Статья раскрывает методы решения дифференциального уравнения Бернулли. В заключении будут рассмотрены решения примеров с подробным объяснением.
Видео:Дифференциальные уравнения, 5 урок, Уравнение БернуллиСкачать
Приведение к линейному уравнению 1 порядка
Дифференциальное уравнение Бернулли записывается как y ‘ + P ( x ) · y = Q ( x ) · y n . Если n = 1 , тогда его называют с разделяющими переменными. Тогда уравнение запишется как y ‘ + P ( x ) · y = Q ( x ) · y ⇔ y ‘ = Q ( x ) — P ( x ) · y .
Для того, чтобы решить такое уравнение, необходимо первоначально привести к линейному неоднородному дифференциальному уравнению 1 порядка с новой переменной вида z = y 1 — n . Проделав замену, получаем, что y = z 1 1 — n ⇒ y ‘ = 1 1 — n · z n 1 — n · z ‘ .
Отсюда вид уравнения Бернулли меняется:
y ‘ + P ( x ) · y = Q ( x ) · y n 1 1 — n · z 1 1 — n · z ‘ + P ( x ) · z 1 1 — n = Q ( x ) · z 1 1 — n z ‘ + ( 1 — n ) · P ( x ) · z = ( 1 — n ) · Q ( x )
Этот процесс вычисления и подстановки способствует приведению к линейному неоднородному дифференциальному уравнению первого порядка. В итоге проводим замену и получаем его решение.
Найти общее решение для уравнения вида y ‘ + x y = ( 1 + x ) · e — x · y 2 .
Решение
По условию имеем, что n = 2 , P ( x ) = x , Q ( x ) = ( 1 + x ) · e — x . Необходимо ввести новую переменную z = y 1 — n = y 1 — 2 = 1 y , отсюда получим, что y = 1 z ⇒ y ‘ = — z ‘ z 2 . Провести замену переменных и получить ЛНДУ первого порядка. Запишем, как
y ‘ + x y = ( 1 + x ) · e — x · y 2 — z ‘ z 2 + x z = ( 1 + x ) · e — x · 1 z 2 z ‘ — x z = — ( 1 + x ) · e — x
Следует проводить решение при помощи метода вариации произвольной постоянной.
Проводим нахождение общего решения дифференциального уравнения вида:
d z d x — x z = 0 ⇔ d z z = x d x , z ≠ 0 ∫ d z z = ∫ x d x ln z + C 1 = x 2 2 + C 2 e ln z + C 1 = e x 2 2 + C 2 z = C · e x 2 2 , C = e C 2 — C 1
Где z = 0 , тогда решение дифференциального уравнения считается z ‘ — x z = 0 , потому как тождество становится равным нулю при нулевой функции z . Данный случай записывается как z = C ( x ) · e x 2 2 , где С = 0 . Отсюда имеем, что общим решением дифференциального уравнения z ‘ — x z = 0 считается выражение z = C · e x 2 2 при С являющейся произвольной постоянной.
Необходимо варьировать переменную для того, чтобы можно было принять
z = C ( x ) · e x 2 2 как общее решение дифференциального уравнения вида z ‘ — x z = — ( 1 + x ) · e — x .
Отсюда следует, что производится подстановка вида
C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · e x 2 2 ‘ — x · C ( x ) · e x 2 2 = — 1 + x · e — x C ‘ ( x ) · e x 2 2 + C ( x ) · x · e x 2 2 — x · C ( x ) · e x 2 2 = — ( 1 + x ) · e — x C ‘ ( x ) · e x 2 2 = — ( 1 + x ) · e — x 2 2 — x C ( x ) = ∫ — ( 1 + x ) · e — x 2 2 — x d x = ∫ e — x 2 2 — x d — x 2 2 — x = e — x 2 x — x + C 3
С 3 принимает значение произвольной постоянной. Следовательно:
z = C x · e x 2 2 = e — x 2 2 — x + C 3 · e x 2 2 = e — x + C 3 · e x 2 2
Дальше производится обратная замена. Следует, что z = 1 y считается за y = 1 z = 1 e — x + C 3 · e x 2 2 .
Ответ: это решение считается решением исходного дифференциального уравнения Бернулли.
Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Представление произведением функций u ( x ) и v ( x )
Имеется другой метод решения дифференциального уравнения Бернулли, который основывается на том, что функцию представляют при помощи произведения функций u ( x ) и v ( x ) .
Тогда получаем, что y ‘ = ( u · v ) ‘ = u ‘ · v + u · v ‘ . Производим подстановку в уравнение Бернулли y ‘ + P ( x ) · y = Q ( x ) · y n и упростим выражение:
u ‘ · v + u · v ‘ + P ( x ) · u · v = Q ( x ) · u · v n u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · u · v n
Когда в качестве функции берут ненулевое частное решение дифференциального уравнения v ‘ + P ( x ) · v = 0 , тогда придем к равенству такого вида
u ‘ · v + u · ( v ‘ + P ( x ) · v ) = Q ( x ) · ( u · v ) n ⇔ u ‘ · v = Q ( x ) · ( u · v ) n .
Отсюда следует определить функцию u .
Решить задачу Коши 1 + x 2 · y ‘ + y = y 2 · a r c t g x , y ( 0 ) = 1 .
Решение
Переходим к нахождению дифференциального уравнения вида 1 + x 2 · y ‘ = y · a r c t g x , которое удовлетворяет условию y ( 0 ) = 1 .
Обе части неравенства необходимо поделить на x 2 + 1 , после чего получим дифференциальное уравнение Бернулли y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .
Перейдем к поиску общего решения.
Принимаем y = u · v , отсюда получаем, что y ‘ = u · v ‘ = u ‘ · v + u · v ‘ и уравнение запишем в виде
y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + u · v x 2 + 1 = u · v 2 · a r c t g x x 2 + 1 u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c t g x x 2 + 1
Проведем поиск частного решения с наличием разделяющих переменных v ‘ + v x 2 + 1 = 0 , отличных от нуля. Получим, что
d v v = — d x x 2 + 1 , v ≠ 0 ∫ d v v = — ∫ d x x 2 + 1 ln v + C 1 = — a r c t g x + C 2 v = C · e — a r c t g x , C = e C 2 — C 1
В качестве частного решения необходимо брать выражение вида v = e — a r c r g x . Преобразуем и получим, что
u ‘ · v + u · v ‘ + v x 2 + 1 = u 2 · v 2 · a r c r g x x 2 + 1 u ‘ · v + u · 0 = u 2 · v 2 · a r c t g x x 2 + 1 u ‘ = u 2 · v · a r c t g x x 2 + 1 u ‘ = u 2 · e — a r c t g x · a r c t g x x 2 + 1 ⇔ d u u 2 = e — a r c t g x · a r c t g x x 2 + 1 d x , u ≠ 0 ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x x 2 + 1 d x ∫ d u u 2 = ∫ e — a r c t g x · a r c t g x d ( a r c t g x )
Имеем, что u = 0 рассматривается как решение дифференциального уравнения. Далее необходимо решить каждый из полученных интегралов по отдельности.
Интеграл с левой стороны, имеющего вид ∫ d u u 2 , необходимо найти по таблице первообразных. Получаем, что
∫ d u u 2 = — 1 u + C 3 .
Чтобы найти интеграл вида ∫ e — a r c t g x · a r c t g x d ( a r c t g x ) , принимаем значение a r c t g x = z и применяем метод интегрирования по частям. Тогда имеем, что
∫ e — a r c t g x · a r c t g x d ( a r c t g x ) = a r c t g x = z = = ∫ e — z · z d z = u 1 = z , d v 1 = e — z d z d u 1 = d z , v 1 = — e — z = = — z · e — z + ∫ e — z d z = — z · e — z — e — z + C 4 = = — e — z · ( z + 1 ) + C 4 = — e — a r c t g x · ( a r c t g x + 1 ) + C 4
— 1 u + C 3 = — e — a r c t g x · a r c t g x + 1 + C 4 1 u = e — a r c r g x · a r c t g x + 1 + C 3 — C 4 u = 1 e — a r c r g x · ( a r c t g x + 1 ) + C
Отсюда находим, что
y = u · v = e — a r c t g x e — a r c r g x · ( a r c t g x + 1 ) + C и y = 0 · v = 0 · e — a r c r g x = 0 являются решениями дифференциального уравнения Бернулли вида y ‘ + y x 2 + 1 = y 2 · a r c t g x x 2 + 1 .
На данном этапе следует переходить к поиску частного решения, которое удовлетворяет начальному условию. Получим, что
y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + C , тогда запись примет вид y 0 = e — a r c t g 0 e — a r c t g 0 · a r c t g 0 + 1 + C = 1 1 + C .
Очевидно, что 1 1 + C = 1 ⇔ C = 0 . Тогда искомой задачей Коши будет являться полученное уравнение вида y = e — a r c t g x e — a r c t g x · a r c t g x + 1 + 0 = 1 a r c t g x + 1 .
Видео:10. Уравнения БернуллиСкачать
Математика модуль 12 — ответы
Ответы на модуль 12 (ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ) по предмету математика.
1) Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?
частным решением
2) Найдите общее решение уравнения (x+y)dx+xdy=0
3) При решении каких уравнений используют подстановку
при решении однородных уравнений
4) Найдите общее решение уравнения xy 2 dy=(x 3 +y 3 )dx
5) Среди перечисленных дифференциальных уравнений укажите уравнение Бернулли
6) Найдите общее решение уравнения y — 9y = e 2 x
7) Найдите общее решение уравнения
8) Найдите частное решение уравнения ds=(4t-3)dt, если при t= 0 s= 0
9) Найдите общее решение уравнения y—y= 0
10) Найдите общее решение уравнения
11) Среди перечисленных дифференциальных уравнений укажите однородное уравнение
12) Найдите общее решение уравнения y— 4y+ 3y= 0
13) Найдите общее решение уравнения y = cos x
Видео:Уравнение Бернулли Метод БернуллиСкачать
Среди перечисленных дифференциальных уравнений укажите однородное уравнение
Среди перечисленных дифференциальных уравнений укажите однородное уравнение
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения y — 9y = e2x
Выберите один ответ:
Пока нет ответа
Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения (x+y)dx+xdy=0
Выберите один ответ:
Пока нет ответа
Среди перечисленных дифференциальных уравнений укажите уравнение Бернулли
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения y—y= 0
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения y— 4y+ 3y= 0
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения xy2dy=(x3+y3)dx
Выберите один ответ:
Пока нет ответа
При решении каких уравнений используют подстановку ?
Выберите один ответ:
при решении линейных уравнений
при решении уравнений с разделяющими переменными
при решении однородных уравнений
Пока нет ответа
Найдите частное решение уравнения ds=(4t-3)dt, если при t= 0 s= 0
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения
Выберите один ответ:
Пока нет ответа
Найдите общее решение уравнения y = cos x
📽️ Видео
#Дифуры I. Урок 9. Уравнение РиккатиСкачать
#Дифуры I. Урок 8. Уравнение БернуллиСкачать
Урок 133. Закон Бернулли. Уравнение БернуллиСкачать
Уравнения Бернулли. Дифференциальны уравненияСкачать
#Дифуры I. Урок 5. Линейные дифференциальные уравнения. Метод БернуллиСкачать
Дифференциальные уравнения. Уравнение БернуллиСкачать
Уравнения БернуллиСкачать
Уравнение БернуллиСкачать
Дифференциальные уравнения #16Скачать
Дифференциальные уравнения Бернулли| poporyadku.schoolСкачать