Сравнение методов решения систем линейных уравнений

Системы уравнений

Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:

Сравнение методов решения систем линейных уравненийx — 4y = 2
3x — 2y = 16

Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.

Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.

Видео:Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Способ подстановки

Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.

Рассмотрим решение системы уравнений:

Сравнение методов решения систем линейных уравненийx — 4y = 2
3x — 2y = 16

Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:

Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:

3x— 2y = 16;
3( 2 + 4y )— 2y = 16.

Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.

3(2 + 4y) — 2y = 16;
6 + 12y — 2y = 16;
6 + 10y = 16;
10y = 16 — 6;
10y = 10;
y = 10 : 10;
y = 1.

Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:

x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Способ сравнения

Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.

Например, для решение системы:

Сравнение методов решения систем линейных уравненийx — 4y = 2
3x — 2y = 16

найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):

x — 4y = 23x — 2y = 16
-4y = 2 — x-2y = 16 — 3x
y = (2 — x) : — 4y = (16 — 3x) : -2

Составляем из полученных выражений уравнение:

2 — x=16 — 3x
-4-2

Решаем уравнение, чтобы узнать значение x:

2 — x· (-4) =16 — 3x· (-4)
-4-2
2 — x = 32 — 6x
x + 6x = 32 — 2
5x = 30
x = 30 : 5
x = 6

Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:

x — 4y = 23x — 2y = 16
6 — 4y = 23 · 6 — 2y = 16
-4y = 2 — 6-2y = 16 — 18
-4y = -4-2y = -2
y = 1y = 1

Видео:Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Способ сложения или вычитания

Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.

Сравнение методов решения систем линейных уравненийx — 4y = 2
3x — 2y = 16

Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:

Сравнение методов решения систем линейных уравненийx — 4y = 2
-6x + 4y = -32

Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:

+x — 4y = 2
-6x + 4y = -32
-5x = -30

Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.

Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.

Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:

(x — 4y) · 3 = 2 · 3

Сравнение методов решения систем линейных уравнений3x — 12y = 6
3x — 2y = 16

Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:

3x — 12y = 6
3x — 2y = 16
-10y = -10

Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:

3x — 2y = 16
3x — 2 · 1 = 16
3x — 2 = 16
3x = 16 + 2
3x = 18
x = 18 : 3
x = 6

Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:

Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение Сравнение методов решения систем линейных уравнений

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы Сравнение методов решения систем линейных уравнений

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на Сравнение методов решения систем линейных уравненийдля этого умножим все элементы первого столбца на эту неизвестную: Сравнение методов решения систем линейных уравнений

Второй столбец умножим на Сравнение методов решения систем линейных уравненийтретий столбец — на Сравнение методов решения систем линейных уравнений-ый столбец — на Сравнение методов решения систем линейных уравненийи все эти произведения прибавим к первому столбцу, при этом произведение Сравнение методов решения систем линейных уравненийне изменится:

Сравнение методов решения систем линейных уравнений

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е. Сравнение методов решения систем линейных уравнений

Определение: Определитель Сравнение методов решения систем линейных уравненийназывается первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ: Сравнение методов решения систем линейных уравнений

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Сравнение методов решения систем линейных уравненийПроанализируем полученные формулы:

  • если главный определитель системы отличен от нуля (Сравнение методов решения систем линейных уравнений), то система имеет единственное решение;
  • если главный определитель системы равен нулю (Сравнение методов решения систем линейных уравнений), а хотя бы один из вспомогательных определителей отличен от нуля ( Сравнение методов решения систем линейных уравненийили Сравнение методов решения систем линейных уравнений, или, . или Сравнение методов решения систем линейных уравнений), то система не имеет решений (деление на нуль запрещено);
  • если все определители системы равны нулю (Сравнение методов решения систем линейных уравнений), то система имеет бесчисленное множество решений.

Пример:

Решить СЛАУ методом Крамера Сравнение методов решения систем линейных уравнений

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Сравнение методов решения систем линейных уравнений

Найдем главный определитель СЛАУ (раскрываем по первой строке) Сравнение методов решения систем линейных уравнений

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя Сравнение методов решения систем линейных уравнений

Воспользуемся формулами Крамера

Сравнение методов решения систем линейных уравнений

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Сравнение методов решения систем линейных уравненийОтсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных Сравнение методов решения систем линейных уравненийматpицы-столбцы неизвестных Сравнение методов решения систем линейных уравненийи свободных коэффициентов Сравнение методов решения систем линейных уравнений

Тогда СЛАУ можно записать в матричном виде Сравнение методов решения систем линейных уравненийМатричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу Сравнение методов решения систем линейных уравненийк матрице А, получим Сравнение методов решения систем линейных уравненийв силу того, что произведение Сравнение методов решения систем линейных уравненийнайдем Сравнение методов решения систем линейных уравненийТаким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу Сравнение методов решения систем линейных уравнений после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом Сравнение методов решения систем линейных уравнений

Решение:

Введем в рассмотрение следующие матрицы Сравнение методов решения систем линейных уравнений

Найдем матрицу Сравнение методов решения систем линейных уравнений(см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Сравнение методов решения систем линейных уравнений

Решение:

Найдем алгебраические дополнения всех элементов Сравнение методов решения систем линейных уравнений Сравнение методов решения систем линейных уравненийЗапишем обратную матрицу Сравнение методов решения систем линейных уравнений(в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:Сравнение методов решения систем линейных уравнений

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид: Сравнение методов решения систем линейных уравнений

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Сравнение методов решения систем линейных уравненийПриведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Сравнение методов решения систем линейных уравненийРазделим все элементы второй строки на (-5), получим эквивалентную матрицу Сравнение методов решения систем линейных уравнений

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Сравнение методов решения систем линейных уравненийРазделим все элементы третьей строки на (-3), получим Сравнение методов решения систем линейных уравненийТаким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй — при неизвестной у, третий — при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Сравнение методов решения систем линейных уравнений

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы Сравнение методов решения систем линейных уравненийназывается наивысший порядок отличного от нуля минора этой матрицы.

Если Сравнение методов решения систем линейных уравненийто среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы Сравнение методов решения систем линейных уравнений

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, Сравнение методов решения систем линейных уравненийсреди миноров третьего порядка также есть миноры, которые не равны нулю, например, Сравнение методов решения систем линейных уравненийОчевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство Сравнение методов решения систем линейных уравненийдля определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Следствия из теоремы Кронекера — Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Исследование различных методов решения систем уравнений

Сравнение методов решения систем линейных уравнений

Решение систем уравнений важно не только в плане содержания курса математики; они используются в физике, химии, при решении технических, инженерных задач, при работе с моделями экономических, социальных, биологических и прочих явлений и процессов. По статистике, представленной на сайте Федерального института педагогических измерений решили систему уравнений (задание № 21) на 2 балла 24%, на 1 балл – 35% обучающихся. Остальные не справились с этим заданием.

Всё отмеченное указывает на то, что учащиеся испытывают трудности при решении систем уравнений. Я учусь в 9 классе и мне хотелось бы набрать хорошие баллы по математике на ОГЭ. Поэтому мы решили проанализировать методы решения задач систем уравнений, и нами была выдвинута гипотеза: если ученик будет владеть несколькими методами решения систем уравнений, то он сможет при решении системы выбрать наиболее рациональный метод.

Цель: исследовать различные методы решения систем уравнений.

Для достижения поставленной цели решались следующие задачи:

1. Изучить теоретический материал по данной теме.

2. Изучить метод Крамера для решения систем уравнений.

3. Сравнить различные методы решения систем уравнений.

4. Проверить экспериментальным путем, какой метод решения систем уравнений наиболее рациональный.

Методы исследование: опрос, анкетирование, анализ, сравнение и обобщение результатов.

Вывод: графический метод решения систем уравнений красив, но ненадёжен. Во -первых, потому, что графики уравнений мы сумеем построить далеко не всегда. Во-вторых, даже если графики уравнений удалось построить, точки пересечения могут быть не такими «хорошими». По нашему мнению, учащийся должен владеть несколькими методами решения систем уравнений, для того чтобы не только воспользоваться самым рациональным, но и для проверки точности вычисления.

🎬 Видео

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

12. Метод Гаусса решения систем линейных уравнений. Часть 1.Скачать

12. Метод Гаусса решения систем линейных уравнений. Часть 1.

Система линейных уравнений. Метод обратной матрицы. Матричный метод.Скачать

Система линейных уравнений. Метод обратной матрицы. Матричный метод.

Метод Гаусса решения систем линейных уравненийСкачать

Метод Гаусса решения систем линейных уравнений

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

6 способов в одном видеоСкачать

6 способов в одном видео

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

10. Метод Крамера решения систем линейных уравнений.Скачать

10. Метод Крамера решения систем линейных уравнений.

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса
Поделиться или сохранить к себе: