Создать систему уравнений в матлабе

Создать систему уравнений в матлабе

Решение систем линейных уравнений

Метод обратной матрицы: для системы из n уравнений с n неизвестными Создать систему уравнений в матлабе , при условии что определитель матрицы Создать систему уравнений в матлабене равен нулю, единственное решение можно представить в виде Создать систему уравнений в матлабе. Для того чтобы решить систему линейных уравнений методом обратной матрицы, необходимо выполнить следующие действия:

  • сформировать матрицу коэффициентов и вектор свободных членов заданной системы;
  • решить систему, представив вектор неизвестных как произведение матрицы, обратной к матрице системы, и вектора свободных членов.

Дана система уравнений:

Создать систему уравнений в матлабе

Решаем на MATLAB :

A=[1 -2 1; 2 -5 -1; -7 0 1];

x=inv(A)*b % Решение системы x = A -1 b

Решение системы линейных уравнений при помощи метода Гаусса основывается на том, что от заданной системы, переходят к системе эквивалентной, которая решается проще, чем исходная.

Метод Гаусса состоит из двух этапов:

  • Первый этап — это прямой ход, в результате которого расширенная матрица системы путем элементарных преобразований (перестановка уравнений системы, умножение уравнений на число, отличное от нуля, и сложение уравнений) приводится к ступенчатому виду.
  • На втором этапе (обратный ход) ступенчатую матрицу преобразуют так, бы в первых n столбцах получилась единичная матрица. Последний, n +1 столбец этой матрицы содержит решение системы линейных уравнений.

Порядок решения задачи в MATLAB следующий:

  • сформировать матрицу коэффициентов Создать систему уравнений в матлабе и вектор свободных членов Создать систему уравнений в матлабе заданной системы;
  • сформировать расширенную матрицу системы, объединив Создать систему уравнений в матлабе и Создать систему уравнений в матлабе;
  • используя функцию rref, привести расширенную матрицу к ступенчатому виду;
  • найти решение системы, выделив последний столбец матрицы, полученной в предыдущем пункте;
  • выполнить вычисление Создать систему уравнений в матлабе; если в результате получился нулевой вектор, задача решена верно.

A=[1 -2 1; 2 -5 -1; -7 0 1];

C=rref ([A b]); %Приведение расширенной матрицы к треугольному виду

x=C(1:3,4:4) %Выделение последнего столбца из матрицы

Видео:2 - Решениt систем линейных алгебраических уравнений (СЛАУ) с помощью Matlab.Скачать

2 - Решениt систем линейных алгебраических уравнений (СЛАУ) с помощью Matlab.

Решение СЛАУ и матрицы в Matlab

Доброго времени суток, читатели! Сегодня мы поговорим о матрицах в Matlab, об их применении в решении систем линейных алгебраических уравнений. Подробно разберем методы решения, и для этого необходимо знание нескольких базовых алгоритмов.

Также стоит отметить, что у каждого алгоритма, которым мы будем искать решение СЛАУ в Matlab, своя скорость нахождения этого решения, наличие или отсутствие условия выполнения алгоритма и т.д.

В традициях нашего сайта разберём на примере:

Решить систему линейных уравнений:

4*a + b — c = 6
a — b + c = 4
2*a — 3*b — 3*c = 4

Видео:Решение произвольных уравнений. Методы вычислений в MATLAB. Часть 1. Урок 61Скачать

Решение произвольных уравнений. Методы вычислений в MATLAB. Часть 1. Урок 61

Метод обратной матрицы в Matlab

Начнем с достаточно распространенного метода. Его суть состоит в том, что сначала необходимо выписать коэффициенты при a, b и c (то есть те коэффициенты, которые находятся слева) в одну матрицу, а свободный член (то есть то, что справа) в другую.

В итоге у нас получится 2 матрицы:

Для реализации этого метода (и следующих методов тоже) требуется одно условие: чтобы определитель матрицы, составленной из коэффициентов левой части не был равен нулю. Проверка на определитель:

После проверки условия можем перейти к следующему шагу: нахождение обратной матрицы. В Matlab для этого используется оператор inv .
А само решение СЛАУ в Matlab находится как перемножение найденной обратной матрицы на матрицу свободных членов:

Мы получили 3 значения, которые и соответствуют нашим коэффициентам: то есть a = 2, b = -1, c = 1 . Можете проверить, подставив полученные ответы в исходную систему, и убедиться, что мы решили СЛАУ правильно.

Также следует отметить, что матрицы нужно перемножать именно, как сделали мы, то есть слева обратная матрица, справа матрица свободных членов.

Если вы не все поняли, то советую вам почитать нашу статью по основам Matlab.

Видео:1 - Решение систем нелинейных уравнений в MatlabСкачать

1 - Решение систем нелинейных уравнений в Matlab

Метод Гаусса

Метод Гаусса в Matlab реализуется достаточно просто: для этого нам нужно всего лишь изучить один новый оператор.
() — левое деление.
При следующей записи:

Мы получим ответы на нашу исходную систему. Только заметьте, мы решили СЛАУ стандартным набором функций в Matlab, и желательно этот оператор использовать когда матрица коэффициентов квадратная, так как оператор приводит эту матрицу к треугольному виду. В других случаях могут возникнуть ошибки.

Видео:Решение системы уравнений Колмогорова в МатлабеСкачать

Решение системы уравнений Колмогорова в Матлабе

Метод разложения матрицы

Теперь поговорим о разложении матрицы. Нахождение решения через разложение матрицы очень эффективно. Эффективность обусловлена скоростью нахождения решения для данного вида систем и точностью полученных результатов.

Возможны следующие разложения:

  • разложение Холецкого
  • LU разложение
  • QR разложение

Разберём решение через LU и QR разложение, так как в задачах чаще всего встречается задание на решение именно через такие разложения.

Основное отличие этих двух разложений: LU разложение применимо только для квадратных матриц, QR — возможно и для прямоугольных.

LU разложение

Решим выше предложенную задачу через LU разложение:

QR разложение

И через QR разложение соответственно:

Отметим, что апостроф ( ) после Q означает транспонирование.

Видео:Как в MATLAB Simulink моделировать уравнения (Структурная схема САУ)Скачать

Как в MATLAB Simulink моделировать уравнения (Структурная схема САУ)

Стандартные функции Matlab

Так же Matlab предлагает функцию linsolve , с помощью которой возможно решить систему линейных алгебраических уравнений. Выглядит это так:

Как видите, ничего сложного тут нет, на то они и стандартные функции Matlab.

Видео:Решение системы нелинейных уравнений. Урок 139Скачать

Решение системы нелинейных уравнений. Урок 139

Повторение

Итак, сегодня мы с вами изучили несколько методов для решения СЛАУ в Matlab, как с помощью матриц, так и с помощью стандартных функций. Давайте их повторим на другом примере:

Решить систему линейных уравнений:
6*a — b — c = 0
a — 2*b + 3*d = 0
3*a — 4*b — 4*c = -1

  • Методом обратной матрицы:
  • Методом Гаусса:
  • LU разложение:
  • QR разложение:

На этом я с вами попрощаюсь, надеюсь, вы научились применять матрицы в Matlab для решения СЛАУ.

Видео:Решение трёх систем линейных уравнений в MatLabСкачать

Решение трёх систем линейных уравнений в MatLab

MATLAB — алгебра

До сих пор мы видели, что все примеры работают как в MATLAB, так и в его GNU, альтернативно называемом Octave. Но для решения основных алгебраических уравнений и MATLAB, и Octave немного отличаются, поэтому мы постараемся охватить MATLAB и Octave в отдельных разделах.

Мы также обсудим факторизацию и упрощение алгебраических выражений.

Видео:Решение систем Д/У: 1. Знакомство с функциями odeXYСкачать

Решение систем Д/У: 1. Знакомство с функциями odeXY

Решение основных алгебраических уравнений в MATLAB

Функция решения используется для решения алгебраических уравнений. В простейшем виде функция решения принимает в качестве аргумента уравнение, заключенное в кавычки.

Например, давайте решим для х в уравнении х-5 = 0

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Вы также можете вызвать функцию решения как —

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Вы можете даже не включать правую часть уравнения —

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Если в уравнение входит несколько символов, то по умолчанию MATLAB предполагает, что вы решаете для x, однако функция решения имеет другую форму —

где вы также можете упомянуть переменную.

Например, давайте решим уравнение v — u — 3t 2 = 0, для v. В этом случае мы должны написать —

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

Видео:MatLab. 7.9. Системы дифференциальных уравненийСкачать

MatLab. 7.9. Системы дифференциальных уравнений

Решение основных алгебраических уравнений в октаве

Функция корней используется для решения алгебраических уравнений в Octave, и вы можете написать приведенные выше примеры следующим образом:

Например, давайте решим для х в уравнении х-5 = 0

Octave выполнит приведенный выше оператор и вернет следующий результат —

Вы также можете вызвать функцию решения как —

Octave выполнит приведенный выше оператор и вернет следующий результат —

Видео:Как создавать функции в MATLABСкачать

Как создавать функции в MATLAB

Решение квадратичных уравнений в MATLAB

Функция решения также может решать уравнения более высокого порядка. Он часто используется для решения квадратных уравнений. Функция возвращает корни уравнения в массиве.

В следующем примере решается квадратное уравнение x 2 -7x +12 = 0. Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Видео:Системы уравнений, определители, обращение матриц. Методы вычислений в MATLAB. Урок 73Скачать

Системы уравнений, определители, обращение матриц. Методы вычислений в MATLAB. Урок 73

Решение квадратичных уравнений в октаве

В следующем примере решается квадратное уравнение x 2 -7x +12 = 0 в октаве. Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Видео:MatLab. 6.1. Решение уравненийСкачать

MatLab. 6.1. Решение уравнений

Решение уравнений высшего порядка в MATLAB

Функция решения также может решать уравнения более высокого порядка. Например, давайте решим кубическое уравнение как (x-3) 2 (x-7) = 0

MATLAB выполнит приведенный выше оператор и вернет следующий результат —

В случае уравнений более высокого порядка корни длинные, содержащие много членов. Вы можете получить числовое значение таких корней, преобразовав их в двойные. В следующем примере решается уравнение четвертого порядка x 4 — 7x 3 + 3x 2 — 5x + 9 = 0.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он возвращает следующий результат —

Обратите внимание, что последние два корня являются комплексными числами.

Видео:Решение двух систем уравнений в MatLabСкачать

Решение двух систем уравнений в MatLab

Решение уравнений высшего порядка в октаве

В следующем примере решается уравнение четвертого порядка x 4 — 7x 3 + 3x 2 — 5x + 9 = 0.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он возвращает следующий результат —

Видео:Компьютерное моделирование - Решение систем нелинейных уравненийСкачать

Компьютерное моделирование - Решение систем нелинейных уравнений

Решение системы уравнений в MATLAB

Функция решения также может быть использована для генерации решений систем уравнений, включающих более одной переменной. Давайте рассмотрим простой пример, чтобы продемонстрировать это использование.

Давайте решим уравнения —

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Таким же образом вы можете решать большие линейные системы. Рассмотрим следующую систему уравнений —

Видео:MATLAB 03 Написание программСкачать

MATLAB 03 Написание программ

Решающая система уравнений в октаве

У нас есть немного другой подход к решению системы ‘n’ линейных уравнений с ‘n’ неизвестными. Давайте рассмотрим простой пример, чтобы продемонстрировать это использование.

Давайте решим уравнения —

Такая система линейных уравнений может быть записана в виде единого матричного уравнения Ax = b, где A — матрица коэффициентов, b — вектор столбцов, содержащий правую часть линейных уравнений, а x — вектор столбцов, представляющий решение как показано в программе ниже —

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Таким же образом, вы можете решить большие линейные системы, как указано ниже —

Видео:ТАУ. Matlab/SIMULINK Фазовые портреты систем нелинейных диф. уравненийСкачать

ТАУ. Matlab/SIMULINK Фазовые портреты систем нелинейных диф. уравнений

Разложение и сбор уравнений в MATLAB

Функция расширения и сбора расширяет и собирает уравнение соответственно. Следующий пример демонстрирует понятия —

Когда вы работаете со многими символическими функциями, вы должны объявить, что ваши переменные являются символическими.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Видео:MatLab для новичков. Решаем case с квадратным уравнением.Скачать

MatLab для новичков. Решаем case с квадратным уравнением.

Расширяя и собирая уравнения в октаве

Вам нужно иметь символьный пакет, который обеспечивает расширение и функцию сбора для расширения и сбора уравнения, соответственно. Следующий пример демонстрирует понятия —

Когда вы работаете со многими символическими функциями, вы должны объявить, что ваши переменные являются символическими, но у Octave другой подход к определению символических переменных. Обратите внимание на использование Sin и Cos , которые также определены в символической упаковке.

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

Видео:MatLab. 8.8. Решение большой системы нелинейных уравненийСкачать

MatLab. 8.8. Решение большой системы нелинейных уравнений

Факторизация и упрощение алгебраических выражений

Факторная функция разлагает выражение, а функция упрощения упрощает выражение. Следующий пример демонстрирует концепцию —

пример

Создайте файл сценария и введите следующий код —

Когда вы запускаете файл, он показывает следующий результат —

📺 Видео

MatLab. Решение дифференциального уравнения.Скачать

MatLab. Решение дифференциального уравнения.

MatLab. Матрицы. Практика 2 часть 1Скачать

MatLab. Матрицы. Практика 2 часть 1
Поделиться или сохранить к себе: