Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера

В квантовой физике изменение состояния частицы описывается уравнением Шредингера

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.1)

где Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками– оператор Гамильтона – аналог классической функции Гамильтона

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

в которой Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамизаменены операторами импульса Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиx, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиy, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиz и координаты Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

х → Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками= х, y → Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками= y, z → Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками= z,

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

где Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками– гамильтониан системы.

Разделение переменных. Запишем Ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками,t) = ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками)θ(t), где ψ является функцией координат, а θ – функция времени. Если Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамине зависит от времени, тогда уравнение Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиψ = iћψ принимает вид θСтационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиψ = iћψθ или

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

θ(t) = exp(−iEt/ћ), Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) = Eψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) и Ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками,t) = ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками)exp(−iEt/ћ).

Уравнение Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) = Eψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиили Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Для трехмерной системы с массой m в поле с потенциалом U(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками):

−(ћ 2 /2m)Δψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) + U(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками)ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) = Eψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) = Eψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками).(4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками,t) = ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками)exp(−iEt/ћ)(4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками,t)|, то она

|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.5)

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками
Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx,(4.7)

где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0.(4.8)

kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиn = 1, 2, 3, …(4.9)

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,(4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиn = 1, 2, …
Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Одномерный гармонический осциллятор:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиEn = ћω0(n + 1/2), n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),(4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)(4.16)
Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиYlm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)
Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.

Решения уравнения

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

Собственные значения L 2 и Lz являются решением уравнений

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиzYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0s-состояние
l = 1p-состояние
l = 2d-состояние
l = 3f-состояние
l = 4g-состояние
l = 5h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Рис. 4.4 Возможные ориентации вектора Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамипри квантовом числе l = 2.

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.

Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамипо отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии орбитальным квантовым числом l:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2 = ћ 2 s(s + 1)(4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамина любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.

Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

Полный момент количества движения частицы или системы частиц Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиявляется векторной суммой орбитального Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии спинового Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамимоментов количества движения.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками= Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками+ Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками.

Квадрат полного момента имеет значение:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1. |l − s|

Проекция Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамина выделенную ось Jz также принимает дискретные значения:

Число значений проекции Jz равно 2j + 1. Если для Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиопределены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

nРадиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, jПолный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2 = ћ 2 j(j + 1).
L, lОрбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
mМагнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, sСпиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
szКвантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0.
P или πПространственная четность. Характеризует поведение системы при пространственной инверсии Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками→ — Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками(зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные.
IИзоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками
  • Потенциал типа гармонического осциллятора U = kr 2 ,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками→ —Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиэлектронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?

Видео:Урок 455. Уравнение ШрёдингераСкачать

Урок 455. Уравнение Шрёдингера

Уравнение Шредингера (общие свойства)

№1 Стационарное уравнение Шредингера имеет вид Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Это уравнение записано для….

Стационарное уравнение Шредингера в общем случае имеет вид

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, где Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамипотенциальная энергия микрочастицы. Для одномерного случая Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Кроме того, внутри потенциального ящика Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, а вне ящика частица находиться не может, т.к. его стенки бесконечно высоки. Поэтому данное уравнение Шредингера записано для частицы в одномерном ящике с бесконечно высокими стенками.

Линейного гармонического осциллятора

ü Частицы в одномерном потенциальном ящике с бесконечно высокими стенками

Частицы в трехмерном потенциальном ящике с бесконечно высокими стенками

Электрона в атоме водорода

Установите соответствия между квантовомеханическими задачами и уравнениями Шредингера для них.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Общий вид стационарного уравнения Шредингера имеет вид:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамипотенциальная энергия частицы,

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиоператор Лапласа. Для одновременного случая

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками.Выражение для потенциальной энергии гармонического осциллятора ,т.е частицы совершающей одномерное движение под действием квазиупругой силы Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиимеет вид U= Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками.

Значение потенциальной энергии электрона в потенциальном ящике с бесконечно высокими стенками U=0.Электрон в водородоподобном атоме обладаем потенциальной энергией Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиДля атома водородаZ=1 .

Таким образом, для электрона в одномерном потенциальном ящике ур-ие Шредингера имеет вид: Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

С помощью волновой функции ,являющейся решением уравнения Шредингера ,можно определить….

Варианты ответа: (Укажите не менее двух вариантов ответа)

Средние значения физических величин ,характеризующих частицу

Вероятность того,что частица находится в определенной области пространства

Величина Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиимеет смысл плотности вероятности(вероятности,отнесенной к единице объема),т.е определяет вероятность пребывания частицы в соответствующем месте пространства.Тогда вероятность W обнаружения частицы в определенной области пространства равна Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Уравнение Шредингера (конкретные ситуации)

№1Собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками имеют вид Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамигде Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиширина ящика, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиквантовое число, имеющее смысл номера энергетического уровня. Если Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамичисло узлов Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамифункции на отрезке Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, то Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиравно…

Число узлов Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, т.е. число точек, в которых волновая функция на отрезке Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиобращается в нуль, связано с номером Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиэнергетического уровня соотношением Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Тогда Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, и по условию это отношение равно 1,5. Решая полученное уравнение относительно Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, получаем, что Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Ядерные реакции.

№1В ядерной реакции Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамибуквой Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиобозначена частица …

Из законов сохранения массового числа и зарядового числа следует, что заряд частицы равен нулю, а массовое число равно 1. Следовательно, буквой Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиобозначен нейтрон.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиот времени.Постоянная радиоактивного распада в Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиравна …(ответ округлите до целых)

Число радиоактивных ядер изменяется со временем по закону Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками-начальное число ядер, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками-постоянная радиоактивного распада.Прологарифмировав это выражение,получим

ln Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками.Следовательно, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками=0,07 Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Законы сохранения в ядерных реакциях.

Реакция Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамине может идти из-за нарушения закона сохранения …

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии, импульса, момента импульса (спина) и всех зарядов (электрического Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, барионного Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии лептонного Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками). Эти законы сохранения не только ограничивают последствия различных взаимодействий, но определяют также все возможности этих последствий. Для выбора правильного ответа надо проверить, каким законом сохранения запрещена и какими разрешена приведенная реакция взаимопревращения элементарных частиц. Согласно закону сохранения лептонного заряда Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамив замкнутой системе при любых процессах, разность между числом лептонов и антилептонов сохраняется. Условились считать для лептонов: . Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамилептонный заряд Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиа для антилептонов: . Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамилептонный заряд Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю. Реакция Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамине может идти из-за нарушения закона сохранения лептонного заряда Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, т.к.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

ü Лептонного заряда

Спинового момента импульса

Реакция Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамине может идти из-за нарушения закона сохранения…

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии,импульса,момента импульса(спина)и всех зарядов(электрического Q,барионного B и лептонного L).Эти законы сохранения не только ограничивают последствия различных взаимодействий,но определяют также все возможности этих последствий. Согласно закону сохранения барионного заряда B,для всех процессов с участием барионов и антибарионов суммарный барионный зарад сохраняется. Барионам (нуклонам n,p и гиперонам)приписывается барионный заряд

B=-1,а всем остальным частицам барионный заряд-B=0.Реакция Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамине может идти из-за нарушения закона барионного заряда B,т.к (+1)+(+1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Варианты ответа: Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками,лептонного заряда,спинового момента импульса,электрического заряда.

Законом сохранения электрического заряда запрещены реакции…

Варианты ответа(не менее 2):

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

При взаимодействии элементарных частиц и их превращении в другие возможны только такие процессы,в которых выполняются законы сохранения,в частности закон сохранения электрического заряда:суммарный электрический заряд частиц,вступающих в реакцию,равен суммарному электрическому заряду частиц,полученных в результате реакции.Электрический заряд Q в единицах элементарного заряда равен:у нейтрона (n) Q=0,протона (P) Q=+1, электрона ( Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками)Q=-1,позитрона ( Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) Q=+1,электронного нейтрино и антинейтрино ( Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиQ=0, антипротона ( Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиQ=-1, мюонного нейтрино ( Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками)Q=0, мюона ( Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками) Q=-1.Закон сохранения электрического заряда не выполняется в реакциях:
Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

№1Известно четыре вида фундаментальных взаимодействий. В одном из них участниками являются все заряженные частицы, обладающие магнитным моментом, переносчиками –фотона. Этот вид взаимодействия характеризуется сравнительной интенсивностью Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, радиус его действия равен …

Все перечисленные характеристики соответствуют электромагнитному взаимодействию. Его радиус действия равен бесконечности.

ü Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Видео:Волновая функция (видео 5) | Квантовая физика | ФизикаСкачать

Волновая функция (видео 5) | Квантовая физика | Физика

Уравнение Шредингера (конкретные ситуации)

Задание 1

Стационарным уравнением Шредингера для частицы в одномерном ящике с бесконечно высокими стенками является уравнение…

Варианты ответов:

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

2 Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

4) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 2

Стационарным уравнением Шредингера для частицы в трёхмерном потенциальном ящике с бесконечно высокими стенками является уравнение …

Варианты ответов:

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

2) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

4) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 3

Стационарное уравнение Шредингера в общем случае имеет вид: Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, где U – потенциальная энергия микрочастицы. Линейному гармоническому осциллятору соответствует уравнение…

Варианты ответов:

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками; 2); Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками; 4) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 4

Стационарным уравнением Шредингера для электрона в водородоподобном ионе является уравнение…

Варианты ответов:

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

2) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

4) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 5

На рисунках приведены картины распределения плотности вероятности нахождения микрочастицы в потенциальной яме с бесконечно высокими стенками. Состоянию с квантовым числом n=2 соответствует распределение…

Варианты ответов:

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками4)● Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 6

На рисунке изображена плотность вероятности обнаружения микрочастицы на различных расстояниях от «стенок» ямы. Вероятность ее обнаружения в центре ямы равна…

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Варианты ответов:

Задание 7

Вероятность обнаружить электрон на участке (a,b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, где ω-плотность вероятности, определяемая Ψ-функцией. Если Ψ-функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиравна…

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Варианты ответов:

Задание 8

Вероятность обнаружить электрон на участке (a,b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, где ω-плотность вероятности, определяемая Ψ- функцией. Если Ψ-функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиравна…

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Варианты ответов:

1) 5/8; 2) 3/8; 3) 1/2; 4) 1/4

Задание 9

Вероятность обнаружить электрон на участке (a,b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, где ω — плотность вероятности, определяемая Ψ -функцией. Если Ψ -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиравна…

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Варианты ответов:

1) 3/8; 2) 1/2; 3) 5/8; 4) 1/4

Задание 10

Вероятность обнаружить электрон на участке (a,b) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле , Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, где ω – плотность вероятности, определяемая ψ – функцией. Если ψ – функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиравна…

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Варианты ответов:

Задание 11

Электрон находится в возбужденном состоянии (n=2) в одномерном потенциальном ящике шириной a c бесконечно высокими стенками. Плотность вероятности нахождения электрона максимальна в точках с координатами…

Варианты ответов:

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

2) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

4) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 12

Электрон находится в первой трети прямоугольного одномерного потенциального ящика с непроницаемыми стенками на втором энергетическом уровне. Вероятность найти электрон в центре этого потенциального ящика на этом же энергетическом уровне равна …

Варианты ответов:

Задание 13

Волновая функция частицы в потенциальной яме с бесконечно высокими стенками шириной L имеет вид: Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Величина импульса частицы в первом возбужденном состоянии (n=2) равна .

Варианты ответов:

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

2) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками4) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 14

Волновая функция частицы в потенциальной яме с бесконечно высокими стенками шириной L имеет вид: Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиЕсли величина импульса частицы равна Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамито частица находится на энергетическом уровне с номером .

Варианты ответов:

Задание 15

Волновая функция частицы в потенциальной яме Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамис бесконечно высокими стенками и шириной L имеет вид:. Если величина импульса частицы равна Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками, то длина волны де Бройля этой частицы равна…

Варианты ответов

1) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками2) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками3) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками4) 3L

Задание 16

В потенциальной яме бесконечной глубины находится электрон. Волновые функции

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамисхематически представлены на рисунке. Какие из этих состояний сохранятся, если ширина потенциальной ямы уменьшится вдвое?

д) нет верного ответа.

Задание 17

Электрон, имеющий кинетическую энергию Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии движущийся слева направо, встречает на пути в одном случае порог (П), а в другом – барьер (Б) высотой Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамив обоих случаях. С точки зрения классической и квантовой теории вероятность преодоления электроном порога Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии барьера Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамиразлична и зависит от соотношения Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Установите соответствие и заполните таблицу:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

а) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками; б) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками; в) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками; г) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками; д) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Соответствующий случайБуква
Классическая теория, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками
Классическая теория, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками
Квантовая теория, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками
Квантовая теория, Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками
Неверный ответ

Задание 18

Выберите правильный ответ для единиц измерения одномерной пси-функции (ψ=ψ(х))

б) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

в) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

г) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

д) нет верного ответа

Задание 19

В потенциальной яме с вертикальными стенками находится электрон. Его волновая функция изображена на рисунке. В этом случае глубина потенциальной ямы

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

б) бесконечна слева, конечна справа;

в) бесконечна справа, конечна слева;

д) нет верного ответа.

Задание 20

Физический смысл пси-функции в том, что

а) её модуль описывает движение частицы;

б) она показывает плотность вероятности нахождения частицы в окрестности данной точки пространства;

в) квадрат её модуля показывает плотность вероятности нахождения частицы в окрестности данной точки пространства;

г) куб её модуля показывает вероятность нахождения частицы в данной точке пространства;

д) нет верного ответа.

Задание 21

Электрон находится в потенциальной яме с бесконечно высокими стенками. Для некоторых состояний в середине ямы пси-функция электрона может иметь узел, т.е. y=0. Выберите правильное высказывание:

а) пси-функция не может иметь узлов в яме с бесконечными стенками;

б) пси-функция не может иметь узел в центре ямы;

в) номера состояний кратны двум;

г) номера состояний кратны трем.

Задание 22

Частица находится в прямоугольной одномерной потенциальной яме с бесконечно высокими стенками в состоянии с главным квантовым числом n .Чему равно количество узлов пси-функции внутри ямы, не учитывая узлов (y=0) на границах ямы?

д) нет верного ответа.

Задание 23

Выберите правильное продолжение высказывания. Для макроскопических тел, например пылинки в спичечном коробке, мы не замечаем квантования уровней энергии, потому, что

а) макроскопические тела не подчиняются законам квантовой механики;

б) уровни энергии макроскопических тел расположены настолько редко, что квантование энергии не заметно;

в) уровни энергии макроскопических тел расположены настолько часто, что квантование энергии не заметно;

г) эксперименты по обнаружению квантования энергии макроскопических тел не проводились.

Задание 24

В потенциальной яме бесконечной глубины находится электрон. Волновые функции схематически представлены на рисунке. Ширину ямы уменьшили в два раза. Во сколько раз изменится при этом минимальное значение кинетической энергии электрона?

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Задание 25

Частица находится в одномерной бесконечно глубокой потенциальной яме прямоугольной формы. Установите соответствие между графиком зависимости Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенкамии номером состояния Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Заполните таблицу:

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Номер состоянияСоответствующая буква

Задание 26

Условие нормировки пси-функции для частицы, находящейся в потенциальной яме с непроницаемыми стенками шириной l, заключается в том, что вероятность нахождения частицы внутри ямы равна:

г) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

д) нет верного ответа.

Задание 27

Выберите неверные утверждения

а) уравнение Шредингера описывает движение квантовой частицы;

б) уравнение Шредингера может быть получено уточнением законов Ньютона в классической механике;

в) квантовая теория настаивает на отказе от абсолютной определенности в задании начальных условий движения частицы;

г) в квантовой теории физический смысл имеет только вещественная часть комплексной волновой функции;

д) для макроскопических частиц предсказания квантовой и классической теории совпадают.

Задание 28

Частица находится в одномерной потенциальной яме прямоугольной формы с непроницаемыми стенками. Общее решение для стационарного уравнения Шрёдингера имеет вид:

а) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

б) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

в) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

г) Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками;

д) правильных решений не приведено.

Задание 29

На рисунках схематично изображены зависимости от координаты плотности вероятности обнаружения частицы. Установите соответствие между формой одномерной прямоугольной потенциальной ямы и рисунком и заполните таблицу.

Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками

Форма потенциальной ямыСоответствующая буква
Стенки ямы конечной высоты
Обе стенки конечной высоты, правая стенка выше
Обе стенки конечной высоты, левая стенка выше
Левая стенка конечной высоты, правая – бесконечной
Правая стенка конечной высоты, левая – бесконечной
Стенки ямы бесконечной высоты

Задание 30

Частица массы m находится в одномерной прямоугольной яме ширины l с непроницаемыми стенками в состоянии с пси-функцией Yn(x,t) и спектром энергии Стационарным уравнением шредингера для частицы в одномерном ящике с бесконечно высокими стенками. Чему равно количество узлов волновой функции внутри ямы в области 0 .

🔥 Видео

Урок 456. Движение микрообъекта в одномерной бесконечно глубокой потенциальной ямеСкачать

Урок 456. Движение микрообъекта в одномерной бесконечно глубокой потенциальной яме

Частица в одномерной потенциальной ямеСкачать

Частица в одномерной потенциальной яме

Квантовая механика 41 - Уравнение Шредингера. Гамильтониан.Скачать

Квантовая механика 41 - Уравнение Шредингера. Гамильтониан.

97. Микрочастица в потенциальной ямеСкачать

97. Микрочастица в потенциальной яме

Классические уравнения | одномерное стационарное уравнение Шрёдингера | беск. потенц. яма | 1Скачать

Классические уравнения | одномерное стационарное уравнение Шрёдингера | беск. потенц. яма | 1

Классические уравнения | одномерное стационарное уравнение Шрёдингера | беск. потенц. яма | 2Скачать

Классические уравнения | одномерное стационарное уравнение Шрёдингера | беск. потенц. яма | 2

Урок 454. Понятие о волновой функцииСкачать

Урок 454. Понятие о волновой функции

Доказательства виртуальности нашего мираСкачать

Доказательства виртуальности нашего мира

Параллельные миры, квантовая механика и кот [Veritasium]Скачать

Параллельные миры, квантовая механика и кот [Veritasium]

Классические уравнения | трёхмерное стационарное уравнение ШрёдингераСкачать

Классические уравнения | трёхмерное стационарное уравнение Шрёдингера

Квантовая механика 47 - Стационарное уравнение Шредингера. Гармонический осциллятор.Скачать

Квантовая механика 47 - Стационарное уравнение Шредингера. Гармонический осциллятор.

Квантовая физика для чайников!Скачать

Квантовая физика для чайников!

Семинар 7. Стационарное уравнение Шредингера. Состояния дискретного спектра. Потенциальные ямы.Скачать

Семинар 7. Стационарное уравнение Шредингера. Состояния дискретного спектра. Потенциальные ямы.

Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | НаучпопСкачать

Структура материи 6: уравнение Шрёдингера. Зачем нужна квантовая механика – Виталий Бейлин | Научпоп

Консультация по квантовой механике. Часть 5. "Волновая функция. Уравнение Шредингера"Скачать

Консультация по квантовой механике. Часть 5. "Волновая функция. Уравнение Шредингера"

Квантовая физика Л3. Волновая функция. Уравнение Шредингера. Потенциальный ящикСкачать

Квантовая физика Л3.  Волновая функция. Уравнение Шредингера. Потенциальный ящик

Классические уравнения | уравнение Шрёдингера (координатное представление) | простейший выводСкачать

Классические уравнения | уравнение Шрёдингера (координатное представление) | простейший вывод

Елютин П. В. - Квантовая теория I - Свойства решений стационарного уравнения ШредингераСкачать

Елютин П. В. -  Квантовая теория I -  Свойства решений стационарного уравнения Шредингера
Поделиться или сохранить к себе: