Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Как найти координаты фокусов гиперболы

Гиперболой Называется геометрическое место точек на плоскости, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная.

Обозначим эту постоянную через 2А, расстояние между фокусами через 2С, а оси координат выберем так же, как в разделе 2.3.

Пусть М(Х, У) – произвольная точка гиперболы (рисунок 2.4).

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

По определению гиперболы F2MF1М = ±2A. (Знак плюс в правой части надо выбрать, если F2M > F1М, и минус, если F2M A).

Исследуем формулу гиперболы.

1. Уравнение (2.7) содержит квадраты текущих координат, следовательно, оси координат являются осями симметрии гиперболы. Ось симметрии, на которой находятся фокусы, называется фокальной осью, точка пересечения осей симметрии – центром гиперболы. Для гиперболы, заданной уравнением (2.7), фокальная ось совпадает с осью ОХ, а центр – с началом координат.

В этом случае координаты фокусов гиперболы имеют вид F1(с,0), F2(-с,0).

2. Точки пересечения с осями симметрии. Точки пересечения гиперболы с осями симметрии называются Вершинами гиперболы. Полагая в уравнении (2.7) У = 0, найдем абсциссы точек пересечения с осью ОХ:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90или X2 = А2, откуда Х = ±А.

Итак, точки Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90являются вершинами гиперболы.

Если же в уравнении (2.7) принять x = 0, получим

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90или У2 = –B2,

Т. е. для У мы получили мнимые значения. Это означает, что гипербола не пересекает ось ОY.
В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью (фокальная ось); ось симметрии, которая не пересекает гиперболу, – ее мнимой осью. Для гиперболы, заданной уравнением (2.7), действительной осью симметрии является ось ОХ, а мнимой осью – ось ОY. Длина отрезка А1А2 = 2А, число А называется действительной полуосью гиперболы. Отложим на мнимой оси гиперболы по обе стороны от центра симметрии O отрезки ОВ1 и ОВ2 длиною B, тогда отрезок В1B2 = 2B называют мнимой осью, а величину B – мнимой полуосью гиперболы.

Из уравнения (2.7) видно, что Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, следовательно, |X| ³ A. Кривая имеет форму, изображенную на рисунке 2.5. Она располагается вне прямоугольника со сторонами, равными 2А и 2B, с центром в начале координат, и состоит из двух отдельных ветвей, простирающихся в бесконечность (см. рисунок 2.5). Диагонали этого прямоугольника определяются уравнениями

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90(2.8)

И являются Асимптотами гиперболы.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Если A = B, гипербола называется равносторонней.

Замечание 1. Если мнимая ось гиперболы равна 2А и расположена на оси ОХ, а действи-тельная ось равна 2B и расположена на оси ОY, то уравнение такой гиперболы (рисунок 2.6) имеет вид (каноническое уравнение гиперболы, если ее фокальная ось – ось Y)

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90(2.9)

Координаты фокусов в этом случае имеет вид F1(0,с) и F2(0,-с).

Гиперболы (2.7) и (2.9) называются Сопряженными гиперболами.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Замечание 2. Эксцентриситетом Гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90(2.10)

Для любой гиперболы ε > 1, это число определяет форму гиперболы.

Пример 2.3. Найти координаты фокусов и вершин гиперболы

Написать уравнение ее асимптот и вычислить эксцентриситет.

Решение. Напишем каноническое уравнение гиперболы, для чего обе части уравнения поделим на 144. После сокращения получим

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Отсюда видно, что А2 = 9, т. е. A = 3 и B2 = 16, т. е. B = 4.

Для гиперболы С2 = А2 + B2 = 16 + 9 = 25, отсюда C = 5.

Теперь можем написать координаты вершин и фокусов гиперболы:

Эксцентриситет Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, а уравнения асимптот имеют вид

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Содержание
  1. Определение гиперболы, решаем задачи вместе
  2. Решить задачи на гиперболу самостоятельно, а затем посмотреть решения
  3. Составить уравнение гиперболы с фокусами на оси Ох, если длина ее действительной оси равна 12, а расстояние между фокусами равно 20?
  4. №1. Найти точки пересечения асимптот гиперболы х² — 3у² = 12 с окружностью, имеющей центр в правом фокусе гиперболы и проходящей через начало координат?
  5. Написать каноническое уравнение эллипса, если известно, что расстояние между фокусами равно 6, а эксцентриситет ε = 3 / 5?
  6. Написать канонические уравнение гиперболы, если известно, что а)расстояние между фокусами равно 10 и эксцентриситет равен 5 / 3?
  7. 1)Составьте уравнение гиперболы с фокусами на оси Ох, если длина её действительной оси равна 16, эксцентриситет e = 0, 6?
  8. Помогите?
  9. Построить эллипс 25x ^ 2 + 16y ^ 2 = 400?
  10. Составить уравнение гиперолы, если даны ее фокусы F1( — 3 ; 4), F2( — 3 ; 10) и длина мнимой полуоси, равная 1?
  11. Составить уравнение прямой отсекающей 5 единиц на оси Ох и 3 единицы на оси Оу?
  12. Составить уравнение эллипса с фокусами на оси Ox, если его большая ось равна 16, а эксцентритет e = 0, 8?
  13. Составить уравнение гиперболы по координатам фокусов и уравнениям ее асимптот F( + — 5 ; 0), y = + — 4 / 3x?
  14. Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90
  15. Как написать хороший ответ?
  16. 🌟 Видео

Видео:§29 Эксцентриситет гиперболыСкачать

§29 Эксцентриситет гиперболы

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

На чертеже ветви гиперболы – бордового цвета.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, где

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Результат – каноническое уравнение гиперболы:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Если Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– произвольная точка левой ветви гиперболы (Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90) и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– расстояния до этой точки от фокусов Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, то формулы для расстояний – следующие:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Если Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– произвольная точка правой ветви гиперболы (Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90) и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– расстояния до этой точки от фокусов Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, то формулы для расстояний – следующие:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90,

где Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– расстояние от левого фокуса до точки любой ветви гиперболы, Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– расстояние от правого фокуса до точки любой ветви гиперболы и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– расстояния этой точки до директрис Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90и Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Пример 4. Дана гипербола Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90. Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90. Вычисляем:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Получаем уравнение директрис гиперболы:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, где Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90и координаты точки Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90. Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Определение. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами есть величина постоянная, меньшая расстояния между фокусами.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

По определению | r 1r 2 | = 2 a . F 1 , F 2 – фокусы гиперболы. F 1 F 2 = 2 c .

Выберем на гиперболе произвольную точку М(х, у). Тогда :

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

обозначим с 2 – а 2 = b 2 (геометрически эта величина – меньшая полуось)

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Получили каноническое уравнение гиперболы.Гипербола симметрична относительно середины отрезка, соединяющего фокусы и относительно осей координат.

Ось 2а называется действительной осью.

Ось 2 b называется мнимой осью.

Гипербола имеет две асимптоты, уравнения которых Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Определение. Отношение Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90называется эксцентриситетом гиперболы, где с – половина расстояния между фокусами, а – действительная полуось.

С учетом того, что с 2 – а 2 = b 2

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90:

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Если а = b , e = Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, то гипербола называется равнобочной (равносторонней).

Определение. Две прямые, перпендикулярные действительной оси гиперболы и расположенные симметрично относительно центра на расстоянии a/e от него, называются директрисами гиперболы. Их уравнения: Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Теорема. Если r – расстояние от произвольной точки М гиперболы до какого- либо фокуса, d – расстояние от той же точки до соответствующей этому фокусу директрисы, то отношение r / d – величина постоянная, равная эксцентриситету.

Доказательство. Изобразим схематично гиперболу.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Из очевидных геометрических соотношений можно записать:

a / e + d = x , следовательно d = x – a / e .

( x – c ) 2 + y 2 = r 2

Из канонического уравнения: Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90, с учетом b 2 = c 2 – a 2 :

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Тогда т.к. с/ a = e , то r = ex – a .

Итого: Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Для левой ветви доказательство аналогично. Теорема доказана

Пример 1 . Найти уравнение гиперболы, вершины и фокусы которой находятся в соответствующих вершинах и фокусах эллипса Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Для эллипса: c 2 = a 2 – b 2 . Для гиперболы: c 2 = a 2 + b 2 .

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Уравнение гиперболы: Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Пример 2 . Составить уравнение гиперболы, если ее эксцентриситет равен 2, а фокусы совпадают с фокусами эллипса с уравнением Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Находим фокусное расстояние c 2 = 25 – 9 = 16.

Для гиперболы: c 2 = a 2 + b 2 = 16, e = c / a = 2; c = 2 a ; c 2 = 4 a 2 ; a 2 = 4;

Итого: Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90– искомое уравнение. Copyright © 2004-2019

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Составить уравнение гиперболы с фокусами на оси Ох, если длина ее действительной оси равна 12, а расстояние между фокусами равно 20?

Математика | 10 — 11 классы

Составить уравнение гиперболы с фокусами на оси Ох, если длина ее действительной оси равна 12, а расстояние между фокусами равно 20.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

X ^ 2 / a ^ 2 — y ^ 2 / b ^ 2 = 1 — каноническое уравнение гиперболы

|F1F2| = 2c = 20 c = 20 : 2 = 10

x ^ 2 / 6 ^ 2 — y ^ 2 / 8 ^ 2 = 1

x ^ 2 / 36 — y ^ 2 / 64 = 1.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:§23 Построение гиперболыСкачать

§23 Построение гиперболы

№1. Найти точки пересечения асимптот гиперболы х² — 3у² = 12 с окружностью, имеющей центр в правом фокусе гиперболы и проходящей через начало координат?

№1. Найти точки пересечения асимптот гиперболы х² — 3у² = 12 с окружностью, имеющей центр в правом фокусе гиперболы и проходящей через начало координат.

№2. Гипербола проходит через точку М(6 ; 3√5 / 2), симметрична относительно осей координат и имеет вещественную полуось а = 4.

Написать уравнения перпендикуляров , опущенных из левого фокуса гиперболы на ее асимптоты.

С подробным решением и объяснением , пожалуйста!

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

Написать каноническое уравнение эллипса, если известно, что расстояние между фокусами равно 6, а эксцентриситет ε = 3 / 5?

Написать каноническое уравнение эллипса, если известно, что расстояние между фокусами равно 6, а эксцентриситет ε = 3 / 5.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:Эллипс (часть 8). Решение задач. Высшая математика.Скачать

Эллипс (часть 8). Решение задач. Высшая математика.

Написать канонические уравнение гиперболы, если известно, что а)расстояние между фокусами равно 10 и эксцентриситет равен 5 / 3?

Написать канонические уравнение гиперболы, если известно, что а)расстояние между фокусами равно 10 и эксцентриситет равен 5 / 3.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:165. Найти фокусы и эксцентриситет эллипса.Скачать

165. Найти фокусы и эксцентриситет эллипса.

1)Составьте уравнение гиперболы с фокусами на оси Ох, если длина её действительной оси равна 16, эксцентриситет e = 0, 6?

1)Составьте уравнение гиперболы с фокусами на оси Ох, если длина её действительной оси равна 16, эксцентриситет e = 0, 6.

2)Составьте уравнение гиперболы с фокусами на оси Ох, если длина её действительной оси равна 16 и проходит через точку ( — 10 ; — 3).

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:ЭллипсСкачать

Эллипс

Помогите?

1. Через точку М (3, 5) провести прямую так, чтобы она отсекала от координатного угла равнобедренного треугольника.

Найти центр тяжести этого треугольника и его углы.

2. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если известно : вершины гиперболы делят расстояние между центром и фокусами пополам, а действительная полуось равна 5.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:§28 Эксцентриситет эллипсаСкачать

§28 Эксцентриситет эллипса

Построить эллипс 25x ^ 2 + 16y ^ 2 = 400?

Построить эллипс 25x ^ 2 + 16y ^ 2 = 400.

Найти координаты его фокусов, длину осей и эксцентриситет.

Написать уравнение прямой, проходящей через его правый фокус и точку(1 ; — 3).

Пропустил тему и блин застреваю на каждом шагу(.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:Эллипс. Определение. Уравнение. График. Фокусы. Главные оси. Эксцентриситет - Новиков АлександрСкачать

Эллипс. Определение. Уравнение. График. Фокусы. Главные оси. Эксцентриситет - Новиков Александр

Составить уравнение гиперолы, если даны ее фокусы F1( — 3 ; 4), F2( — 3 ; 10) и длина мнимой полуоси, равная 1?

Составить уравнение гиперолы, если даны ее фокусы F1( — 3 ; 4), F2( — 3 ; 10) и длина мнимой полуоси, равная 1.

Какой угол образуют асимптоты гоперболы с осью ординат?

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:Математический анализ, 15 урок, АссимптотыСкачать

Математический анализ, 15 урок, Ассимптоты

Составить уравнение прямой отсекающей 5 единиц на оси Ох и 3 единицы на оси Оу?

Составить уравнение прямой отсекающей 5 единиц на оси Ох и 3 единицы на оси Оу.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:11 класс, 52 урок, ЭллипсСкачать

11 класс, 52 урок, Эллипс

Составить уравнение эллипса с фокусами на оси Ox, если его большая ось равна 16, а эксцентритет e = 0, 8?

Составить уравнение эллипса с фокусами на оси Ox, если его большая ось равна 16, а эксцентритет e = 0, 8.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Видео:§21 Каноническое уравнение гиперболыСкачать

§21 Каноническое уравнение гиперболы

Составить уравнение гиперболы по координатам фокусов и уравнениям ее асимптот F( + — 5 ; 0), y = + — 4 / 3x?

Составить уравнение гиперболы по координатам фокусов и уравнениям ее асимптот F( + — 5 ; 0), y = + — 4 / 3x.

На этой странице сайта вы найдете ответы на вопрос Составить уравнение гиперболы с фокусами на оси Ох, если длина ее действительной оси равна 12, а расстояние между фокусами равно 20?, относящийся к категории Математика. Сложность вопроса соответствует базовым знаниям учеников 10 — 11 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы помогут найти нужную информацию.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Составьте уравнение гиперболы с фокусами на оси ох зная расстояние между фокусами 2с 90

Вопрос по математике:

Составить уравнение гиперболы с фокусами на оси ох если растояние между её фокусами рано 20 а уравнение её асимптот равно y=+-(4/3)x

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

x^2/a^2 — y^2/b^2 =1 — каноническое уравнение гиперболы

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Математика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Математика — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов.

🌟 Видео

Неполное уравнение второго порядка. Эллипс, гипербола. ЗадачиСкачать

Неполное уравнение второго порядка. Эллипс, гипербола. Задачи

Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

Лекция 31.2. Кривые второго порядка. Гипербола.

Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

Написать каноническое уравнение гиперболы.  Дан эксцентриситет

Фокусы эллипсаСкачать

Фокусы эллипса

§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫСкачать

КАК НАЙТИ ВЕРШИНУ ПАРАБОЛЫ
Поделиться или сохранить к себе: