Стационарное состояние системы дифференциальных уравнений

Видео:Биоинформатика и математическое моделирование. Лекция 5Скачать

Биоинформатика и математическое моделирование. Лекция 5

Стационарное состояние системы дифференциальных уравнений

МОДЕЛИ БИОЛОГИЧЕСКИХ СИСТЕМ, ОПИСЫВАЕМЫЕ

ОДНИМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЕМ ПЕРВОГО ПОРЯДКА

Модели, приводящие к одному дифференциальному уравнению. Понятие решения одного автономного дифференциального уравнения. Стационарное состояние (состояние равновесия). Устойчивость состояния равновесия. Методы оценки устойчивости. Решение линейного дифференциального уравнения Примеры: экспоненциальный рост, логистический рост.

Изучение математических моделей биологических систем начнем с систем первого порядка, которым соответствует одно дифференциальное уравнение первого порядка:

Стационарное состояние системы дифференциальных уравнений

Если система автономная, то правая часть уравнений не зависит явно от времени и уравнение имеет вид:

Стационарное состояние системы дифференциальных уравнений (2.1)

Состояние таких систем в каждый момент времени характеризуется одной единственной величиной – значением переменной x в данный момент времени t.

Рассмотрим плоскость t, x. Решениями уравнения (2.1): x( t) являются кривые на плоскости t, x , называемые интегральными кривыми (рис. 2.1)

Пусть заданы начальные условия Стационарное состояние системы дифференциальных уравнений при t =0 или, иначе, пусть на плоскости t, x задана точка с координатами Стационарное состояние системы дифференциальных уравнений . Если для уравнения (2.1) выполнены условия теоремы Коши, то имеется единственное решение уравнения (2.1), удовлетворяющее этим начальным условиям, и через точку Стационарное состояние системы дифференциальных уравнений проходит одна единственная интегральная кривая x( t) .

Рис. 2.1. Интегральные кривые x ( t ); – решения уравнения f ( x ) = 0

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

Интегральные кривые уравнения (2.1) не могут пересекаться. Решения уравнения (2.1) не могут быть периодическими, они монотонны.

Поведение интегральных кривых на плоскости t, x можно установить, не решая в явном виде дифференциального уравнения (2.1), если известен характер движения изображающей точки на фазовой прямой.

Рассмотрим плоскость t, x , причем фазовую прямую совместим с осью x . Построим на плоскости t, x точку с абсциссой t и с ординатой, равной смещению изображающей точки по оси x в данный момент времени t. С течением времени в соответствии с уравнением (2.1) изображающая точка будет двигаться по фазовой прямой (рис. 2.2), а на плоскости t, x описывать некую кривую. Это будет интегральная кривая уравнения (2.1).

Решения одного автономного дифференциального уравнения либо уходят в бесконечность (чего не бывает в реальных системах), либо асимптотически приближаются к стационарному состоянию.

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

Стационарное состояние (точка покоя, особая точка, состояние равновесия)

В стационарном состоянии значения переменных в системе не меняются со временем. На языке дифференциальных уравнений это означает:

Стационарное состояние системы дифференциальных уравнений (2.2)

Если левая часть уравнения равна нулю, значит равна нулю и его правая часть:

Корни алгебраического уравнения (2.3): Стационарное состояние системы дифференциальных уравнений суть стационарные состояния дифференциального уравнения (2.1). На плоскости ( t, x) прямые Стационарное состояние системы дифференциальных уравнений – асимптоты, к которым приближаются интегральные кривые. На фазовой прямой (рис. 2.2) стационарное состояние Стационарное состояние системы дифференциальных уравнений – точка, к которой стремится величина x.

Реальные биологические системы испытывают многочисленные флуктуации, переменные при малых отклонениях возвращаются к своим стационарным значениям. Поэтому при построении модели важно знать, устойчивы ли стационарные состояния модели.

Рис. 2.3. К понятию устойчивости состояния равновесия

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

Устойчивость состояния равновесия

Каждый имеет интуитивное представление об устойчивости. На рис. 2.3. в обоих положениях (а и б) шарик находится в равновесии, т.к. сумма сил, действующих на него, равна нулю.

Попытайтесь ответить на вопрос : «Какое из этих состояний равновесия устойчиво?»

Скорее всего, Вы дали правильный ответ. Сказать, как Вы догадались? Вы дали шарику малое отклонение от состояния равновесия . В случае ( а) шарик вернулся. В случае ( б) покинул состояние равновесия навсегда.

Устойчивое состояние равновесия можно определить так: если при достаточно малом отклонении от положения равновесия система никогда не уйдет далеко от особой точки, то особая точка будет устойчивым состоянием равновесия, что соответствует устойчивому режиму функционирования системы.

Строгое математическое определение устойчивости состояния равновесия уравнения dx/dt = f( x) выглядит следующим образом :

Состояние равновесия устойчиво по Ляпунову, если задав сколь угодно малое положительное Стационарное состояние системы дифференциальных уравнений , всегда можно найти такое Стационарное состояние системы дифференциальных уравнений , что

Стационарное состояние системы дифференциальных уравнений для Стационарное состояние системы дифференциальных уравнений если Стационарное состояние системы дифференциальных уравнений .

Иначе говоря, для устойчивого состояния равновесия справедливо утверждение: если в момент времени Стационарное состояние системы дифференциальных уравнений отклонение от состояния равновесия мало ( Стационарное состояние системы дифференциальных уравнений ), то в любой последующий момент времени Стационарное состояние системы дифференциальных уравнений отклонение решения системы от состояния равновесия будет также мало: Стационарное состояние системы дифференциальных уравнений .

Другими словами: c тационарное состояние называется устойчивым, если малые отклонения не выводят систему слишком далеко из окрестности этого стационарного состояния. Пример — шарик в ямке (с трением или без трения).

Стационарное состояние называется асимптотически устойчивым, если малые отклонения от него со временем затухают. Пример — шарик в ямке в вязкой среде.

Стационарное состояние называется неустойчивым, если малые отклонения со временем увеличиваются. Пример: шарик на горке.

Устойчивое стационарное состояние представляет собой простейший тип аттрактора.

Аттрактором называется множество, к которому стремится изображающая точка системы с течением времени (притягивающее множество).

В нашем курсе мы рассмотрим следующие типы аттракторов:

· устойчивая точка покоя;

· предельный цикл — режим колебаний с постоянными периодом и амплитудой (начиная с размерности системы 2 );

· Области с квазистохастическим поведением траекторий в области аттрактора, например, «странный аттрактор» (начиная с размерности 3 ).

Аналитический метод исследования устойчивости стационарного состояния (метод Ляпунова). Линеаризация системы в окрестности стационарного состояния.

Метод Ляпунова приложим к широкому классу систем различной размерности, точечным системам, которые описываются обыкновенными дифференциальными уравнениями, и распределенным системам, описываемым уравнениями в частных производных, непрерывным и дискретным.

Рассмотрим метод линеаризации Ляпунова для одного автономного дифференциального уравнения первого порядка. Пусть Стационарное состояние системы дифференциальных уравнений — стационарное решение уравнения:

Стационарное состояние системы дифференциальных уравнений (2.1)

Пусть система, первоначально находившаяся в стационарном состоянии, отклонилась от него и перешла в близкую точку с координатой: Стационарное состояние системы дифференциальных уравнений , причем Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений .

Перейдем в уравнении (2.1) от переменной x к переменной Стационарное состояние системы дифференциальных уравнений , т.е. новой переменной будет отклонение системы от стационарного состояния.

Стационарное состояние системы дифференциальных уравнений.

Учтем, что Стационарное состояние системы дифференциальных уравнений по определению стационарного состояния.

Правую часть разложим в ряд Тейлора в точке Стационарное состояние системы дифференциальных уравнений :

Стационарное состояние системы дифференциальных уравнений

Стационарное состояние системы дифференциальных уравнений

где Стационарное состояние системы дифференциальных уравнений

Отбросим члены порядка 2 и выше. Останется линейное уравнение:

Стационарное состояние системы дифференциальных уравнений (2.4)

которое носит название линеаризованного уравнения или уравнения первого приближения. Интеграл этого уравнения для Стационарное состояние системы дифференциальных уравнений находится сразу:

Стационарное состояние системы дифференциальных уравнений , (2.5)

где Стационарное состояние системы дифференциальных уравнений , с — произвольная постоянная.

Если SYMBOL 108 f «Symbol» s 12 l SYMBOL 60 f «Symbol» s 12 0 , то при Стационарное состояние системы дифференциальных уравнений и, следовательно, первоначальное отклонение SYMBOL 120 f «Symbol» s 12 x от состояния равновесия со временем затухает. Это означает, по определению, что состояние равновесия устойчиво.

Если же SYMBOL 108 f «Symbol» s 12 l SYMBOL 62 f «Symbol» s 12 > 0 , то при Стационарное состояние системы дифференциальных уравнений , и исходное состояние равновесия неустойчиво.

Если SYMBOL 108 f «Symbol» s 12 l =0 , то уравнение первого приближения не может дать ответа на вопрос об устойчивости состояния равновесия системы. Необходимо рассматривать члены более высокого порядка в разложении в ряд Тейлора. Такие случаи мы рассмотрим в лекции 6.

Аналогичные рассуждения проводятся при рассмотрении устойчивости стационарных состояний более сложных динамических систем.

Итак, устойчивость стационарного состояния Стационарное состояние системы дифференциальных уравнений уравнения dx/dt=f(x) определяется знаком производной правой части в стационарной точке.

В случае одного уравнения вопрос об устойчивости состояния равновесия нетрудно решить, рассматривая график функции f(x).

По определению в стационарной точке правая часть уравнения (2.1) ‑ функция f(x) обращается в нуль.

Здесь возможны три случая (рис. 2.4 а, б, в).

1. Вблизи состояния равновесия функция f(x) меняет знак с плюса на минус при возрастании x (рис. 2.4 а).

Отклоним изображающую точку системы в сторону Стационарное состояние системы дифференциальных уравнений . В этой области скорость изменения x dx/dt = f(x) положительна. Следовательно, x увеличивается, т.е. возвращается к Стационарное состояние системы дифференциальных уравнений . При Стационарное состояние системы дифференциальных уравнений скорость изменения величины x уменьшается, т.к. функция f(x) SYMBOL 60 f «Symbol» s 12 0. Следовательно, здесь x уменьшается и опять стремится к Стационарное состояние системы дифференциальных уравнений . Таким образом, отклонения от стационарного состояния в обе стороны затухают. Стационарное состояние устойчиво.

Стационарное состояние системы дифференциальных уравнений

Рис. 2.4. Определение устойчивости стационарного состояния по графику функции f( x)

a – стационарное состояние Стационарное состояние системы дифференциальных уравнений устойчиво;

б, в ‑ стационарное состояние Стационарное состояние системы дифференциальных уравнений неустойчиво

2. Вблизи состояния равновесия функция f ( x) меняет знак с минуса на плюс при возрастании x ( рис. 2.4 б) .

Проведите рассуждения, аналогичные случаю 1. Поместите изображающую точку в область Стационарное состояние системы дифференциальных уравнений . Теперь в область Стационарное состояние системы дифференциальных уравнений .

В обоих случаях изображающая точка удаляется от состояния равновесия. Стационарное состояние неустойчиво.

3. Вблизи состояния равновесия функции f(x) не меняет знак ( рис 2.4 в) .

Поскольку Стационарное состояние системы дифференциальных уравнений , это означает, что изображающая точка, помещенная достаточно близко к состоянию равновесия с одной стороны, будет приближаться к нему, помещенная с другой стороны – удаляться.

Вопрос. Является ли состояние равновесия в случае 3 устойчивым?

Ответ. Нет. По определению устойчивости.

1. Рост колонии микроорганизмов

За время D t прирост численности равен:

где R – число родившихся и S – число умерших за время SYMBOL 68 f «Symbol» s 12 D t особей пропорциональные этому промежутку времени:

Стационарное состояние системы дифференциальных уравнений

В дискретной форме:

Стационарное состояние системы дифференциальных уравнений .

Разделив на SYMBOL 68 f «Symbol» s 12 D t и переходя к пределу при t SYMBOL 174 f «Symbol» s 12 ® 0 , получим дифференциальное уравнение

Стационарное состояние системы дифференциальных уравнений . (2.6)

В простейшем случае, когда рождаемость и смертность пропорциональны численности:

Стационарное состояние системы дифференциальных уравнений ,

Стационарное состояние системы дифференциальных уравнений (2.7)

Разделим переменные и проинтегрируем:

Стационарное состояние системы дифференциальных уравнений

Переходя от логарифмов к значениям переменной x и определяя произвольную постоянную С из начальных условий, получим экспоненциальную форму динамики роста.

Стационарное состояние системы дифференциальных уравнений(2.8)

График функции (2.8) при положительных (размножение) и отрицательных (вымирание) значениях константы скорости роста представлен на рис. 2.5. Роль этой модели в развитии математической биологии и экологии мы обсудим в Лекции 3.

Рис. 2.5. Экспоненциальная форма динамики роста численности колонии микроорганизмов в соответствии с системой уравнений (2.7)

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

2. Вещество переходит в раствор

Пусть количество вещества, переходящего в раствор, пропорционально интервалу времени и разности между максимально возможной концентрацией Р и концентрацией x в данный момент времени: Стационарное состояние системы дифференциальных уравнений .

В форме дифференциального уравнения этот закон выглядит в

Стационарное состояние системы дифференциальных уравнений . (2.9)

Разделим в этом уравнении переменные, и проинтегрируем:

Стационарное состояние системы дифференциальных уравнений (2.10)

Здесь C 1 — произвольная постоянная. Если x (0) = 0,

Стационарное состояние системы дифференциальных уравнений

График этой функции представлен на рис. 2.6. – он представляет собой кривую с насыщением.

Рис. 2.6. Концентрация вещества х в зависимости от времени. График уравнения 2.9.

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

Какие дифференциальные уравнения можно решать аналитически?

Лишь для ограниченных классов дифференциальных уравнений разработаны аналитические методы решения. Подробно они изучаются в курсах дифференциальных уравнений. Отметим основные из них/

1. Уравнения с разделяющимися переменными решаются в интегралах. К ним относятся оба приведенные выше примера.

2. Линейные дифференциальные уравнения (не обязательно автономные).

3. Некоторые специальные виды уравнений.

Решение линейного уравнения

Линейным дифференциальным уравнением 1-го порядка называют уравнение, линейное относительно искомой функции и ее производной. Оно имеет вид:

Стационарное состояние системы дифференциальных уравнений . (2.11)

Здесь A, B, C — заданные непрерывные функции от t.

Пусть в некотором интервале изменения t A SYMBOL 185 f «Symbol» s 12 _ 0 . Тогда на него можно разделить все члены уравнения. При этом получим:

Стационарное состояние системы дифференциальных уравнений . (2.12)

Eсли Q=0 , уравнение (2.12) называется однородным, если Q SYMBOL 185 f «Symbol» s 12 _ 0 – неоднородным.

Решим сначала однородное уравнение.

Стационарное состояние системы дифференциальных уравнений .

Общее решение линейного однородного уравнения имеет вид:

Стационарное состояние системы дифференциальных уравнений . (2.13)

Чтобы найти решение неоднородного уравнения применим метод вариации постоянной. Будем считать С неизвестной функцией t . Подставляя правую часть выражения (2.13) в уравнение (2.12), имеем:

Стационарное состояние системы дифференциальных уравнений

Теперь С находим интегрированием: Стационарное состояние системы дифференциальных уравнений . Здесь С1 – произвольная постоянная.

Итак, общее решение линейного неоднородного уравнения первого порядка:

Стационарное состояние системы дифференциальных уравнений (2.14)

Таким образом, решение уравнения (2.12) представляет собой сумму двух слагаемых:

1) общее решение однородного уравнения (2.13) и

2) частное решение неоднородного уравнения, которое получается из общего решения, если С1 = 0.

Рассмотрим еще один пример, который относится к классическим моделям математической экологии. Логистическое уравнение было предложено Ферхюльстом в 1838 г. Оно имеет вид:

Стационарное состояние системы дифференциальных уравнений . (2.15)

Это уравнение обладает двумя важными свойствами. При малых х численность х возрастает, при больших – приближается к определенному пределу К .

Уравнение (2.15) можно решить аналитически. Ход решения следующий. Произведем разделение переменных:

Стационарное состояние системы дифференциальных уравнений . (2.16)

Представим левую часть в виде суммы и проинтегрируем

Стационарное состояние системы дифференциальных уравнений

Переходя от логарифмов к переменным, получим:

Стационарное состояние системы дифференциальных уравнений (2.17)

Здесь С – произвольная постоянная, которая определяется начальным значением численности x0 :

Стационарное состояние системы дифференциальных уравнений ; Стационарное состояние системы дифференциальных уравнений .

Подставим это значение С в формулу (2.17):

Стационарное состояние системы дифференциальных уравнений .

Отсюда получим решение – зависимость численности от времени:

Стационарное состояние системы дифференциальных уравнений . (2.18)

График функции (2.18) при разных начальных значениях численности популяции представлен на рис. 2.7.

Рис.2.7. Динамика численности в логистической модели 2.18

при разных начальных значениях численности

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

Если начальное значение х0 К/2, кривая роста имеет точку перегиба. Если х0 > К, численность со временем убывает.

В приведенных примерах в правой части уравнений стоят полиномы первой и второй степени. Если в правой части ‑ более сложная нелинейная функция, алгебраическое уравнение для стационарных значений может иметь несколько корней. Какое из этих решений реализуется в этом случае, будет зависеть от начальных условий.

В дальнейшем мы, как правило, не будем искать аналитическое решение для наших моделей. Для более сложных нелинейных уравнений это и невозможно. Однако важные заключения относительно свойств моделей можно сделать и на основании качественного их исследования, в первую очередь путем исследования устойчивости стационарных состояний и типов поведения системы вблизи этих состояний. При этом следует иметь в виду, что с помощью одного автономного дифференциального уравнения могут быть описаны только монотонные изменения переменной, и, следовательно, ни периодические, ни хаотические процессы не могут быть описаны. Для описания более сложного поведения необходимо либо переходить к системам большей размерности (2, 3 порядка и выше), либо вводить время в явном виде в правую часть уравнения. В Лекции 3 мы увидим, что дискретные уравнения и уравнения с запаздыванием могут описать и колебания, и динамический хаос.

Видео:Устойчивость 1 ОпределениеСкачать

Устойчивость 1  Определение

ЛЕКЦИЯ 5

ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ СТАЦИОНАРНЫХ СОСТОЯНИЙ НЕЛИНЕЙНЫХ СИСТЕМ ВТОРОГО ПОРЯДКА

Метод Ляпунова линеаризации систем в окрестности стационарного состояния. Примеры исследования устойчивости стационарных состояний моделей биологических систем. Уравнения Лотки. Уравнения Вольтерра. Метод функции Ляпунова

Пусть биологическая система описывается системой двух автономных дифференциальных уравнений второго порядка общего вида:

Стационарное состояние системы дифференциальных уравнений (5.1)

Стационарные значения переменных системы определяются из алгебраических уравнений:

Стационарное состояние системы дифференциальных уравнений (5.2)

Стационарные состояния соответствуют особым точкам дифференциального уравнения первого порядка, определяющего интегральные кривые:

Стационарное состояние системы дифференциальных уравнений (5.3)

Математический анализ поведения траекторий этой системы на фазовой плоскости связан с именами французского математика Анри Пуанкаре и русского математика и механика Александра Михайловича Ляпунова (1857-1918).

Ляпунов показал, что в большом числе случаев анализ устойчивости стационарного состояния нелинейной системы можно заменить анализом устойчивости системы, линеаризованной в окрестности стационарного состояния.

Рассмотрим характер поведения переменных при некотором небольшом отклонении системы от состояния равновесия. Введем вместо переменных x, y новые независимые переменные x , h , определив их как смещения относительно равновесных значений переменных

Стационарное состояние системы дифференциальных уравнений (5.4)

Подставив эти выражения в (5.1), получим:

Стационарное состояние системы дифференциальных уравнений (5.5)

Стационарное состояние системы дифференциальных уравнений , так как Стационарное состояние системы дифференциальных уравнений — координаты особой точки.

Предположим, что функции P и Q непрерывны и имеют непрерывные производные не ниже первого порядка. Тогда мы можем разложить правые части уравнений (5.5) в ряд Тейлора по переменным x , h .

Стационарное состояние системы дифференциальных уравнений (5.6)

Стационарное состояние системы дифференциальных уравнений (5.7)

Учтем, что по определению особой точки

Стационарное состояние системы дифференциальных уравнений

и отбросим в уравнениях (5.6) нелинейные члены. Получим систему линейных уравнений с постоянными коэффициентами — систему первого приближения:

Стационарное состояние системы дифференциальных уравнений (5.8)

Решение этой системы было рассмотрено в Лекции 4. Оно определяется корнями характеристического уравнения системы:

Стационарное состояние системы дифференциальных уравнений (5.9)

Ляпунов показал, что в случае, если оба корня уравнения (5.9):

Стационарное состояние системы дифференциальных уравнений (5.10)

имеют отличные от нуля действительные части, исследование уравнений первого приближения (5.8) всегда дает правильный ответ на вопрос о типе устойчивости состояния равновесия в системе (5.1). А именно:

· если оба корня имеют отрицательную действительную часть и, следовательно, все решения уравнений первого приближения (5.8) затухают, то состояние равновесия устойчиво;

· если хотя бы один корень имеет положительную действительную часть, то есть система (5.8) имеет нарастающие решения, то состояние равновесия неустойчиво.

Если действительные части обоих корней характеристического уравнения равны нулю или если один корень равен нулю, а другой отрицателен, то уравнения (5.8) не дают ответа на вопрос об устойчивости состояния равновесия, и необходимо рассматривать члены более высокого порядка малости в разложении в ряд Тейлора правых частей уравнений (5.6).

В случае, когда оба корня характеристического уравнения имеют отличные от нуля действительные части ( грубые с истемы), уравнение первого приближения определяют не только устойчивость стационарного состояния, но и характер фазовых траекторий в достаточно малой его окрестности.

Как и в случае линейных уравнений (Лекция 4) здесь возможны пять типов грубых состояний равновесия: устойчивый узел, неустойчивый узел, устойчивый фокус, неустойчивый фокус и седло. Для исследования типов состояний равновесий удобно пользоваться диаграммой, изображенной на рис. 4.11. Для системы (5.1):

Стационарное состояние системы дифференциальных уравнений, Стационарное состояние системы дифференциальных уравнений (5.11)

Стационарное состояние системы дифференциальных уравнений . (5.12)

Грубым состояниям равновесия соответствуют все точки плоскости параметров s , D , лежащие вне оси D =0 и полуоси s =0, D >0.

Точкам оси D = 0 и полуоси s = 0, D >0 соответствуют негрубые состояния равновесия (негрубые особые точки). Их свойства могут быть изменены сколь угодно малыми изменениями правых частей уравнений (5.1) за счет сколь угодно малых изменений функций P(x,y), Q(x,y) и их производных. Поэтому характер негрубых состояний равновесия (в частности, устойчивость) уже не определяется значениями коэффициентов в правых частях уравнений первого приближения (5.8). В отличие от линейных систем, уже при небольших изменений в правых частях содержащихся там нелинейных членов может произойти качественное изменение фазового портрета — бифуркация.

1. Кинетические уравнения Лотки ( A . J . Lotka . Elements of Physical Biology, 1925)

Лоткой была исследована гипотетическая химическая реакция:

Стационарное состояние системы дифференциальных уравнений

Модель очень простая и служит хорошей иллюстрацией применения исследования устойчивости стационарного состояния системы методом линеаризации.

Пусть в некотором объеме находится в избытке вещество А. Молекулы А с некоторой постоянной скоростью Стационарное состояние системы дифференциальных уравнений превращаются в молекулы вещества X (реакция нулевого порядка). Вещество X может превращаться в вещество Y, причем скорость этой реакции тем больше, чем больше концентрация вещества Y – реакция второго порядка. В схеме это отражено обратной стрелкой над символом Y. Молекулы Y в свою очередь необратимо распадаются, в результате образуется вещество B (реакция первого порядка).

Запишем систему уравнений, описывающих реакцию:

Стационарное состояние системы дифференциальных уравнений (5.13)

Здесь x , y , B — концентрации химических компонентов. Первые два уравнения этой системы не зависят от B , поэтому их можно рассматривать отдельно. Рассмотрим стационарное решение системы:

Стационарное состояние системы дифференциальных уравнений

Из этих условий получим систему алгебраических уравнений, связывающих равновесные концентрации Стационарное состояние системы дифференциальных уравнений :

Стационарное состояние системы дифференциальных уравнений (5.14)

Координаты особой точки:

Стационарное состояние системы дифференциальных уравнений .

Исследуем устойчивость этого стационарного состояния методом Ляпунова. Введем новые переменные x , h , характеризующие отклонения переменных от равновесных концентраций Стационарное состояние системы дифференциальных уравнений :

Стационарное состояние системы дифференциальных уравнений .

Линеаризованная система в новых переменных имеет вид:

Стационарное состояние системы дифференциальных уравнений (5.15)

Отметим, что величины отклонений от стационарных значений переменных x , h могут менять знак, в то время как исходные переменные x , y , являющиеся концентрациями, могут быть только положительными.

Запишем характеристическое уравнение системы (4.3):

Стационарное состояние системы дифференциальных уравнений

Стационарное состояние системы дифференциальных уравнений .

Корни характеристического уравнения:

Стационарное состояние системы дифференциальных уравнений .

Фазовый портрет системы (5.13) изображен на рис. 5.1.

Стационарное состояние системы дифференциальных уравнений

Рис. 5.1. Фазовый портрет системы 5.13.

а – устойчивый фокус , Стационарное состояние системы дифференциальных уравнений

б – устойчивый узел. Стационарное состояние системы дифференциальных уравнений

При Стационарное состояние системы дифференциальных уравнений подкоренное выражение отрицательно, и особая точка – фокус, при обратном соотношении – узел. И в том и в другом случае особая точка устойчива, так как действительная часть обоих корней характеристического уравнения отрицательна.

Таким образом, в описанной выше химической реакции возможны разные режимы изменения переменных в зависимости от соотношения величин констант скоростей. Если Стационарное состояние системы дифференциальных уравнений , имеют место затухающие колебания концентраций компонентов, при Стационарное состояние системы дифференциальных уравнений – бесколебательное приближение концентраций к стационарным.

Рис. 5.2 Плоскость параметров для системы 5.14.

а – область устойчивого фокуса; б – область устойчивого узла

Стационарное состояние системы дифференциальных уравнений

Соотношение параметров Стационарное состояние системы дифференциальных уравнений соответствует изменению типа особой точки системы уравнений (5.13).

Рассмотрим плоскость параметров, где по оси абсцисс отложены значения константы k2, а по оси ординат – произведение k 0 k 1 . Парабола k 0 k 1 = 4 k 2 2 делит изображенную на рис. 5.2 плоскость параметров на две области – устойчивых узлов и устойчивых фокусов. Задавая те или иные значения параметров, можно получить колебательный и бесколебательный режимы изменения концентраций веществ x и y , и фазовый портрет системы, соответственно, будет собой представлять фокус (а) или узел (б), изображенные соответственно на рис 5.1 а, и 5.1 б.

Если в системе установятся стационарные концентрации веществ x и y , это приведет к установлению постоянной скорости прироста концентрации вещества В в третьем уравнении системы (5.13):

Стационарное состояние системы дифференциальных уравнений .

Ясно, что в действительности такая система реализоваться не может, так как в ней при t ® ¥ концентрация вещества В стремится к бесконечности. Однако система, подобная системе реакций Лотки, может представлять собой фрагмент более сложной химической системы. Исследованные нами уравнения правильно описывают поведение компонентов x и y , если приток вещества x (скорость его постоянна и равна k 0 ) осуществляется из большого «резервуара», а отток вещества y – в большой «резервуар» (значение В очень велико). При этих предположениях на малых промежутках времени (по сравнению с временем существенного изменения заполненности емкости B ) наше рассмотрение является вполне правомерным.

2. Модель Вольтерра

В качестве второго примера рассмотрим классическую модель взаимодействия видов, которая впервые была предложена В. Вольтерра в тридцатые годы XX века для объяснения периодических изменений числа особей, так называемую вольтерровскую модель «хищник-жертва». Более подробно модели взаимодействия видов мы рассмотрим в Лекции 9.

Пусть в некотором замкнутом районе живут хищники и жертвы, например, зайцы и волки. Зайцы питаются растительной пищей, имеющейся всегда в достаточном количестве. Волки могут питаться лишь зайцами. Обозначим число зайцев (жертв) x, а число волков (хищников) – y . Так как количество пищи у зайцев неограниченно, мы можем предположить, что они размножаются со скоростью, пропорциональной их числу:

Стационарное состояние системы дифференциальных уравнений (5.16)

Если рождаемость зайцев превышает их смертность, e > 0. Выражение (5.16) соответствует автокаталитической реакции первого порядка.

Пусть убыль зайцев пропорциональна вероятности встречи зайца с волком, т.е. пропорциональна произведению численностей xy . Можно предположить по аналогии с бимолекулярными реакциями, где вероятность появления новой молекулы пропорциональна вероятности встречи двух молекул, что и количество волков нарастает тем быстрее, чем чаще происходят их встречи с зайцами, а именно, пропорционально xy .

Кроме того, имеет место процесс естественной смертности волков, причем скорость смертности пропорциональна их количеству.

Эти рассуждения приводят к системе уравнений для изменений численности зайцев-жертв x и волков-хищников y.

Стационарное состояние системы дифференциальных уравнений (5.17)

Покажем, что система уравнений (5.17) имеет на фазовой плоскости переменных xy ненулевую особую точку типа центр. Координаты этой особой точки Стационарное состояние системы дифференциальных уравнений легко найти, приравняв правые части уравнений системы (5.17) нулю. Это дает стационарные ненулевые значения:

Стационарное состояние системы дифференциальных уравнений .

Так как все параметры Стационарное состояние системы дифференциальных уравнений положительны, точка Стационарное состояние системы дифференциальных уравнений расположена в положительном квадранте фазовой плоскости. Линеаризация системы вблизи этой точки дает:

Стационарное состояние системы дифференциальных уравнений (5.18)

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

Рис. 5.3. Фазовый портрет системы 5.17. Особая точка типа «центр».

а – параметры системы: e x = 4, g xy = 0,3, e y = g yx = 0,4

б – параметры системы: e x =2, g xy = 0,3, e y = g yx = 0,4

Здесь x , h — отклонения Стационарное состояние системы дифференциальных уравнений численностей от их стационарных значений:

Стационарное состояние системы дифференциальных уравнений

Характеристическое уравнение системы (5.18):

Стационарное состояние системы дифференциальных уравнений

Корни этого уравнения чисто мнимые:

Стационарное состояние системы дифференциальных уравнений .

Таким образом, исследование системы показывает, что траектории вблизи особой точки являются концентрическими эллипсами, а сама особая точка – центром. Рас c матриваемая модель Вольтерра и вдали от особой точки имеет замкнутые траектории, хотя форма этих траекторий уже отличается от эллипсоидальной, и определяется параметрами системы (рис. 5.3).

Изменения численности жертвы и хищника во времени представляют собой колебания, причем колебания численности хищника отстают по фазе от колебаний жертв.

Как мы уже отмечали в Лекции 4, особая точка типа центр устойчива по Ляпунову, но не асимптотически. Покажем на данном примере, в чем это проявляется. Пусть колебания x ( t ) и y ( t ) происходят таким образом, что изображающая точка движется по фазовой траектории 1 (рис 5.3).

В момент, когда точка находится в положении М1, в систему добавляется извне некоторое число особей y такое, что изображающая точка переходит скачком из точки M 1 в точку M 2 . Если после этого систему предоставить самой себе, колебания x ( t ) , y ( t ) уже будут происходить с большими амплитудами, чем прежде, и изображающая точка будет двигаться по траектории 2. Это и означает, что колебания в системе неустойчивы: они навсегда изменяют свои характеристики при внешнем воздействии.

Стационарное состояние системы дифференциальных уравнений

Рис. 5.4. Кривые численности зайца и рыси в Канаде

(по К. Вилли, В. Детье, 1974)

В дальнейшем мы рассмотрим модели, описывающие устойчивые колебательные режимы, и покажем, что на фазовой плоскости такие асимптотически устойчивые периодические движения описываются предельными циклами.

На рис. 5.4 кривые колебаний численности пушных зверей по данным компании Гудзонова залива о числе заготовленных шкурок. Во всех классических учебниках в течение многих лет колебательный характер этих изменений приводили как подтверждение гипотез, положенных в основу модели Вольтерра, которую мы только что рассмотрели. Действительно, периоды колебаний численности зайцев (жертв) и рысей (хищников) примерно одинаковы и составляют порядка 9 – 10 лет. При этом максимум численности зайцев опережает, как правило, максимум численности рысей на один год. Можно полагать, что мы видим регулярные колебания, осложненные случайными факторами, связанными с погодой и проч.

Однако возможна и другая интерпретация этих данных наблюдений на основе моделей детерминированного хаоса. О дискретных моделях такого типа мы уже говорили в Лекции 3. Непрерывные модели популяционной динамики, приводящие к детерминированному хаосу, мы рассмотрим в Лекции 9.

Серьезным недостатком рассмотренной модели Вольтерра является неустойчивость решений по отношению к малым случайным воздействиям, приводящим к изменению переменных. Кроме того, в силу «негрубости» этой системы произвольно малое изменение вида правых частей уравнений (величин параметров системы) приведет к изменению типа особой точки, и, следовательно, к изменению характера фазовых траекторий.

Поскольку природные системы подвергаются огромному количеству случайных воздействий, реалистическая модель должна быть по отношению к ним устойчивой. Поэтому негрубые системы не могут давать адекватное описание природных явлений.

Различные модификации рассмотренной нами системы, изученные самим Вольтерра и другими авторами, лишены этих недостатков. Наиболее широко известные из них будут рассмотрены в Лекции 9. Здесь мы остановимся на модели, которая учитывает самоограничение в росте обеих популяций. На ее примере видно, как может меняться характер решений при изменении параметров системы.

Итак, рассмотрим систему:

Стационарное состояние системы дифференциальных уравнений (5.19)

Система (5.19) отличается от ранее рассмотренной системы наличием в правых частях членов: Стационарное состояние системы дифференциальных уравнений

Эти члены отражают тот факт, что численность популяции жертв не может расти до бесконечности даже в отсутствие хищников в силу ограниченности пищевых ресурсов, ареала существования и проч. Такие же «самоограничения» накладываются на популяцию хищников.

Система имеет два стационарных решения: нулевое и ненулевое. Анализ показывает, что нулевое решение представляет собой неустойчивый узел. Рассмотрим систему алгебраических уравнений, решение которых дает координаты ненулевого стационарного состояния.

Стационарное состояние системы дифференциальных уравнений ( 5 .20)

Стационарное состояние системы дифференциальных уравнений

Корни характеристического уравнения системы, линеаризованной в окрестности особой точки:

Стационарное состояние системы дифференциальных уравнений

Стационарное состояние системы дифференциальных уравнений .

Из выражения для характеристических чисел видно, что если выполнено условие

Стационарное состояние системы дифференциальных уравнений Стационарное состояние системы дифференциальных уравнений

то численности хищников и жертв совершают во времени затухающие колебания. Система имеет особую точку – устойчивый фокус.

Стационарное состояние системы дифференциальных уравнений

Рис. 5.5. Фазовый портрет системы 5.19

а – устойчивый фокус,

б – устойчивый узел,

При изменении знака неравенства на обратный точка становится устойчивым узлом.

И в том и в другом случае стационарное состояние асимптотически устойчиво, и решение устойчиво к малым изменениям правых частей уравнений. Таким образом, самоограничение популяции приводит к устойчивости ее численности.

Важно отметить, что простейшие вольтерровские модели, которые мы рассмотрели, не могут описывать устойчивые колебания с постоянными периодом и амплитудой. Для описания таких колебаний необходимы нелинейные модели, имеющие на фазовой плоскости предельный цикл . Они будут рассмотрены в Лекции 8.

МЕТОД ФУНКЦИЙ ЛЯПУНОВА ИССЛЕДОВАНИЯ УСТОЙЧИВОСТИ СТАЦИОНАРНОГО СОСТОЯНИЯ.

При аналитическом исследовании устойчивости стационарного состояния часто используется метод подбора функции, линии уровня которой представляют собой замкнутые траектории – «ловушки» для фазовых траекторий системы типа (5.1)

Этот метод применим к автономной системе уравнений n -го порядка

Стационарное состояние системы дифференциальных уравнений (5.21)

Он состоит в непосредственном исследовании устойчивости ее стационарного состояния при помощи подходящим образом подобранной функции Ляпунова Стационарное состояние системы дифференциальных уравнений .

Метод основан на двух теоремах.

Если существует дифференцируемая функция V ( x 1 ,…, xn ), удовлетворяющая в окрестности начала координат следующим условиям:

б) Стационарное состояние системы дифференциальных уравнений

причем Стационарное состояние системы дифференциальных уравнений лишь при x 1 = … = xn = 0 ,

то точка покоя системы (5.21) устойчива.

Если существует дифференцируемая функция V ( x 1 ,…, xn ), удовлетворяющая в окрестности начала координат следующим условиям:

a ) V ( x 1 ,…, xn ) = 0 и сколь угодно близко от начала координат имеются точки, в которых V ( x 1 ,…, xn ) > 0;

б) Стационарное состояние системы дифференциальных уравнений

причем Стационарное состояние системы дифференциальных уравнений лишь при x 1 =…= xn = 0,

то точка покоя системы (5.21) неустойчива.

С доказательством этих теорем можно познакомиться в книге Л.Э. Эльсгольц «Теория дифференциальных уравнений» или в других учебниках по теории дифференциальных уравнений.

Общего методы построения функции Ляпунова не существует. Однако для линейных автономных систем ее следует искать в виде:

Стационарное состояние системы дифференциальных уравнений

и т.п., подбирая надлежащим образом коэффициенты a > 0 , b > 0. Для нелинейных систем a и b могут быть произвольных знаков.

1. Рассмотрим линейную систему:

Стационарное состояние системы дифференциальных уравнений

Выберем функцию Ляпунова: V = x 2 + y 2 . Тогда

Стационарное состояние системы дифференциальных уравнений

Это выражение всегда отрицательно при х ¹ 0 , т.к. в скобках стоят четные степени x . Следовательно, точка (0, 0) устойчива.

2. Рассмотрим систему уравнений, описывающую конкуренцию видов, численности которых x и y . Каждый из видов размножается в соответствии с логистическим законом, а при встрече (произведения в правых частях уравнений), численность как одного, так и другого вида уменьшается.

Стационарное состояние системы дифференциальных уравнений (5.22)

Исследуем стационарное состояние, соответствующее сосуществованию видов ( ` x , ` y ) – ненулевое для x и y . Его координаты:

Стационарное состояние системы дифференциальных уравнений . (5.23)

В. Вольтерра показал, что стационарное состояние (5.23) устойчиво для параметров системы a > 0, b £ 1 , построив функцию Ляпунова:

Стационарное состояние системы дифференциальных уравнений .

Ее производная равна

Стационарное состояние системы дифференциальных уравнений

и отрицательна при малых значениях коэффициентов a , b и x , y > 0. Доказательство приведено в книге В. Вольтерра. «Математическая теория борьбы за существование» (М., 1976)

Ризниченко Г.Ю., Рубин А.Б. Математические модели биологических продукционных процессов. М., изд. МГУ, 1993

Вольтерра В. Математическая теория борьбы за существование М., Наука, 1976

Эльсгольц Л.Э. Теория дифференциальных уравнений. М., Наука, 1971

🔍 Видео

Биоинформатика и математическое моделирование. Лекция 4Скачать

Биоинформатика и математическое моделирование. Лекция 4

Модели биологических систем, описываемые одним дифференциальным уравнением первого порядкаСкачать

Модели биологических систем, описываемые одним дифференциальным уравнением первого порядка

Урок 7.1 (теория) Система дифференциальных уравнений теплообмена и гидродинамикиСкачать

Урок 7.1 (теория) Система дифференциальных уравнений теплообмена и гидродинамики

Модели, представленный системой двух дифференциальных уравненийСкачать

Модели, представленный системой двух дифференциальных уравнений

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

Решение системы дифференциальных уравнений методом ЭйлераСкачать

Решение системы дифференциальных уравнений методом Эйлера

Биоинформатика и математическое моделирование. Лекция 3Скачать

Биоинформатика и математическое моделирование. Лекция 3

Системы дифференциальных уравнений. Метод исключенияСкачать

Системы дифференциальных уравнений. Метод исключения

Системы дифференциальных уравненийСкачать

Системы дифференциальных уравнений

Системы дифференциальных уравнений. Метод исключения.Скачать

Системы дифференциальных уравнений. Метод исключения.

Уравнение Шредингера Стационарные состоянияСкачать

Уравнение Шредингера  Стационарные состояния

Матричные модели популяций. Модели, представленный системой двух дифференциальных уравненийСкачать

Матричные модели популяций. Модели, представленный системой двух дифференциальных уравнений

ДУ Линейные системыСкачать

ДУ Линейные системы

Системы дифференциальных уравнений. Часть 1Скачать

Системы дифференциальных уравнений. Часть 1

Исследование одного дифференциального уравнения (часть 1)Скачать

Исследование одного дифференциального уравнения (часть 1)
Поделиться или сохранить к себе: