Создать уравнение по корням онлайн

Создание полинома (многочлена) одной переменной онлайн
Корни многочлена
Вы ввели корни полинома следующие
Полученный многочлен с заданными корнями имеет вид

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Описание

Часто в жизни возникает ситуация, обратной задаче нахождения корней многочлена вида

где b,c. z,w — являются коэфициентами полинома.

При n=2 получается квадратное уравнение

при n=3 кубическое и т.д.

Данный сервис позволяет решать задачу нахождения таких коэффициентов, если известны корни этого полинома.

Вроде бы простая задача, но при создании полинома четвертой степени вычислить элементы полинома уже достаточно сложно.

Берем квадратное уравнение

Пусть нам будут известны его корни и

Высчитывается просто и более того основываясь на этих двух правилах, можно вычислять устно ( в уме) целочисленные корни при целых элементах квадратного уравнения.

Надо лишь, разложить на два множителя таким образом, что бы их сумма была равна

Эти множители и будут корнями квадратного уравнения.

Теперь рассмотрим уравнение кубическое

Пусть нам будут известны его корни , и

Уже сложнее. Если мы возьмем полином 4 степени и выше мы увидим что сложность вычисления элементов полинома возрастает в геометрической прогресии.

Еще сложней придется если известные корни содержат в себе комплексные числа.

Именно для упрощения подобных вычислений и был придуман этот бот.

В примерах Вы увидите как легко и просто бот создает полином произвольной степени по известным корням.

Если же Вам необходимо решить полином то ознакомтесь с статьей Расчет квадратного, кубического и 4 степени уравнения онлайн

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Примеры

Определить коэффициенты многочлена когда известны следующие корни

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Онлайн калькулятор. Решение квадратных уравнений.

Используя этот онлайн калькулятор для решения квадратных уравнений, вы сможете очень просто и быстро найти корни квадратного уравнения.

Воспользовавшись онлайн калькулятором для решения квадратных уравнений, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный на уроках материал.

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Калькулятор квадратных уравнений

Ввод данных в калькулятор квадратных уравнений

Если в квадратном уравнении есть знаки вычитания, то перед соответствующими коэффициентами в онлайн калькуляторе нужно поставить знак минус («-«).
Например, квадратное уравнение x 2 — x — 5 = 0, вводится в калькулятор следующим образом:

Если в квадратном уравнение меньше трех слагаемых, то рядом с отсутствующим слагаемым в онлайн калькуляторе необходимо ввести коэффициент ноль («0»).
Например, квадратное уравнение: x 2 — 4 x = 0, вводится в калькулятор следующим образом:

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора квадратных уравнений

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Решение квадратных уравнений.

a x 2 + b x + c = 0,

где a не равно 0.

Для решения квадратного уравнения необходимо посчитать дискриминант многочлена

  • Если D > 0, то уравнение имеет два различных вещественных корня.
  • Если D = 0, то уравнение имеет один корень ( x 1 = x 2).
  • Если D x 1,2 =
— b ± √ D
2 a

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Иррациональные уравнения онлайн калькулятор

Наш калькулятор поможет вам решить иррациональное уравнение или неравенство. Искусственный интеллект, который лежит в основе калькулятора, даст ответ с подробным решением и пояснениями.

Калькулятор полезен старшеклассникам при подготовке к контрольным работам и экзаменам, для проверки знаний перед ЕГЭ, родителям школьников с целью контроля решения многих задач по математике и алгебре.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Добро пожаловать на сайт Pocket Teacher

Наш искусственный интеллект решает сложные математические задания за секунды

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

начать

Видео:Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать

Как решать квадратные уравнения. 8 класс. Вебинар | Математика

Иррациональные уравнения

Что такое иррациональные уравнения и как их решать

Уравнения, в которых переменная содержится под знаком радикала или под знаком возведения в дробную степень, называются иррациональными. Когда мы имеет дело с дробной степенью, то мы лишаем себя многих математических действий для решения уравнения, поэтому иррациональные уравнения решаются по-особенному.

Иррациональные уравнения, как правило, решают при помощи возведения обеих частей уравнения в одинаковую степень. При этом возведение обеих частей уравнения в одну и ту же нечетную степень – это равносильное преобразование уравнения, а в четную – неравносильное. Такая разница получается из-за таких особенностей возведения в степень, таких как если возвести в чётную степень, то отрицательные значения “теряются”.

Смыслом возведения в степень обоих частей иррационального уравнения является желание избавиться от “иррациональности”. Таким образом нам нужно возвести обе части иррационального уравнения в такую степень, чтобы все дробные степени обоих частей уравнения превратилась в целые. После чего можно искать решение данного уравнения, которое будет совпадать с решениями иррационального уравнения, с тем отличием, что в случае возведения в чётную степень теряется знак и конечные решения потребуют проверки и не все подойдут.

Таким образом, основная трудность связана с возведением обеих частей уравнения в одну и ту же четную степень – из-за неравносильности преобразования могут появиться посторонние корни. Поэтому обязательна проверка всех найденных корней. Проверить найденные корни чаще всего забывают те, кто решает иррациональное уравнение. Также не всегда понятно в какую именно степень нужно возводить иррациональное уравнение, чтобы избавиться от иррациональности и решить его. Наш интеллектуальный калькулятор как раз создан для того, чтобы решать иррациональное уравнение и автоматом проверить все корни, что избавит от забывчивости.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Бесплатный онлайн калькулятор иррациональных уравнений

Наш бесплатный решатель позволит решить иррациональное уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей группе ВКонтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

💥 Видео

Составьте квадратное уравнение, корнями которого являются числаСкачать

Составьте квадратное уравнение, корнями которого являются числа

Разбор варианта №21 из сборника Ященко ОГЭ 2024 по математикеСкачать

Разбор варианта №21 из сборника Ященко ОГЭ 2024 по математике

Математика 5 класс. Уравнение. Корень уравненияСкачать

Математика 5 класс. Уравнение. Корень уравнения

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Квадратное уравнение. 8 класс.Скачать

Квадратное уравнение. 8 класс.

АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

СЛОЖИТЕ ДВА КОРНЯСкачать

СЛОЖИТЕ ДВА КОРНЯ

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере
Поделиться или сохранить к себе: