Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Видео:Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать

Дифференциальные уравнения, 5 урок, Уравнение Бернулли

Дифференциальное уравнение Бернулли

Статья раскрывает методы решения дифференциального уравнения Бернулли. В заключении будут рассмотрены решения примеров с подробным объяснением.

Видео:10. Уравнения БернуллиСкачать

10. Уравнения Бернулли

Приведение к линейному уравнению 1 порядка

Дифференциальное уравнение Бернулли записывается как y ‘ + P ( x ) · y = Q ( x ) · y n . Если n = 1 , тогда его называют с разделяющими переменными. Тогда уравнение запишется как y ‘ + P ( x ) · y = Q ( x ) · y ⇔ y ‘ = Q ( x ) — P ( x ) · y .

Для того, чтобы решить такое уравнение, необходимо первоначально привести к линейному неоднородному дифференциальному уравнению 1 порядка с новой переменной вида z = y 1 — n . Проделав замену, получаем, что y = z 1 1 — n ⇒ y ‘ = 1 1 — n · z n 1 — n · z ‘ .

Отсюда вид уравнения Бернулли меняется:

y ‘ + P ( x ) · y = Q ( x ) · y n 1 1 — n · z 1 1 — n · z ‘ + P ( x ) · z 1 1 — n = Q ( x ) · z 1 1 — n z ‘ + ( 1 — n ) · P ( x ) · z = ( 1 — n ) · Q ( x )

Этот процесс вычисления и подстановки способствует приведению к линейному неоднородному дифференциальному уравнению первого порядка. В итоге проводим замену и получаем его решение.

Найти общее решение для уравнения вида y ‘ + x y = ( 1 + x ) · e — x · y 2 .

Решение

По условию имеем, что n = 2 , P ( x ) = x , Q ( x ) = ( 1 + x ) · e — x . Необходимо ввести новую переменную z = y 1 — n = y 1 — 2 = 1 y , отсюда получим, что y = 1 z ⇒ y ‘ = — z ‘ z 2 . Провести замену переменных и получить ЛНДУ первого порядка. Запишем, как

y ‘ + x y = ( 1 + x ) · e — x · y 2 — z ‘ z 2 + x z = ( 1 + x ) · e — x · 1 z 2 z ‘ — x z = — ( 1 + x ) · e — x

Следует проводить решение при помощи метода вариации произвольной постоянной.

Проводим нахождение общего решения дифференциального уравнения вида:

d z d x — x z = 0 ⇔ d z z = x d x , z ≠ 0 ∫ d z z = ∫ x d x ln z + C 1 = x 2 2 + C 2 e ln z + C 1 = e x 2 2 + C 2 z = C · e x 2 2 , C = e C 2 — C 1

Где z = 0 , тогда решение дифференциального уравнения считается z ‘ — x z = 0 , потому как тождество становится равным нулю при нулевой функции z . Данный случай записывается как z = C ( x ) · e x 2 2 , где С = 0 . Отсюда имеем, что общим решением дифференциального уравнения z ‘ — x z = 0 считается выражение z = C · e x 2 2 при С являющейся произвольной постоянной.

Необходимо варьировать переменную для того, чтобы можно было принять
z = C ( x ) · e x 2 2 как общее решение дифференциального уравнения вида z ‘ — x z = — ( 1 + x ) · e — x .

Отсюда следует, что производится подстановка вида

C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — 1 + x · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · x · e x 2 2 — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 = — ( 1 + x ) · e — x 2 2 — x C ( x ) = ∫ — ( 1 + x ) · e — x 2 2 — x d x = ∫ e — x 2 2 — x d — x 2 2 — x = e — x 2 x — x + C 3

С 3 принимает значение произвольной постоянной. Следовательно:

z = C x · e x 2 2 = e — x 2 2 — x + C 3 · e x 2 2 = e — x + C 3 · e x 2 2

Дальше производится обратная замена. Следует, что z = 1 y считается за y = 1 z = 1 e — x + C 3 · e x 2 2 .

Ответ: это решение считается решением исходного дифференциального уравнения Бернулли.

Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать

7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.

Представление произведением функций u ( x ) и v ( x )

Имеется другой метод решения дифференциального уравнения Бернулли, который основывается на том, что функцию представляют при помощи произведения функций u ( x ) и v ( x ) .

Тогда получаем, что y ‘ = ( u · v ) ‘ = u ‘ · v + u · v ‘ . Производим подстановку в уравнение Бернулли y ‘ + P ( x ) · y = Q ( x ) · y n и упростим выражение:

u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) · u · v n u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · u · v n

Когда в качестве функции берут ненулевое частное решение дифференциального уравнения v ‘ + P ( x ) · v = 0 , тогда придем к равенству такого вида

u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · ( u · v ) n ⇔ u ‘ · v = Q ( x ) · ( u · v ) n .

Отсюда следует определить функцию u .

Решить задачу Коши 1 + x 2 · y ‘ + y = y 2 · a r c t g x , y ( 0 ) = 1 .

Решение

Переходим к нахождению дифференциального уравнения вида 1 + x 2 · y ‘ = y · a r c t g x , которое удовлетворяет условию y ( 0 ) = 1 .

Обе части неравенства необходимо поделить на x 2 + 1 , после чего получим дифференциальное уравнение Бернулли y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .

Перейдем к поиску общего решения.

Принимаем y = u · v , отсюда получаем, что y ‘ = u · v ‘ = u ‘ · v + u · v ‘ и уравнение запишем в виде

y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + u · v x 2 + 1 = u · v 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c t g x x 2 + 1

Проведем поиск частного решения с наличием разделяющих переменных v ‘ + v x 2 + 1 = 0 , отличных от нуля. Получим, что

d v v = — d x x 2 + 1 , v ≠ 0 ∫ d v v = — ∫ d x x 2 + 1 ln v + C 1 = — a r c t g x + C 2 v = C · e — a r c t g x , C = e C 2 — C 1

В качестве частного решения необходимо брать выражение вида v = e — a r c r g x . Преобразуем и получим, что

u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c r g x x 2 + 1 u ‘ · v + u · 0 = u 2 · v 2 · a r c t g x x 2 + 1 u ‘ = u 2 · v · a r c t g x x 2 + 1 u ‘ = u 2 · e — a r c t g x · a r c t g x x 2 + 1 ⇔ d u u 2 = e — a r c t g x · a r c t g x x 2 + 1 d x , u ≠ 0 ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x x 2 + 1 d x ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x d ( a r c t g x )

Имеем, что u = 0 рассматривается как решение дифференциального уравнения. Далее необходимо решить каждый из полученных интегралов по отдельности.

Интеграл с левой стороны, имеющего вид ∫ d u u 2 , необходимо найти по таблице первообразных. Получаем, что

∫ d u u 2 = — 1 u + C 3 .

Чтобы найти интеграл вида ∫ e — a r c t g x · a r c t g x d ( a r c t g x ) , принимаем значение a r c t g x = z и применяем метод интегрирования по частям. Тогда имеем, что

∫ e — a r c t g x · a r c t g x d ( a r c t g x ) = a r c t g x = z = = ∫ e — z · z d z = u 1 = z , d v 1 = e — z d z d u 1 = d z , v 1 = — e — z = = — z · e — z + ∫ e — z d z = — z · e — z — e — z + C 4 = = — e — z · ( z + 1 ) + C 4 = — e — a r c t g x · ( a r c t g x + 1 ) + C 4

— 1 u + C 3 = — e — a r c t g x · a r c t g x + 1 + C 4 1 u = e — a r c r g x · a r c t g x + 1 + C 3 — C 4 u = 1 e — a r c r g x · ( a r c t g x + 1 ) + C

Отсюда находим, что

y = u · v = e — a r c t g x e — a r c r g x · ( a r c t g x + 1 ) + C и y = 0 · v = 0 · e — a r c r g x = 0 являются решениями дифференциального уравнения Бернулли вида y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .

На данном этапе следует переходить к поиску частного решения, которое удовлетворяет начальному условию. Получим, что

y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + C , тогда запись примет вид y 0 = e — a r c t g 0 e — a r c t g 0 · a r c t g 0 + 1 + C = 1 1 + C .

Очевидно, что 1 1 + C = 1 ⇔ C = 0 . Тогда искомой задачей Коши будет являться полученное уравнение вида y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + 0 = 1 a r c t g x + 1 .

Видео:Уравнения Бернулли. Дифференциальны уравненияСкачать

Уравнения Бернулли. Дифференциальны уравнения

Математика модуль 12 — ответы

Ответы на модуль 12 (ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ) по предмету математика.

1) Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?

частным решением

2) Найдите общее решение уравнения (x+y)dx+xdy=0

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

3) При решении каких уравнений используют подстановку Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

при решении однородных уравнений

4) Найдите общее решение уравнения xy 2 dy=(x 3 +y 3 )dx

5) Среди перечисленных дифференциальных уравнений укажите уравнение Бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

6) Найдите общее решение уравнения y — 9y = e 2 x

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

7) Найдите общее решение уравнения Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

8) Найдите частное решение уравнения ds=(4t-3)dt, если при t= 0 s= 0

9) Найдите общее решение уравнения yy= 0

10) Найдите общее решение уравнения Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

11) Среди перечисленных дифференциальных уравнений укажите однородное уравнение

12) Найдите общее решение уравнения y— 4y+ 3y= 0

13) Найдите общее решение уравнения y = cos x

Видео:#Дифуры I. Урок 9. Уравнение РиккатиСкачать

#Дифуры I. Урок 9. Уравнение Риккати

Среди перечисленных дифференциальных уравнений укажите однородное уравнение

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите однородное уравнение

Выберите один ответ:

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Пока нет ответа

Найдите общее решение уравнения yСреди перечисленных дифференциальных уравнений укажите уравнение бернулли — 9y = e2x

Выберите один ответ:

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Пока нет ответа

Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?

Выберите один ответ:

Пока нет ответа

Найдите общее решение уравнения Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Выберите один ответ:

Пока нет ответа

Найдите общее решение уравнения (x+y)dx+xdy=0

Выберите один ответ:

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Пока нет ответа

Среди перечисленных дифференциальных уравнений укажите уравнение Бернулли

Выберите один ответ:

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Пока нет ответа

Найдите общее решение уравнения yСреди перечисленных дифференциальных уравнений укажите уравнение бернуллиy= 0

Выберите один ответ:

Пока нет ответа

Найдите общее решение уравнения yСреди перечисленных дифференциальных уравнений укажите уравнение бернулли— 4yСреди перечисленных дифференциальных уравнений укажите уравнение бернулли+ 3y= 0

Выберите один ответ:

Пока нет ответа

Найдите общее решение уравнения xy2dy=(x3+y3)dx

Выберите один ответ:

Пока нет ответа

При решении каких уравнений используют подстановку Среди перечисленных дифференциальных уравнений укажите уравнение бернулли?

Выберите один ответ:

при решении линейных уравнений

при решении уравнений с разделяющими переменными

при решении однородных уравнений

Пока нет ответа

Найдите частное решение уравнения ds=(4t-3)dt, если при t= 0 s= 0

Выберите один ответ:

Пока нет ответа

Найдите общее решение уравнения Среди перечисленных дифференциальных уравнений укажите уравнение бернулли

Выберите один ответ:

Пока нет ответа

Найдите общее решение уравнения yСреди перечисленных дифференциальных уравнений укажите уравнение бернулли = cos x

🎬 Видео

#Дифуры I. Урок 8. Уравнение БернуллиСкачать

#Дифуры I. Урок 8. Уравнение Бернулли

Урок 133. Закон Бернулли. Уравнение БернуллиСкачать

Урок 133. Закон Бернулли. Уравнение Бернулли

Уравнение Бернулли Метод БернуллиСкачать

Уравнение Бернулли  Метод Бернулли

Дифференциальные уравнения #16Скачать

Дифференциальные уравнения #16

#Дифуры I. Урок 5. Линейные дифференциальные уравнения. Метод БернуллиСкачать

#Дифуры I. Урок 5. Линейные дифференциальные уравнения. Метод Бернулли

Дифференциальные уравнения. Уравнение БернуллиСкачать

Дифференциальные уравнения. Уравнение Бернулли

Уравнения БернуллиСкачать

Уравнения Бернулли

Уравнение БернуллиСкачать

Уравнение Бернулли

Дифференциальные уравнения Бернулли| poporyadku.schoolСкачать

Дифференциальные уравнения Бернулли| poporyadku.school
Поделиться или сохранить к себе: