Молекулы, так как на синтез 3 молекул стеариновой кислоты требуется 24 АТФ, а при окислении 1 ацетил-коА образуется 12 АТФ.
Читайте также:
N—Н-Кислоты
P.S. Не забывайте что к комплектам нужны коннекторы, провода (а их цена от 150 рублей за метр до 500 рублей за метр), грозозащита если требуется, и прочее что может понадобиться.
А который не знал, и сделал достойное наказания, бит будет меньше. И от всякого, кому дано много, много и потребуется, и кому много вверено, с того больше взыщут.
А24. Атом кислорода в молекуле фенола образует
Биосинтез гликогена и крахмала
Будущее молекулярной нанотехнологии
В легких после удаления СО2 (угольной кислоты) происходит защелачивание крови.
В отличие от почек, которые выводят с мочой из организма преимущественно нейтральные соли, кожа способна выводить сами кислоты.
В приведенном примере нарушение синтезов пространственного гнозиса и обусловливает ряд следствий, что можно представить схематично.
Важность соляной кислоты желудочного сока
)1) Для стеариновой кислоты суммарное уравнение ее b-окисления имеет вид:Расчеты показывают, что при окислении стеариновой кислоты в клетке будет синтезироваться 148 молекул АТФ. При расчете энергетического баланса окисления из этого количества нужно исключить 2 макроэргических эквивалента, затрачиваемых при активации жирной кислоты ( в ходе активации АТФ расщепляется до АМФ и 2 Н3РО4). Таким образом, при окислении стеариновой кислоты клетка получит 146 молекул АТФ.Для сравнения: при окислении 3 молекул глюкозы, содержащих также 18 атомов углерода, клетка получает только 114 молекул АТФ, т.е. высшие жирные кислоты являются более выгодным энергетическим топливом для клеток по сравнению с моносахаридами. По-видимому, это обстоятельство является одной из главных причин того, что энергетические резервы организма представлены преимущественно в виде триацилглицеринов, а не гликогена.
2) 1. Затраты энергии на синтез моносахаридов. Как следует из приведенных
схем (рис. 1 и 2), один моль АТФ (или ее эквивалента) используется при
образовании глюкозо-6-фосфата и один – при образовании
нуклеозиддифосфатсахаридов (например, глюкозо-1-фосфат УДФ-глюкоза
или маннозо-1-фосфат ГДФ-манноза и т.д.). Кроме того, одна
макроэргическая связь расходуется для присоединения повторяющегося звена к
молекуле ЭПС (т.е. при полимеризации ЭПС) [14]. В состав звена АП входят 7
остатки семи нейтральных моносахаридов и остаток глюкуроновой кислоты. Для
их синтеза необходимо 8 молей глюкозы. Энергозатраты на синтез из глюкозы
одного моносахарида, входящего в состав звена АП, составляют 2 моля АТФ.
Общий расход АТФ на синтез моносахаридов, входящих в состав
повторяющегося звена АП, и присоединение этого звена к молекуле ЭПС
составляет 8х2+1=17 молей АТФ (как при гликолитическом, так и при КДФГ-
пути катаболизма глюкозы).
2. Затраты энергии на синтез жирных кислот из ацетил-КоА. Синтез
жирных кислот осуществляется следующим образом [1]: из ацетил-КоА и СО2
посредством АТФ-зависимой реакции образуется малонил-КоА и далее в
результате трех последующих реакций образуется бутирил-КоА. Образовавшийся
бутирил-КоА взаимодействует со следующей молекулой малонил-КоА, и процесс
повторяется до образования СН3-(СН2)4-СО-SКоА. В следующем цикле в качестве
конечного продукта образуется СН3-(СН2)6-СО-SКоА. Таким образом, путем
последовательного наращивания ацил-КоА на двууглеродный фрагмент
(посредством взаимодействия с малонил-КоА и последущей потери СО2)
синтезируются высшие жирные кислоты в виде соответствующих ацил-КоА.
Следовательно, для синтеза лауриновой кислоты (С12) необходимо 5 циклов, для
образования пальмитиновой (С16) – 7 циклов. В одном цикле расходуется 1 моль
АТФ. Таким образом, энергозатраты на синтез жирных кислот, входящих в
состав повторяющегося звена АП, составят 5+7=12 моль АТФ (как при
гликолитическом, так и при КДФГ-пути катаболизма глюкозы).
Генерация энергии при синтезе этаполана из глюкозы. Энергия
генерируется при синтезе ПВК, глюкуроновой кислоты и ацетил-КоА
(предшественника жирных кислот).
1. Синтез ПВК. Суммарную реакцию образования ПВК из глюкозы можно
Энергия, освобождаемая при окислении ацетил-КоА, запасается в виде одной молекулы ГТФ (которая может превращаться в АТФ) и 4-х молекул восстановительных эквивалентов (3 молекулы НАДН и одна ФАДН2), которые могут или использоваться в различных процессах биосинтеза, или окисляться. Дальнейшее их окисление происходит в дыхательной цепи митохондрий, которая локализована во внутренней митохондриальной мембране. При окислении НАДН в дыхательной цепи митохондрий происходит отрыв от него электронов, и их перенос на молекулу кислорода. У аэробных бактерий дыхательная цепь расположена в специальных структурах плазматической мембраны – мезосомах, и в общих чертах напоминает дыхательную цепь митохондрий.
Дата добавления: 2015-09-11 ; просмотров: 21 | Нарушение авторских прав
В настоящее время в достаточной степени изучен механизм биосинтеза жирных кислот в организме животных и человека, а также катализирующие этот процесс ферментные системы. Синтез жирных кислот протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот. Установлено, что в цитоплазме печеночных клеток синтезируется пальмитиновая кислота (16 углеродных атомов), а в митохондриях этих клеток из уже синтезированной в цитоплазме клетки пальмитиновой кислоты или из жирных кислот экзогенного происхождения, т.е. поступающих из кишечника, образуются жирные кислоты, содержащие 18, 20 и 22 углеродных атома.
Иными словами, митохондриальная система биосинтеза жирных кислот, включающая несколько модифицированную последовательность реакций β-окисления, осуществляет только удлинение существующих в организме среднецепочечных жирных кислот, в то время как полный биосинтез пальмитиновой кислоты из ацетил-КоА активно протекает в цитозоле, т.е. вне митохондрий, по совершенно другому пути.
Внемитохондриальная система биосинтеза de novo жирных кислот (ли-погенез). Эта система находится в растворимой (цитозольной) фракции клеток многих органов, в частности печени, почек, мозга, легких, молочной железы, а также в жировой ткани. Биосинтез жирных кислот протекает с участием НАДФН, АТФ, Мn 2+ и НСО3 – (в качестве источника СО2); субстратом является ацетил-КоА, конечным продуктом – пальмитиновая кислота. Потребности в кофакторах процессов биосинтеза и β-окисления жирных кислот значительно различаются.
Как отмечалось, строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который в основном поступает из митохондрий. Было выявлено, что цитрат стимулирует синтез жирных кислот в цитозоле клетки. Известно также, что образующийся в митохондриях в процессе окислительного декарбоксилирования пирувата и окисления жирных кислот ацетил-КоА не может диффундировать в цитозоль клетки, так как митохондриальная мембрана непроницаема для данного субстрата. Поэтому вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.
В цитозоле цитрат реагирует с HS-KoA и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитратлиазой. Уже в цитозоле оксалоацетат при участии цитозольной малатдегидрогеназы восстанавливается до малата. Последний при помощи дикарбокси-латтранспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата, завершая тем самым так называемый челночный цикл:
Существует еще один путь переноса внутримитохондриального аце-тил-КоА в цитозоль клетки – с участием карнитина. Как отмечалось, кар-нитин играет роль переносчика ацильных групп из цитозоля в митохондрии при окислении жирных кислот. По-видимому, он может выполнять эту роль и в обратном процессе, т.е. в переносе ацильных радикалов, в том числе ацетильного радикала, из митохондрий в цитозоль клетки. Однако, когда речь идет о синтезе жирных кислот, данный путь переноса ацетил-КоА не является главным.
Образование малонил-КоА. Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуются бикарбонат, АТФ, ионы марганца. Катализирует эту реакцию фермент ацетил-КоА-карбоксилаза. Фермент содержит в качестве простетической группы биотин. Авидин – ингибитор биотина угнетает эту реакцию, как и синтез жирных кислот в целом.
Установлено, что ацетил-КоА-карбоксилаза состоит из переменного числа одинаковых субъединиц, каждая из которых содержит биотин, биотинкарбоксилазу, карбоксибиотинпереносящий белок, транскарбоксилазу, а также регуляторный ал-лостерический центр, т.е. представляет собой полиферментный комплекс.
Реакция протекает в два этапа: I – карбоксилирование биотина с участием АТФ и II – перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:
Малонил-КоА представляет собой первый специфический продукт биосинтеза жирных кислот. В присутствии соответствующей ферментной системы малонил-КоА быстро превращается в жирные кислоты.
Энзиматические системы, осуществляющие синтез жирных кислот, называются жирно-кислотными синтетазами. Они широко встречаются в природе и могут быть изолированы из различных одноклеточных организмов, растений и животных тканей.
Жирно-кислотные синтетазы делятся на 2 группы. К первой группе относятся полиэнзимные, не поддающиеся фракционированию комплексы с мол. м. порядка 500000, в которых все индивидуальные энзимы собраны в компактную структуру. В частности, в эту группу входят жирно-кислотные синтетазы животных тканей и дрожжей.
Вторая группа включает жирно-кислотные синтетазы, из которых отдельные энзимы могут быть выделены методами белкового фракционирования. Такие синтетазы встречаются у ряда микроорганизмов (в частности, у E.coli) и растений. Иными словами, в этих случаях все индивидуальные ферменты синтетазной системы находятся в виде автономных полипептидов.
Мультиферментный комплекс, называемый синтетазой (синтазой) жирных кислот, состоит из 6 ферментов, связанных с так называемым ацилпереносящим белком (АПБ). Этот белок относительно термостабилен, имеет две свободные HS-группы (цистеина и фосфопантетеинового остатка, присоединенного к ОН-группе серина) и вовлекается в процесс синтеза высших жирных кислот практически на всех его этапах. Мол. масса АПБ составляет около 10000. Данный белок в синтетазной системе выполняет роль КоА. Заметим, что в животных тканях не удалось обнаружить свободного АПБ, подобного микробному. Из печени выделен полиэнзимный комплекс, содержащий все энзимы, необходимые для синтеза жирных кислот. Энзимы комплекса настолько прочно связаны друг с другом, что все попытки изолировать их в индивидуальном виде не увенчались успехом. Приводим последовательность реакций, происходящих при синтезе жирных кислот:
Далее цикл реакций повторяется. Допустим, что идет синтез пальмитиновой кислоты (С16). В этом случае образованием бутирил-АПБ завершается лишь первый из 7 циклов, в каждом из которых началом является присоединение молекулы малонил-АПБ к карбоксильному концу растущей цепи жирной кислоты. При этом отщепляется дистальная карбоксильная группа малонил-АПБ в виде СО2. Например, образовавшийся в первом цикле бутирил-АПБ взаимодействует с малонил-АПБ:
Завершается синтез жирной кислоты отщеплением HS-АПБ от ацил-АПБ под влиянием фермента деацилазы. Например:
Суммарное уравнение синтеза пальмитиновой кислоты можно записать так:
Или, учитывая, что на образование одной молекулы малонил-КоА из ацетил-КоА расходуются одна молекула АТФ и одна молекула СО2, которая затем отщепляется, суммарное уравнение можно представить в следующем виде:
Основные этапы биосинтеза жирных кислот можно представить в виде схемы:
В общем виде синтез жирных кислот у кишечной палочки представлен на рис. 11.4. Последовательность и характер реакций в синтезе жирных кислот, начиная с образования β-кетоацил-АПБ (на рис. 11.4 – ацетоацетил-АПБ) и кончая завершением одного цикла удлинения цепи на два углеродных атома, являются как бы обратными реакциями окисления жирных кислот. На самом деле пути синтеза и окисления жирных кислот не пересекаются даже частично. Это становится очевидным, если принять во внимание некоторые особенности синтеза и окисления жирных кислот.
Рис. 11.4. Синтез пальмитиновой кислоты у кишечной палочки при участии одной молекулы ацетил-КоА и 7 молекул малонил-КоА. Подробно представлен первый цикл синтеза — образование бутирил-АПБ. Остальные 6 циклов аналогичны первому.
По сравнению с β-окислением биосинтез жирных кислот имеет ряд характерных особенностей: синтез жирных кислот в основном осуществляется в цитозоле клетки, а окисление – в митохондриях; участие в процессе биосинтеза жирных кислот малонил-КоА, который образуется путем связывания СО2 (в присутствии биотин-фермента и АТФ) с ацетил-КоА; на всех этапах синтеза жирных кислот принимает участие ацилпереносящий белок (HS-АПБ); при биосинтезе образуется D(–)-изомер 3-гидроксикис-лоты, а не L(+)-изомер, как это имеет место при β-окислении жирных кислот; необходимость для синтеза жирных кислот кофермента НАДФН. Последний в организме частично (на 50%) образуется в реакциях пен-тозофосфатного цикла, частично – в других реакциях, в частности в реакциях:
Образование ненасыщенных жирных кислот. Элонгация жирных кислот. В отличие от растительных тканей ткани животных обладают весьма ограниченной способностью превращать насыщенные жирные кислоты в ненасыщенные.
Установлено, что две наиболее распространенные мононенасыщенные жирные кислоты – пальмитоолеиновая и олеиновая – синтезируются из пальмитиновой и стеариновой кислот.
Эти превращения протекают в микросомах клеток печени и жировой ткани при участии молекулярного кислорода, восстановленной системы пиридиновых нуклеотидов и цитохрома b5. Превращению подвергаются только активированные формы пальмитиновой и стеариновой кислот. Ферменты, участвующие в этих превращениях, получили название деса-тураз.
Наряду с десатурацией жирных кислот (образование двойных связей) в микросомах происходит и их удлинение (элонгация), причем оба эти процесса могут сочетаться и повторяться. Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН. Энзиматическая система, катализирующая удлинение жирных кислот, получила название элонгазы. На схеме представлены пути превращения пальмитиновой кислоты в реакциях десатурации и элонгации.
Видео:Синтез жирных кислот и его регуляция. Влияние избыточного потребления углеводов на их синтезСкачать
Путь синтеза жирных кислот длиннее, чем их окисление
Биосинтез жирных кислот наиболее активно происходит в цитозоле клеток печени, кишечника, жировой ткани в состоянии покоя или после еды.
Условно можно выделить 4 этапа биосинтеза:
1. Образование ацетил-SКоА из глюкозы, других моносахаров или кетогенных аминокислот.
2. Перенос ацетил-SКоА из митохондрий в цитозоль :
может быть в комплексе с карнитином, подобно тому как переносятся внутрь митохондрии высшие жирные кислоты, но здесь транспорт идет в другом направлении,
обычно в составе лимонной кислоты , образующейся в первой реакции ЦТК.
Поступающий из митохондрий цитрат в цитозоле расщепляется АТФ-цитрат-лиазой до оксалоацетата и ацетил-SКоА.
Образование ацетил-SКоА из лимонной кислоты
Оксалоацетат в дальнейшем восстанавливается до малата, и последний либо переходит в митохондрии (малат-аспартатный челнок), либо декарбоксилируется в пируват малик-ферментом («яблочный» фермент).
3. Образование малонил-SКоА из ацетил-SКоА.
Карбоксилирование ацетил-SКоА катализируется ацетил-SКоА-карбоксилазой , мульферментным комплексом из трех ферментов.
Образование малонил-SКоА из ацетил-SКоА
4. Синтез пальмитиновой кислоты.
Осуществляется мультиферментным комплексом » синтаза жирных кислот » (синоним пальмитатсинтаза ) в состав которого входит 6 ферментов и ацил-переносящий белок (АПБ).
Ацил-переносящий белок включает производное пантотеновой кислоты – 6-фосфопантетеин (ФП), имеющий HS-группу, подобно HS-КоА. Один их ферментов комплекса, 3-кетоацил-синтаза, также имеет HS-группу в составе цистеина. Взаимодействие этих групп обусловливает начало и продолжение биосинтеза жирной кислоты, а именно пальмитиновой кислоты. Для реакций синтеза необходим НАДФН.
Активные группы синтазы жирных кислот
В первых двух трансферазных реакциях последовательно присоединяются малонил-SКоА к фосфопантетеину ацил-переносящего белка и ацетил-SКоА к цистеину 3-кетоацилсинтазы.
3-Кетоацилсинтаза катализирует третью реакцию – перенос ацетильной группы на С 2 малонила с отщеплением карбоксильной группы в виде CO2.
Далее 3-кетогруппа в реакциях восстановления ( 3-кетоацил-редуктаза ), дегидратации ( дегидратаза ) и опять восстановления (еноил-редуктаза ) превращается в метиленовую с образованием насыщенного ацила, связанного с фосфопантетеином.
Ацилтрансфераза переносит полученный ацил на цистеин 3-кетоацил-синтазы, к фосфопантетеину АПБ присоединяется малонил-SКоА и цикл повторяется 7 раз. В первом цикле синтеза получается 4-углеродная (масляная) кислота, во втором — 6-углеродная (капроновая), и так далее до образования остатка пальмитиновой кислоты C16. После этого пальмитиновая кислота отщепляется шестым ферментом комплекса тиоэстеразой .
Реакции синтеза жирных кислот
Удлинение цепи жирных кислот
Синтезированная пальмитиновая кислота при необходимости поступает в эндоплазматический ретикулум. Здесь с участием малонил-S-КоА и НАДФН цепь удлиняется до С18 или С20. Присоединение углеродов идет по карбоксильной группе (С 1 ).
Удлиняться могут и ненасыщенные жирные кислоты (олеиновая, линолевая, линоленовая) с образованием производных эйкозановой кислоты (С20). Но двойная связь животными клетками вводится не далее 9 атома углерода, поэтому ω3- и ω6-полиненасыщенные жирные кислоты синтезируются только из соответствующих предшественников. Например, арахидоновая кислота может образоваться в клетке только при наличии γ-линоленовой или линолевой кислот. При этом линолевая кислота (18:2, Δ9,12) дегидрируется до γ-линоленовой (18:3, Δ6,9,12) и удлиняется до эйкозотриеновой кислоты (20:3, Δ8,11,14), последняя далее вновь дегидрируется до арахидоновой кислоты (20:4, Δ5,8,11,14). Так формируются жирные кислоты ω6-ряда.
Для образования жирных кислот ω3-ряда, например, тимнодоновой, необходимо наличие α-линоленовой кислоты (18:3, Δ9,12,15), которая дегидрируется (18:4, Δ6,9,12,15), удлиняется (20:4, Δ8,11,14,17) и опять дегидрируется с получением тимнодоновой кислоты (20:5, Δ5,8,11,14,17).
📹 Видео
Биохимия | Бета-окисление жирных кислот: насыщенных, ненасыщенных, с нечетным количеством атомов ССкачать