Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Привет студент

Курсовая работа численные методы. РЕШЕНИЕ УРАВНЕНИЙ И ИНТЕРПОЛЯЦИЯ ФУНКЦИЙ

Федеральное агентство железнодорожного транспорта

Омский государственный университет путей сообщения

Кафедра «Автоматика и системы управления»

РЕШЕНИЕ УРАВНЕНИЙ И ИНТЕРПОЛЯЦИЯ ФУНКЦИЙ

Пояснительная записка к курсовому проекту

по дисциплине «Численные методы»

Студентка гр. ИС 20253

Руководитель –доцент кафедры АиСУ

____________А. C. Окишев

Пояснительная записка содержит 30 страниц, 18 рисунков, 5 таблиц, 3 источника.

Численный метод, нелинейное уравнение, корень, итерация, сходимость, аппроксимация, интерполяция, многочлен Лагранжа, задача Коши, погрешность, кубический сплайн, обыкновенное дифференциальное уравнение.

Объектом исследования являются приближенные численные методы решения некоторых математических и инженерных задач, а также программное обеспечение, реализующее эти методы.

Цель работы – ознакомиться с численными методами решения нелинейных и дифференциальных уравнений и интерполяции функций, решить предложенные типовые задачи с помощью предоставленного преподавателем программного обеспечения, сформулировать выводы по полученным решениям, отметить достоинства и недостатки методов, сравнить удобство использования и эффективность работы каждой программы.

Пояснительная записка к курсовому проекту оформлена в текстовом редакторе MicrosoftOffice 2010 с установленным интерактивным редактором формул MathType 6.6. Графики нелинейных функций построены с помощью программы AdvancedGrapher. При решении обыкновенных дифференциальных уравнений использовалась среда математического моделирования Mathcad 14.

В связи с развитием новой вычислительной техники инженерная практика наших дней все чаще и чаще встречается с математическими задачами, точное решение которых получить весьма сложно или невозможно. В этих случаях обычно прибегают к тем или иным приближенным вычислениям. Вот почему приближенные и численные методы математического анализа получили за последние годы широкое развитие и приобрели исключительно важное значение.

Новые вычислительные средства вызвали переоценку известных методов решения задач с точки зрения целесообразности их реализации на ЭВМ и стимулировали создание более эффективных, что привело к появлению новой дисциплины – вычислительной математики. Предметом изучения последней являются численные методы решения задач математического анализа: изучение алгоритмов и условий сходимости итерационных методов, определение границ применимости методов, исследования оценок погрешностей методов и вычислений. Главным разделом вычислительной математики является реализация численных методов на ЭВМ, то есть составление программы для требуемого алгоритма и решения с ее помощью конкретной задачи.

Любая прикладная задача формируется исходя из определенного физического смысла некоторого процесса (распределение тепла в стержне, описание траектории движения объектов). Прикладная математическая задача может быть сформулирована, например, из описания некоторой экономической модели (задача распределения ресурсов, задача планирования производства, транспортная задача перевозки грузов, оптимальных в заданном смысле). Следовательно, для постановки любой прикладной задачи нужна математическая модель. Поэтому, можно выделить следующие этапы решения задач на ЭВМ:

1) описание математической модели задачи на основе физической или экономической модели;

2) изучение методов решения поставленной математической модели задачи и создание новых методов;

3) выбор метода решения задачи исходя из заданной точности решения и особенностей задачи;

4) составление блок-схемы программы для решения задачи на ЭВМ;

5) отладка программы и оценка полученных результатов;

6) решение задачи на ЭВМ, построение графиков, получение оценки погрешностей, обоснование результатов.

В курсовом проекте рассматриваются не прикладные, а типовые математические задачи, которые могут возникнуть при переходе от реальных систем к их математическим моделям, поэтому основное внимание уделяется последнему этапу.

1 Решение нелинейных уравнений

Нелинейными уравнениями называются уравнения вида

где – нелинейная функция, которая может относиться к трем типам:

1) нелинейная алгебраическая функция вида

2) трансцендентные функции – тригонометрические, обратные тригонометрические, логарифмические, показательные и гиперболические функции;

3) различные комбинации этих функций, например, .

Решением нелинейного уравнения является такая точка , которая при подстановке в уравнение обращает его в тождество. На практике не всегда удается подобрать такое решение. В этом случае решение уравнения находят с применением приближенных (численных) методов. Тогда решением будет являться такая точка , при подстановке которой в уравнение последнее будет выполняться с определенной степенью точности, т.е. , где e – малая величина. Нахождение таких решений и составляет основу численных методов и вычислительной математики.

Решение нелинейных уравнений разделяется на два этапа: отделение корней уравнений и уточнение корней нелинейных уравнений.

На первом этапе необходимо исследовать уравнение и выяснить, имеются корни или нет. Если корни имеются, то узнать, сколько их, и затем определить интервалы, в каждом из которых находится единственный корень.

Первый способ отделения корней – графический. Исходя из уравнения , можно построить график функции . Тогда точка пересечения графика с осью абсцисс является приближенным значением корня. Если f(x) имеет сложный вид, то ее можно представить в виде разности двух функций . Так как , то выполняется равенство .Если построить два графика , , то абсцисса точки их пересечения будет приближенным значением корня уравнения.

Второй способ отделения корней нелинейных уравнений – аналитический. Он основывается на следующих трех теоремах.

Теорема 1. Если функция непрерывна на отрезке и меняет на концах отрезка знак (т.е. ), то на содержится хотя бы один корень.

Теорема 2. Если функция непрерывна на отрезке , выполняется условие вида и производная сохраняет знак на , то на отрезке имеется единственный корень.

Теорема 3. Если функция является многочленом n-ой степени и на концах отрезка меняет знак, то на имеется нечетное количество корней (если производная сохраняет знак на , то корень единственный). Если на концах отрезка функция не меняет знак, то уравнение либо не имеет корней на , либо имеет четное количество корней.

При аналитическом методе исследований необходимо выявить интервалы монотонности функции . Для этого необходимо вычислить критические точки , в которых первая производная равна нулю или не существует. Тогда вся числовая ось разбивается на интервалы монотонности . На каждом из них определяется знак производной , где . Затем выделяются те интервалы монотонности, на которых функция меняет знак.

На втором этапе на каждом из этих интервалов для поиска корня используются численные итерационные методы уточнения корней, например методы половинного деления, простых итераций или Ньютона.

1.1 Метод простых итераций

Пусть известно, что нелинейное уравнение имеет на отрезке единственный вещественный корень . Требуется найти этот корень с заданной точностью. Применяя тождественные преобразования, приведем уравнение к виду

Выберем произвольно приближенное значение корня и вычислим . Найденное значение подставим в правую часть соотношения (2) и вычислим . Продолжая процесс вычислений дальше, получим числовую последовательность . Если существует предел этой последовательности, то он и является корнем уравнения . В самом деле, пусть . Тогда, переходя к пределу в равенстве

и учитывая непрерывность функции на отрезке , получим

Корень можно вычислить с заданной точностью по итерационной формуле

Достаточное условие, при котором итерационный процесс сходится, определяет следующая теорема: пусть функция определена и дифференцируема на отрезке , причем все ее значения и выполняется условие

тогда процесс итераций сходится независимо от начального значения и предельное значение является единственным корнем уравнения на .

Геометрическая интерпретация метода простых итераций заключается в следующем: если построить два графика функций и , то абсцисса точки их пересечения будет корнем . Построим итерационный процесс. Зададим .Вычислим – первое приближение и – второе приближение. В первом случае (рисунок 1, а) процесс сходящийся ( ), во втором (рисунок 1, б) – расходящийся ( ).

Рисунок 1 – Сходящийся (а) и расходящийся (б) итерационные процессы

Часто, если итерационный процесс расходится из-за невыполнения условия , нелинейное уравнение можно привести к виду, допускающему сходящиеся итерации.

Выполнения условия сходимости можно добиться путем перехода от исходного уравнения к эквивалентному виду следующим образом: сначала умножить обе части уравнения (1) на , а затем прибавить к обеим частямx, тогда . Обозначив ,получим уравнение . Константа с выбирается так, чтобы выполнялось достаточное условие сходимости итерационного процесса , т.е.

Условие равносильно двойному неравенству

Поэтому константа выбирается из соотношений:

Метод простых итераций и почти все другие итерационные методы имеют два достоинства:

1) являются универсальными и самоисправляющимися, то есть любая неточность на каком-либо шаге итераций отражается не на конечном результате, а лишь на количестве итераций. Подобные ошибки устойчивы даже по отношению к грубым ошибкам (сбоям ЭВМ), если только ошибка не выбрасывает очередное приближение за пределы области сходимости;

2) позволяют достигнуть любой заданной точности при любом начальном приближении .

– трудность приведения уравнения к виду .

– если начальное приближение находится далеко от корня, то число итераций при этом увеличивается, а объем вычислений возрастает.

Процесс итераций заканчивается при выполнении двух критериев:

1) Когда два последних приближения отличается между собой по модулю на заданную величинуe:

Одного критерия недостаточно, так как в случае крутизны графика, данное условие будет выполнено, но может находиться далеко от корня;

2) Когда последнее вычисленное приближение к корню удовлетворяет уравнению с заданной точностью:

Отдельно критерия бывает недостаточно, так как при пологой функции условие может быть выполнено, но может быть далеко от корня.

1.2 Метод Ньютона

Пусть уравнение имеет на интервале единственный корень, причем существует непрерывная на производная . Метод Ньютона служит для уточнения корней нелинейных уравнений в заданном интервале. Его можно рассматривать как частный случай метода простых итераций, если

Тогда итерационный процесс осуществляется по формуле:

Геометрически этот процесс представлен на рисунке 2. Он означает замену на каждой итерацииk графика кривой касательной к ней в точках с координатами .

Достаточное условие сходимости обеспечивается выбором начальной точки . Начальным приближением служит один из концов отрезка , в зависимости от того, в каком из них выполняется достаточное условие сходимости

При произвольном начальном приближении итерации сходятся, если

Метод Ньютона рекомендуется применять для нахождения простых действительных корней уравнения .

Достоинством метода является то, что он обладает скоростью сходимости, близкой к квадратичной.

– не при любом начальном приближении метод Ньютона сходится, а лишь при таком, для которого ;

– если , т.е. касательная к графику почти параллельна оси абсцисс, то и метод расходится;

– если ,т.е. касательная к графику почти параллельна оси ординат, то и продвижения к корню не будет.

Последних трудностей можно избежать, применив модификацию метода Ньютона, в которой используется только касательная в точке начального приближения. Рабочая формула при этом имеет вид:

1.3 Решение нелинейного уравнения методом простых итераций

Решите нелинейное уравнение

методом простой итерации:

  1. a) выполните приблизительную оценку корней предложенного уравнения с помощью системы MathCad, графической программы AdvancedGrapher или вручную;

б) преобразуйте уравнение вида f (x) = 0 к итерационному виду x = φ(x), гарантировав при этом сходимость метода простой итерации;

в) с помощью программы MeProst уточните один из корней первого уравнения вида f (x)=0 с точностью ε = 10 -3 , выбрав подходящий отрезок для построения графической иллюстрации работы метода простой итерации;

г) в пояснительной записке приведите график функции f (x) с указанием выбранных для уточнения корней, результаты уточнения корней программой MeProst, значения корней, требуемое число итераций, погрешность решения и графические иллюстрации процесса сходимости к корню.

Для приблизительной оценки корней нелинейного уравнения построим график функции с помощью программы AdvancedGrapher (рисунок 3).

Из рисунка 3 видно, что график функции пересекает ось абсцисс в одной точке, поэтому уравнение имеет один корень.

т.е. для уточнения корня будем использовать итерационную последовательность:

где – номер итерации.

С помощью программы MeProst выполним уточнение корня. В разделе меню «Ввод» задаем следующие параметры (Рисунок 4):

Рисунок 4 –Ввод параметров в программе Newton

  • отрезок, на котором находится уточняемый корень ;
  • необходимая точность приближения к корню ;
  • начальное приближение к корню
  • максимальное допустимое число итераций .

Чтобы получить наглядное представление о процессе сходимости к корню, выберем пошаговый режим расчета. В открывшемся окне (рисунок 5) видим графики функций (зеленый) и (красный). Очевидно, что корень уравнения определяется как точка пересечения этих двух графиков. Точка начального приближения показана синим цветом. Чтобы вычислить следующее приближение геометрическим способом, необходимо найти точку пересечения прямой и кривой и ординату этой точки взять в качестве . Последующие приближения определяются аналогично.

Рисунок 5 – Метод простых итераций

Как следует из рисунка 5, итерационный процесс сходится (с каждый новым шагом мы приближаемся к решению).

Корнем данного уравнения является

1.4 Решение нелинейного уравнения методом Ньютона

Решите нелинейное уравнение

  1. a) выполните приблизительную оценку корней уравнения с помощью системы MathCad, графической программы AdvancedGrapher или вручную;

б) с помощью программы Newton уточните один из корней первого уравнения вида f (x)=0 с точностью ε = 10 -3 , выбрав подходящий отрезок для построения графической иллюстрации работы метода Ньютона;

в) в пояснительной записке приведите график функции f(x) с указанием выбранных для уточнения корней, результаты уточнения корней программой Newton, значения корней, требуемое число итераций, погрешность решения и графические иллюстрации процесса сходимости к корню.

Для приблизительной оценки корней нелинейного уравнения построим график функции с помощью программы AdvancedGrapher (рисунок 6).

Как видно из рисунка 6, график функции пересекает ось абсцисс в двух точках, поэтому первый корень x 1 = -2, второй корень x 2 = 5,5.

С помощью программы Newton выполним уточнение выбранного корня. Для этого в разделе меню «Ввод» задаем следующие параметры (рисунок 7):

  • отрезок построения касательных к графику функции ;
  • необходимая точность приближения к корню ;
  • начальное приближение к корню ;
  • максимальное допустимое число итераций .

Рисунок 7 – Ввод параметров в программе Newton

Рисунок 8 – Четвертая итерация метода Ньютона

Как видно из рисунка 8, корень уравнения 5 найден с заданной точностью за итераций, погрешность решения составляет .

2 Интерполяция функций

Задача интерполяции функций возникает в тех случаях, когда:

функция задана в виде таблицы, и необходимо знать значения функции для промежуточных значений аргументов, расположенных в таблице между узлами , а также для аргументов, расположенных вне таблицы;

известна лишь таблица функции и требуется определить ее аналитическое выражение;

известно аналитическое выражение функции, но оно имеет очень сложный вид, вследствие чего возникает необходимость представления этой функции в более простом виде. Например, при вычислении определенных интегралов вида можно заменить подынтегральную функцию некоторой приближенной функцией в виде многочлена. Тогда

Построив интерполяционный многочлен любого вида, также можно расширить таблицу как влево, так и вправо, вычисляя построенный многочлен в точках, не принадлежащих таблице (задача экстраполяции). Кроме того, построив интерполяционный многочлен, можно уплотнить таблицу, определяя значения функции для промежуточных аргументов между узловыми точками.

2.1 Интерполяционная формула Лагранжа

Пусть задана система точек , в которых известны значения функции (см. таблицу 1).

Таблица 1 – Экспериментальные значения функции

Установим зависимость одного ряда чисел от другого и построим новую функцию, которая с определенной степенью точности будет приближена к заданной.

Рассмотрим пример построения интерполяционного многочлена Лагранжа по заданной системе точек (в общем случае для неравноотстоящих аргументов). Построим некоторый многочлен таким образом, чтобы его значения совпали со значениями функции, заданными в таблице, для тех же аргументов, то есть . Лагранж предложил строить многочлен степени nв виде:

Здесь в каждом слагаемом коэффициенту ai соответствует разность .Найдем неизвестные коэффициенты , называемые коэффициентами Лагранжа, используя условие :

Следовательно, коэффициент a0 вычисляется по следующей формуле:

Следовательно, коэффициент a1 вычисляется по формуле:

Значения остальных коэффициентов вычисляются аналогично.

С учетом найденных коэффициентов интерполяционный многочлен Лагранжа запишется в виде

Погрешность формулы определяется остаточным членом:

где x–точка наименьшего промежутка, содержащего все узлы и точкуx.

2.2 Интерполяционные формулы Ньютона

Если таблица, для которой построена формула Лагранжа, задана для равноотстоящих узлов , то формула Лагранжа упрощается.

С учетом введенных обозначений формула Лагранжа запишется в виде:

Запишем формулу Лагранжа в случае, если :

Получили формулу линейной интерполяции вида:

где – табличные разности первого порядка.

При получаем формулу квадратичной интерполяции вида:

где – табличные разности второго порядка.

Таким образом, первая интерполяционная формула Ньютона будет иметь вид:

Остаточный член формулы имеет вид:

где ,x – точка наименьшего промежутка, содержащего все узлы и точкуx.

Первая интерполяционная формула рекомендуется для интерполяции в начале таблицы.

Вторая интерполяционная формула Ньютона используется при вычислении функции для значений , близких к концу таблицы и для продолжения таблицы. Обозначим через , тогда

Тогда получим следующую формулу Ньютона:

имеет тот же смысл, что и в первой формуле Ньютона.

2.3 Интерполяция кубическими сплайнами

Кубическим сплайном называется функция , которая:

  • на каждом отрезке является многочленом третьей степени;
  • имеет непрерывные первую и вторую производные на всем отрезке [a, b];
  • в точках xi выполняются равенства и ;
  • имеет граничные условия вида .

По количеству точек, учитываемых при аппроксимации функции, кубические сплайны можно разделить на локальные и глобальные.

Локальные сплайны используют производные , вычисляемые по трем заданным точкам, ближайшим к точке x, в которой необходимо вычислить значение функции.

Глобальные сплайны используют массив вторых производных по всем узловым точкам , который рассчитывается заранее путем решения системы линейных алгебраических уравнений (СЛАУ).

Пусть имеется таблица значений , где i изменяется от 0 до n.

Получается n+1 узел, причем сетка узлов неравномерная, тогда на интервале для нахождения значения сплайна в некоторой введенной точке необходимо проверить, принадлежит ли данная точка интервалу значений исходной таблицы.

  1. Если принадлежит, то формула вычисления значения сплайна в точке имеет вид:

где – расстояние между соседними узлами;

– значения функции в узловых точках;

– значения вторых производных.

Вторые производные mi находятся из трехдиагональной СЛАУ:

Всего в системе n–1 уравнение и n+1 неизвестная: . Система не полностью определяет mi. Сводим ее к трехдиагональной СЛАУ заданием граничных условий. Для нормального сплайна , . Теперь в СЛАУ n–1неизвестная иона является трехдиагональной. Такая система решается методом прогонки.

  1. Асимптотическое поведение сплайна вне интервала описывается формулами:
  • линейная экстраполяция при (влево):
  • линейная экстраполяция при (вправо):

2.4 Интерполяция функций сплайнами по таблице значений

Постройте график кубического сплайна и вычислите значения неизвестной функции f(x) в промежуточных точках.

Для каждого из двух предложенных наборов экспериментальных данных (см. таблицу 2):

а) с помощью программы Splacc постройте график кубического нормального сплайна и приведите его в пояснительной записке;

б) с помощью программы Splacc вычислите значения неизвестной функции f(x) во всех предложенных промежуточных точках;

в) вычислите те же значения неизвестной функции f(x) в промежуточных точках, введя их единым массивом в программе Spladd;

г) сравните программы Splacc и Spladd, укажите достоинства и недостатки каждой из них, а также отличия в полученных числовых значениях, если таковые имеются.

Таблица 2 – Экспериментальные данные для кубической интерполяции

Графики сплайнов для первой и второй функции, построенные с помощью программы Splacc, представлены на рисунке10.

Рисунок 10 – Интерполяция сплайном для первой (а) и второй (б) функции в программе Splacc

Значения сплайна в расчетных точках приведены в таблицах 3,4. Расчеты значений сплайнов программами Splacc и Spladd дали одинаковые результаты.

Таблица 3 – Значения сплайна в расчетных точках в программе Splacc

Рисунок 11 – Значения сплайна в расчетных точках в программе Spladd для первой (А) и второй функции (Б)

3 Решение обыкновенных дифференциальных уравнений

Дифференциальные уравнения являются основным математическим инструментом моделирования и анализа разнообразных явлений и процессов в науке и технике.

Методы их решения подразделяются на два класса:

аналитические методы, в которых решение получается в виде аналитических функций;

численные (приближенные) методы, где искомые интегральные кривые получают в виде таблиц их численных значений.

Применение аналитических методов позволяет исследовать полученные решения методами математического анализа и сделать соответствующие выводы о свойствах моделируемого явления или процесса. К сожалению, с помощью таких методов можно решать достаточно ограниченный круг реальных задач. Численные методы позволяют получить с определенной точностью приближенное решение практически любой задачи.

Решить дифференциальное уравнение

численным методом означает, что для заданной последовательности аргументов и числа , не определяя аналитического вида функции , найти значения , удовлетворяющие начальным условиям:

3.1 Метод Эйлера.

Этот метод является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других численных методов.

Пусть дано обыкновенное дифференциальное уравнение (ОДУ) с начальными условиями (задача Коши):

и удовлетворяются условия существования и единственности решения.

Требуется найти решение задачи Коши на отрезке . Найдем решение в виде таблицы . Для этого разобьем отрезок наn равных частей и построим последовательность

где – шаг интегрирования.

Проинтегрируем исходное уравнение на отрезке :

Полученное соотношение можно переписать как

Если считать подынтегральную функцию постоянной на участке и равной значению в начальной точке этого интервала , то получим

Подставляя полученный результат в формулу , получим основную расчетную формулу метода Эйлера:

Вычисление значений осуществляется с использованием формулы следующим образом. По заданным начальным условиям иy0, полагая в выражении , вычисляется значение

Далее, определяя значение аргумента x по формуле , используя найденное значение y1 и полагая в формуле , вычисляем следующее приближенное значение интегральной кривой как

Поступая аналогичным образом при , определяем все остальные значенияyk, в том числе последнее значение

которое соответствует значению аргумента .

Таким образом, соединяя на координатной плоскости точки отрезками прямых в качестве приближенного представления искомой интегральной кривой , получаем ломанную линию с вершинами в точках .

Метод Эйлера может быть применен к решению систем дифференциальных уравнений.

Пусть задана система двух уравнений первого порядка:

с начальными условиями

Необходимо найти решение этой задачи Коши. Проводя аналогичные рассуждения, получаем расчетные формулы вида:

гдеh– шаг интегрирования.

При расчетах полагается, что и . В результате применения расчетной схемы получается приближенное представление интегральных кривых и в форме двух ломанных Эйлера, построенных по полученным таблицам . Точность метода Эйлера .

3.2 Решение ОДУ методом Эйлера

Решите ОДУ первого порядка (задачу Коши)

а) изучите устройство и работу шаблона МЭ в среде математического моделирования MathCAD и получите методом Эйлера таблицу значений неизвестной функции y(x);

б) аппроксимируйте полученные данные кубическим сплайном и постройте приближенный график функции y(x) в программе Splacc.

Вводим исходные данные в шаблон МЭ.mcd и по формуле определяем значение y1(листинг 1).

Листинг 1 – Первый шаг метода Эйлера

Подставляя найденное значение y1 в формулу, вычисляем следующее значение функции y2 (листинг 2).

Листинг 2 – Второй шаг метода Эйлера

Остальные значения функции вычисляются аналогично до тех пор, пока не будет достигнут правый конец отрезка интегрирования (листинг 3).

Листинг 3 – Последний шаг метода Эйлера

Полученные значения неизвестной функции представлены в таблице 4.

Таблица 4 – Значения функции

Аппроксимируем таблично заданную функцию кубическим сплайном с помощью программы Splacc. График сплайна показан на рисунке 15. Как видно из рисунка, решение ОДУ практически линейно.

Рисунок 15 – Интерполяция численного решения ОДУ кубическим сплайном

3.3 Решение ОДУ методом Эйлера-Коши

Решите ОДУ первого порядка (задачу Коши)

а) изучите устройство и работу шаблона МЭК в среде математического моделирования MathCAD и получите методом Эйлера-Коши таблицу значений неизвестной функции y(x);

б) аппроксимируйте полученные данные многочленом Лагранжа и постройте приближенный график функции y(x) в программе Lagr;

Вводим исходные данные в шаблон МЭК.mcd и определяем значение y1 (листинг 4).

Листинг 4 – Первый шаг метода Эйлера-Коши

Остальные значения функции вычисляются аналогично по шаблону МЭК до тех пор, пока не будет достигнут правый конец отрезка интегрирования (листинг 5).

Листинг 5 – Последний шаг метода Эйлера-Коши

Полученные значения неизвестной функции представлены в таблице 5.

Таблица 5 – Значения функции

Аппроксимируем таблично заданную функцию многочленом Лагранжа с помощью программы Lagr. График многочлена приведен на рисунке 18. Как следует из рисунка, в данном случае решение ОДУ имеет нелинейный характер.

Рисунок 18 – Интерполяция численного решения ОДУ многочленом Лагранжа

Недостаток аналитических методов – использование целого ряда допущений и предположений в процессе построения математических моделей и невозможность, в некоторых случаях, получить решение в явном виде из-за неразрешимости уравнений в аналитической форме, отсутствия первообразных для подынтегральных функций и т.п. В этих случаях широко применяются численные методы.

Численные методы основываются на построении конечной последовательности действий над числами. Применение численных методов сводится к замене математических операций и отношений соответствующими операциями над числами, например, к замене интегралов суммами, бесконечных сумм – конечными и т.п. Результатом применения численных методов являются таблицы и графики зависимостей, раскрывающих свойства объекта. Численные методы являются продолжением аналитических методов в тех случаях, когда результат не может быть получен в явном виде. Численные методы по сравнению с аналитическими методами позволяют решать значительно более широкий круг задач.

Предложенные преподавателем программы показали себя эффективно для решения конкретных задач, под которые они были написаны. Но их использование для решения различных инженерных задач нецелесообразно из-за крайне ограниченного функционала. Возможный выход – это самостоятельное написание программ под конкретные задачи, но это чревато большими трудозатрами. Альтернатива – использование коммерческих пакетов (например, системы математического моделирования Mathcad, Matlab, Maple и т.д.), позволяющих решать очень широкий круг задач. Использование различных скриптов к этим коммерческим пакетам также позволяет еще сильнее расширить их функционал.

Примеров инженерных задач, в которых могут потребоваться изученные численные методы, можно привести целое множество. Прежде всего это те направления, где требуется математическое моделирование различных процессов. Например, моделирование уличной дорожной сети (для оптимизации использования общественного и частного транспорта), моделирование использования различных инженерных сооружений для расчета эффективности их использования и расчета оптимальных, а также максимальных нагрузок на них, моделирование взаимодействия инженерных сооружений и окружающей среды для расчета возможных экологических последствий их использования.

  1. ВержбицкийВ.М. Численные методы. Линейная алгебра и нелинейные уравнения. М.: Оникс 21 век, 2005. – 636 с.
  2. ВержбицкийВ.М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: Оникс 21 век, 2005. – 400 с.
  3. Бахвалов Н.С. Численные методы/ Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков – М.: Бином. Лаборатория знаний, 2008. – 432 с.

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Видео:Сеточные методы решения дифференциальных уравнений в частных производных.Скачать

Сеточные методы решения дифференциальных уравнений в частных производных.

Преимущества и недостатки численного решения

Преимущества численного решения. Перечислим преимущества численного решения по сравнению с соответствующим экспериментальным исследованием.

Низкая стоимость. Наиболее важным преимуществом численного решения является его небольшая стоимость. В большинстве случаев стоимость затраченного машинного времени на много порядков ниже стоимости соответствующего экспериментального исследования. Значение этого фактора возрастает с увеличением масштабов и усложнением требующего изучения физического процесса.

Скорость. Численное исследование можно провести очень быстро. Конструктор имеет возможность меньше, чем за день, просчитать сотни вариантов и выбрать оптимальную конструкцию, в то время как соответствующее экспериментальное исследование заняло бы очень много времени.

Полнота информации. Численное решение задачи дает подробную и полную информацию. С его помощью можно найти значения всех имеющихся переменных (таких, как скорость, давление, температура, концентрация, интенсивность турбулентности) во всей области решения. В отличие от эксперимента для расчета доступна практически вся исследуемая область и отсутствуют возмущения процесса, вносимые датчиками при экспериментальном исследовании. Очевидно, что ни в одном экспериментальном исследовании невозможно измерить распределения всех переменных во всей исследуемой области. Поэтому, даже если проводится экспериментальное исследование, большое значение для дополнения экспериментальной информации имеют результаты численного решения.

Возможность математического моделирования реальных условий. Численное решение можно получить для реальных условий исследуемого процесса, что далеко не всегда возможно при экспериментальном исследовании.

Возможность моделирования идеальных условий. Если с помощью численного решения изучаются закономерности физического процесса, а не сложные инженерные задачи, можно сконцентрировать внимание на нескольких существенных параметрах этого процесса и исключить все несущественные явления. При этом можно моделировать многие идеализированные условия, например двумерность, постоянство плотности, адиабатическую поверхность или бесконечно быструю реакцию. При экспериментальном исследовании даже с помощью довольно тщательного эксперимента не всегда можно достичь таких идеализированных условий.

Недостатки численного решения. Численное решение дает количественное выражение закономерностей, присущих математической модели. Напротив, с помощью экспериментального исследования наблюдается сама действительность. Таким образом, полезность расчета ограничена обоснованностью математической модели. Тем не менее следует заметить, что результат численного решения зависит как от численного метода, так и от математической модели. Если используемая математическая модель не соответствует изучаемому явлению, то с помощью даже очень хорошей численной методики можно получить не нужные результаты.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Сравнительный анализ численных методов

Доступные действия
  • Найти все файлы пользователя
  • Прокомментировать файл

Министерство образования и науки Республики Казахстан

Карагандинский государственный технический университет

по дисциплине: Математическое обеспечение САПР

Тема: Сравнительный анализ численных методов

Раздел 1 Решение нелинейных уравнений

1.2 Метод касательных

1.3 Практическое применение метода хорд для решения уравнений

1.4 Практическое применение метода касательных для решения уравнений

1.5 Программная реализация итерационных методов

Раздел 2. Решение нелинейных уравнений методом интерполирования

2.1 Многочлен Лагранжа и обратное интерполирование

2.2 Практическое применение метода интерполяции

Раздел 3. Итерационные методы решения систем линейных алгебраических уравнений

3.1 Метод простых итераций

3.2 Метод Зейделя

3.3 Практическое применение метода простых итераций при решении СЛАУ

3.4 Практическое применение метода Зейделя при решении СЛАУ

3.5 Программная реализация итерационных методов решения СЛАУ

Раздел 4.Сравнительный анализ различных методов численного дифференцирования и интегрирования

4.1 Методы численного дифференцирования

4.2 Методы численного интегрирования

Раздел 5. Численные методы решения обыкновенных дифференциальных уравнений

5.1 Метод Эйлера

5.2 Модификация метода Эйлера

5.3 Практическое применение метода Эйлера

5.4 Практическое применение уточненного метода Эйлера

Раздел 1. Решения нелинейных уравнений

Задача нахождения корней нелинейных уравнений вида F(x)=0 , где F(x)-непрерывная функция,- встречается в различных областях научных исследований. Методы решения нелинейных уравнений делятся на :

Прямые методы позволяют записать корни в виде некоторого конечного соотношения (формулы). Такие методы применяются для решения тригонометрических, логарифмических, показательных, а также простейших алгебраических уравнений.

Однако, на практике встречаются уравнения, которые не удается решить простыми методами. Тогда используются итерационные методы решения, т. е. методы последовательных приближений.

Алгоритм нахождения корня нелинейного уравнения с помощью итерационного метода состоит из двух этапов:

а) отыскания приближенного значения корня (начального приближения);

б) уточнения приближенного значения до некоторой заданной степени точности.

В некоторых методах отыскивается не начальное приближение, а некоторый отрезок, содержащий корень, например:(метод хорд, метод касательных). Начальное приближение может быть найдено различными способами, например — графическим методом. Если оценку исходного приближения провести не удается, то находят две близко расположенные точки a и b , в которых непрерывная функция F(x) принимает значения разных знаков, т. е. F(a)>0 F(b) 0 , F(b) 0

На данном промежутке имеется только один корень.

4. Выбор точки х0 зависит от того совпадает ли её знак со знаком второй производной данной функции.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Точка а условию не удовлетворяет.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Из условия следует , что х0=b=0.35, тогда за х1 принимаем a = х1=-0.1

6. Формула для решения

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

При решении мы получили следующие результаты:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

УсловиеСравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки, где n=5 выполнено, необходимая точность достигнута, поэтому итерационный процесс можно прекратить.

Добиться указанной точности нам удалось на 5-ой проведенной итерации.

1.4 Практическое применение метода касательных для решения уравнений

В качестве примера решим вышеупомянутое уравнение методом касательных:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки=0,001.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(выбрали по тому же правилу, которое использовали для решения уравнения методом хорд Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки)

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки;

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткиj)

Итерационный процесс продолжается до тех пор , пока значения х1(k) , х2(k) , х3(k) не станут близкими с заданной погрешностью к значениям х1(k-1) , х2(k-1) , х3(k-1) .

Для возможности выполнения данного преобразования необходимо, чтобы диагональные элементы матрицы А были ненулевыми.

Часто систему преобразуют к виду x=x-Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(Ax-b), где Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки-специально выбираемый числовой параметр.

Выберем начальное приближение x0=( x01 x02… x0m)

подставляя его в праву часть системы

и вычисляя полученное выражение, находим первое приближение:

на втором шаге подставляем приближение x1 в правую часть той же системы, получим второе приближение:

Продолжая этот процесс далее, получим последовательность x1 x2 x3… xn приближений, вычисляемых по формуле :

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Эта формула и выражает собой метод простой итерации.

Итерационный процесс продолжается до тех пор, пока значения х(k) не станут близкими с заданной погрешностью к значениям х(k-1).

Теорема. Метод простой итерации сходится тогда и только тогда, когда все собственные числа матрицы Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткипо модулю меньше единицы, т.е. Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткилибо Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.Эти выражения являются условиями сходимости метода итераций

3.2 Метод Зейделя

Метод Зейделя можно использовать как модификацию метода простых итераций. Основная идея модификации состоит в том, что при вычислении очередного (k+1)-го приближения к известному xi при i>1 используют используются уже найденные приближения к известным x1,… xi-1, а не k-е приближение как в методе простых итераций.

На (k+1)-й итерации компоненты приближения Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткивычисляются по формулам:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие сходимости метода Зейделя заключается в том, что матрица A системы Ax=b, должна удовлетворять условию:

модуль диагонального элемента должен быть больше суммы модулей оставшихся элементов строки или столбца.

Если данное условие выполнено, необходимо проследить, чтобы система была приведена к виду, удовлетворяющему решению методом простой итерации и выполнялось необходимое условие сходимости метода итераций:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки, либо Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

3.3 Практическое применение метода простых итераций для решения системы уравнений

Решим систему линейных уравнений методом простых итераций с точностью равной Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Выполним проверку на условие сходимости:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие выполнено, можно приступать к вычислению нулевого шага:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Начнем итерационный процесс, используя результаты начального приближения:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверим выполняется ли условие остановки итерационного процесса:Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие остановки на первом шаге итерации не было выполнено, поэтому продолжаем итерацию, вычисляя x(2) :

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверим выполняется ли условие остановки итерационного процесса:Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие остановки на втором шаге итерации не было выполнено, поэтому продолжаем итерацию, вычисляя x(3) :

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверим выполняется ли условие остановки итерационного процесса:Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие остановки на третьем шаге итерации было выполнено лишь для x4, поэтому продолжаем итерацию, вычисляя x(4) :

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверим выполняется ли условие остановки итерационного процесса:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сходимость в сотых долях имеет место уже на 4-ом шаге, тогда можно принять

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

3.4 Практическое применение метода Зейделя для решения системы уравнений

Решим ту же систему линейных уравнений методом Зейделя с той же точностью : Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверку на условие сходимости мы выполнили ранее, при решении методом простых итерации.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверим выполняется ли условие остановки итерационного процесса:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие остановки на первом шаге итерации не было выполнено, поэтому продолжаем итерацию, вычисляя x(2) :

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверим выполняется ли условие остановки итерационного процесса:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие остановки на втором шаге итерации было выполнено лишь для x3, x4, поэтому продолжаем итерацию, вычисляя x(3) :

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Проверим выполняется ли условие остановки итерационного процесса:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Условие сходимости выполнено на 3-ем шаге .

Корнями уравнения можно принять:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Как видно из вышеизложенных вычислений, скорость сходимости итерационного метода Зейделя выше, чем скорость сходимости метода простой итерации.

Ниже приведена сравнительная таблица1, позволяющая сравнить результаты решения СЛАУ методом простой итерации и методом Зейделя на различных шагах итерации:

Таблица1. Сводная таблица значений элементов приближений двух методов итерации

3.5 Программная реализация итерационных методов

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Рисунок 12. Решение системы уравнений методом простых итераций

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Рисунок 13. Решение уравнения методом Зейделя

Раздел 4. Сравнительный анализ методов численного дифференцирования и интегрирования

4.1 Методы численного дифференцирования

Необходимость численного дифференцирования может возникнуть при необходимости исследований функций заданных табличным образом, кроме тех случаев, когда вычисление производной численно может оказаться проще, чем дифференцирование.

Предположим, что в окрестности точки xi функция F(x)дифференцируема достаточное число раз. Исходя из определения производной:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

используем для её вычисления две приближенные формулы:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(1)

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(2)

Формулы (1) и (2) называют правыми и левыми разностными производными.

Для оценки погрешностей формул численного дифференцирования используется формула Тейлора:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

откуда можно вычислить:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(3)

Выражение (3) имеет погрешность порядка (x-xi), следовательно, формулы правых и левых разностных производных имеют погрешность одного порядка с h , где

Такая точность достаточно невысока, поэтому применяется так называемая центрально-симметричная форма производной, погрешность которой одного порядка с h2

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(4)

Хотя очевидно, что формула (4) используется для внутренних точек отрезка.

Для примера возьмём ряд точек:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Вычислим производную функции f(x)=sin(x) в одной из них двумя способами.

Очевидно, что h=Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

По центрально-симметричной формуле:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

По формуле левой разностной производной:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Табличное значение Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки=cos(Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки)=0.8660 ,т.е. значение производной, полученное по центрально-симметричной формуле ближе к истинному.

4.2 Методы численного интегрирования

В прикладных исследованиях часто возникает необходимость вычисления значения определённого интеграла

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Как известно из курса математики, аналитически вычисление интеграла можно провести не во всех случаях. И даже в том случае, когда удаётся найти аналитический вид этого интеграла, процедура вычисления даёт приближённый результат, поэтому возникает задача приближенного значения этого интеграла.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Суть приближенного вычисления заключается в двух операциях:

1. в выборе конечного числа вместо n

2. в выборе точки Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткив соответствующем отрезке.

В зависимости от выбора Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткимы получаем различные формулы для вычисления интеграла:

Формулы левых и правых прямоугольников (5),(6)

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(5)

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(6)

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

b, a- концы рассматриваемого отрезка.

Для сравнения результатов вычисления вышеизложенными формулами численного интегрирования вычислим 3-мя способами следующий интеграл, разделив отрезок [0, Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки] на 6 равных отрезков:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткиh=Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

По формуле левых прямоугольников:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

По формуле трапеции:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

По формуле Симпсона:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

А результат полученный аналитически равен

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки=1

Следовательно, можно сделать вывод о том, что численный метод интегрирования по формуле Симсон является более точным, но используется в общем случае при делении рассориваемого отрезка на чётное число промежутков.

Раздел 5. Численные методы решения обыкновенных дифференциальных уравнений

Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывным образом меняются во времени. Соответствующие явления как правило подчиняются физическим законам, которые формулируются в виде дифференциальных уравнений. Одной из основных математических задач, которые приходится решать для таких уравнений, является задача Коши (начальная задача). Чаще всего к ней приходят тогда, когда известно начальное состояние физической величины системы в некоторый момент времени t0 (x0,y0) и требуется предсказать её поведение в момент времени t>t0 ( x>x0). В курсе математического обеспечения САПР, мы рассматривали методы решения задачи Коши с помощью решения обыкновенного дифференциального уравнения первого порядка Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Напомним, что решением обыкновенного дифференциального уравнения (ОДУ) первого порядка является функция y , которая при подстановке в уравнение Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки, превращает его в тождество.

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y(x). Их можно записать в виде

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки,

где х – независимая переменная.

Наивысший порядок n входящей в уравнение Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткипроизводной называется порядком дифференциального уравнения.

Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.

Графические методы используют геометрические построения.

Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций.

Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач , описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть , что данные методы особенно эффективны в сочетании с использованием современных компьютеров.

5.1 Метод Эйлера

Простейшим численным методом решения задачи Коши для ОДУ является метод Эйлера. Рассмотрим уравнение Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткив окрестностях узлов Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки(i=1,2,3,…) и заменим в левой части производную Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткиправой разностью. При этом значения функции Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткиузлах Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткизаменим значениями сеточной функции Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

допускается погрешность Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Будем считать для простоты узлы равноотстоящими, т.е.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Тогда из равенства

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Заметим, что из уравнения

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

представляет собой приближенное нахождение значение функции Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткив точке Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткипри помощи разложения в ряд Тейлора с отбрасыванием членов второго и более высоких порядков. Другими словами, приращение функции полагается равным её дифференциалу.

Полагая i=0, с помощью соотношения

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

находим значение сеточной функции Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткипри Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Требуемое здесь значение Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткизадано начальным условием Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки, т.е. Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Аналогично могут быть найдены значения сеточной функции в других узлах:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Построенный алгоритм называется методом Эйлера.

Геометрическая интерпретация метода Эйлера дана на рисунке14.

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Рисунок 14 . Метод Эйлера.

На рисунке 14. изображены первые два шага, т.е. проиллюстрировано вычисление сеточной функции в точках Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки. Интегральные кривые 0,1,2 описывают точные решения уравнения Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки. При этом кривая 0 соответствует точному решению задачи Коши, так как она проходит через начальную точку А(x0,y0). Точки B,C получены в результате численного решения задачи Коши методом Эйлера. Их отклонения от кривой 0 характеризуют погрешность метода. При выполнении каждого шага мы фактически попадаем на другую интегральную кривую. Отрезок АВ – отрезок касательной к кривой 0 в точке А , ее наклон характеризуется значением производнойСравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки. Погрешность появляется потому, что приращение значения функции при переходе от х0 к х1 заменяется приращением ординаты касательной к кривой 0 в точке А. Касательная ВС уже проводится к другой интегральной кривой 1. таким образом , погрешность метода Эйлера приводит к тому, что на каждом шаге приближенное решение переходит на другую интегральную кривую.

4.2 Модификация метода Эйлера: Усовершенствованный метод Эйлера

Рассмотрим уравнение Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткив окрестностях узлов

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

В левой части уравнения Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткизаменим производную центральной разностью

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки,

а правую часть оставим без изменений:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Приближенное значение функции Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткив точке Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткивычислим с помощью метода Эйлера:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки.

Выразим Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткииз

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки,

заменив Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткиего приближением Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки:

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Данный метод имеет второй порядок точности.

4.3 Практическое применение метода Эйлера для ОДУ

Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостаткиy(0.6)=1.2, Сравните приближенные и аналитические методы решения уравнений в чем достоинства и недостатки

Таблица 1. метод Эйлера (n=5)

№ шагаМетод постой итерацииМетод Зейделя
0
ixiyif(xi,yi)
00.61.20.953971
10.81.39079421.2071579
211.63222581.4725082
31,21.92672741.7488018
41,42.27648782.0337464
51,62.68323712.3236155

Таблица 2. метод Эйлера (n=20)

ixiyif(xi,yi)
00.61.20.953971
10.651.24769861.0173845
20.71.29856781.0816058
30.751.35264811.1466263
40.81.40997941.2124345
50.851.47060111.2790158
60.91.53455191.3463522
70,951.60186951.414422
811.67259061.4831991
91,051.74675061.5526532
101,11.82438321.6227488
111,151.90552071.6934454
121,21.99019291.7646967
131,252.07842781.8364504
141,32.17025031.9086477
151,352.26568271.981223
161,41.44906111.8231403
171,451.54021821.8978804
181,51.63511221.9732751
191,551.73377592.0492675
201,61.83623932.1257929

4.4 Практическое применение уточненного метода Эйлера для ОДУ

📽️ Видео

Математика это не ИсламСкачать

Математика это не Ислам

Алгебраические и аналитические методы решения уравнений и неравенствСкачать

Алгебраические и аналитические методы решения уравнений и неравенств

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

🚀Часть 1. Функциональные уравнения: Погружаемся глубже в математику🔮Скачать

🚀Часть 1. Функциональные уравнения: Погружаемся глубже в математику🔮

11 класс, 27 урок, Общие методы решения уравненийСкачать

11 класс, 27 урок, Общие методы решения уравнений

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Численные методы. Часть 1Скачать

Численные методы. Часть 1

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

5.1 Численные методы решения уравнений F(x)=0Скачать

5.1 Численные методы решения уравнений F(x)=0

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.
Поделиться или сохранить к себе: