акцептору цепи НАДФ + , который расположен на внешней стороне мембраны тилакоида.

Фоторазложение или фотолиз воды. Поглотив фотон электроны отрываются от молекул хлорофилла реакционного центра ФС II и через ФС I переходят к НАДФ+. Пока на место ушедшего электрона в ФС II не встанет другой, она не сможет функционировать. Место ушедших электронов занимают электроны воды, которая находится во внутреннем пространстве тилакоида. При этом происходит светозависимое разложение воды или фотолиз («фото» — свет): Н2О →2 Н+ 2е + ½ О2. При фотолизе вода распадается на протоны, электроны и кислород. Процесс происходит с участием ферментов локализованных на внутренней мембране тилакоидов. Образовавшийся кислород выделяется в окружающую среду. Протоны накапливаются во внутреннем пространстве тилакоидов, образуя резервуар протонов. Таки образом при нециклическом потоке электронов от ФС II к НАДФ + в конечном счете транспортируются электроны воды.

Процесс химио-осмоса.

Суммарное уравнение световой фазы и темновой фазы
Рис.7. Процесс фотосинтеза

  • Свет, попадая на молекулы хлорофилла, которые находятся в мембранах тилакоидов гран, приводит их в возбужденное состояние. В результате этого электроны сходят со своих орбит и переносятся с помощью переносчиков за пределы мембраны тилакоида, где накапливаются, создавая отрицательно заряженное электрическое поле.
  • Протоны, образовавшиеся при фотолизе, не проникают через мембрану тилакоида и накапливаются внутри, образуя положительно заряженное электрическое поле, что приводит к увеличению разности потенциалов по обе стороны мембраны.
  • При достижении критической разности потенциалов, протоны могут выходить в строму по протонному каналу. С каналами связаны ферменты АТФ-синтетазы, которые используют энергию протонов на синтез АТФ. На каждые три протона, которые проходят через канал, синтезируется одна молекула АТФ. Большая часть АТФ при фотосинтезе образуется этим путем.
  • Протоны, вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ + .

Циклический поток электронов. ФС I может работать независимо от ФСII. Под действием света, электрон выбивается из молекулы хлорофилла реакционного центра ФС I, передается к тому же акцептору, что и при нециклическом потоке, но далее идет не к НАДФ + , а по обходному пути возвращается на тоже место в ФС I. Поглощенная электроном энергия используется на синтез АТФ. Таким образом электрон двигается по кольцу. Это циклический поток.

В ходе циклического транспорта электронов не происходит образования НАДФ.Н2 и фоторазложения Н2О, следовательно и выделение О2. Этот путь используется тогда, когда в клетке избыток НАДФ.Н2, но требуется дополнительная АТФ.

Все эти процессы относятся к световой фазе фотосинтеза. В дальнейшем энергия АТФ и НАДФ.Н2 используется для синтеза глюкозы. Для этого процесса свет не нужен. Это реакции темновой фазы фотосинтеза.

Темновая фаза фотосинтеза или цикл Кальвина

Синтез глюкозы происходит в ходе циклического процесса, который получил название по имени ученого Мельвина Кальвина, открывшего его, и награжденного Нобелевской премией.

Суммарное уравнение световой фазы и темновой фазы
Рис. 8. Цикл Кальвина

Каждая реакция цикла Кальвина осуществляется своим ферментом. Для образования глюкозы используются: СО2, протоны и электроны от НАДФ.Н2, энергия АТФ и НАДФ.Н2. Происходит процесс в строме хлоропласта. Исходным и конечным соединением цикла Кальвина, к которому с помощью фермента рибулозодифосфаткарбоксилазы присоединяется СО2, является пятиуглеродный сахар – рибулозобифосфат, содержащий две фосфатные группы. В результате образуется шестиуглеродное соединение, сразу же распадающееся на две трехуглеродные молекулы фосфоглицериновой кислоты, которые затем восстанавливаются до фосфоглицеринового альдегида. При этом, часть образовавшегося фосфоглицеринового альдегида используется для регенерации рибулозобифосфата, и, таким образом, цикл возобновляется снова (5С3 → 3С5), а часть используется для синтеза глюкозы и других органических соединений (2С3 → С6 → С6Н12О6).

Для образования одной молекулы глюкозы необходимо 6 оборотов цикла и требуется 12НАДФ.Н2 и 18 АТФ. Из суммарного уравнения реакции получается:

Из приведенного уравнения видно, что атомы С и О вошли в глюкозу из СО2, а атомы водорода из Н2О. Глюкоза в дальнейшем может быть использована как на синтез сложных углеводов (целлюлозы, крахмала), так и на образование белков и липидов.

4 – фотосинтез. В 1965 году было доказано, что у сахарного тростника – первыми продуктами фотосинтеза, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная, аспарагиновая). К С4 растениям принадлежат кукуруза, сорго, просо).

Лимитирующие факторы фотосинтеза

Скорость фотосинтеза – наиболее важный фактор влияющий на урожайность с/х культур. Так, для темновых фаз фотосинтеза нужны НАДФ.Н2 и АТФ, и поэтому скорость темновых реакций зависит от световых реакций. При слабой освещенности скорость образования органических веществ будет мала. Поэтому свет – лимитирующий фактор.

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году. Разные факторы могут быть лимитными, но один из них главный.

    При низкой освещенности скорость фотосинтеза прямопропорциональна интенсивности света. Свет – лимитирующий фактор при низкой освещенности. При большой интенсивности света происходит обесцвечивание хлорофилла и фотосинтез замедляется. В таких условиях в природе растения обычно защищены (толстая кутикула, опушенные листья, чешуйки).

Суммарное уравнение световой фазы и темновой фазы

  • Для темновых реакций фотосинтеза необходим углекислый газ, который включается в органические вещества, в полевых условиях является лимитирующим фактором. Концентрация СО2 варьирует в атмосфере в пределах от 0,03–0,04%, но если повысить ее, то можно увеличить скорость фотосинтеза. Некоторые тепличные культуры сейчас выращиваются при повышенном содержании СО2.
  • Температурный фактор. Темновые и некоторые световые реакции фотосинтеза контролируются ферментами, а их действие зависит от температуры. Оптимальная температура для растений умеренного пояса составляет 25 °С. При каждом повышении температуры на 10 °С (вплоть до 35 °С) скорость реакций удваивается, но из-за влияния ряда иных факторов растения лучше растут при 25 °С.
  • Вода – исходное вещество для фотосинтеза. Недостаток воды влияет на многие процессы в клетках. Но даже временное увядание приводит к серьезным потерям урожая. Причины: при увядании устьица растений закрываются, а это мешает свободному доступу СО2 для фотосинтеза; при нехватке воды в листьях некоторых растений накапливается абсцизовая кислота. Это гормон растений – ингибитор роста. В лабораторных условиях ее используют для изучения торможения ростового процесса.
  • Концентрация хлорофилла. Количество хлорофилла может уменьшаться при заболеваниях мучнистой росой, ржавчиной, вирусными болезнями, недостатком минеральных веществ и возрастом (при нормальном старении). При пожелтении листьев наблюдаются хлоротичные явления или хлороз. Причиной может быть недостаток минеральных веществ. Для синтеза хлорофилла нужны Fe, Mg, N и К.
  • Кислород. Высокая концентрация кислорода в атмосфере (21%) ингибирует фотосинтез. Кислород конкурирует с углекислым газом за активный центр фермента, участвующего в фиксации СО2, что снижает скорость фотосинтеза.
  • Специфические ингибиторы. Лучший способ погубить растение – это подавить фотосинтез. Для этого ученые разработали ингибиторы – гербициды – диоксины. Например: ДХММ – дихлорфенилдиметилмочевина – подавляет световые реакции фотосинтеза. Успешно используют для изучения световых реакций фотосинтеза.
  • Загрязнение окружающей среды. Газы промышленного происхождения, озон и сернистый газ, даже в малых концентрациях сильно повреждают листья у ряда растений. К сернистому газу очень чувствительны лишайники. Поэтому существует метод лихеноиндикации – определение загрязнения окружающей среды по лишайникам. Сажа забивает устьица и уменьшает прозрачность листовой эпидермы, что снижает скорость фотосинтеза.
  • Космическая роль растений (описана К. А. Тимирязевым) заключается в том, что растения – единственные организмы, усваивающие солнечную энергию и аккумулирующие ее в виде потенциальной химической энергии органических соединений. Выделяющийся О2 поддерживает жизнедеятельность всех аэробных организмов. Из кислорода образуется озон, который защищает все живое от ультрафиолетовых лучей. Растения использовали из атмосферы громадное количество СО2, избыток которого создавал «парниковый эффект», и температура планеты понизилась до нынешних значений.

    🔍 Видео

    Фотосинтез: вся тема просто и понятно | Биология ЕГЭСкачать

    Фотосинтез: вся тема просто и понятно | Биология ЕГЭ

    2.53. Реакции темновой фазы фотосинтеза | Цитология к ЕГЭ | Георгий МишуровскийСкачать

    2.53. Реакции темновой фазы фотосинтеза | Цитология к ЕГЭ | Георгий Мишуровский

    14. Результаты темновой фазы фотосинтезаСкачать

    14. Результаты темновой фазы фотосинтеза

    Фотосинтез: цикл Кальвина (видео 5)| Фотосинтез | БиологияСкачать

    Фотосинтез: цикл Кальвина (видео 5)| Фотосинтез | Биология

    Биология 9 класс (Урок№11 - Фотосинтез.)Скачать

    Биология 9 класс (Урок№11 - Фотосинтез.)

    Тема: Световая фаза фотосинтеза. Преподаватель: Кравченко Т.Н.Скачать

    Тема: Световая фаза фотосинтеза. Преподаватель: Кравченко Т.Н.

    Обзор светозависимых реакций в фотосинтезе (видео 3)| Фотосинтез | БиологияСкачать

    Обзор светозависимых реакций в фотосинтезе (видео 3)| Фотосинтез | Биология

    Темновая фаза фотосинтезаСкачать

    Темновая фаза фотосинтеза
    Поделиться или сохранить к себе: