Содержание:
По этой ссылке вы найдёте полный курс лекций по математике:
Частный случай: уравнение второго порядка Пусть имеем линейное однородное дифференциальное уравнение второго порядка где р, Р2 — действительные числа. Чтобы найти общее решение этого уравнения, надо найти два его линейно независимых частных решения. Следуя Эйлеру, будем искать их в виде где тогда Подставляя эти выражения для у и ее производных в уравнение (1), получаем .
Так как , то должно выполняться равенство Следовательно, функция у = eAz будет решением уравнения (1), т. е. будет обращать его в тождество по х, если А будет удовлетворять алгебраическому уравнению Уравнение (3) называется характеристическим уравнением по отношению к уравнению (1), а его левая часть называется характеристическим много-членом.
Уравнение (3) есть квадратное уравнение. Обозначим его корни через А] и 1 они могут быть 1) действительными и разными; 2) комплексными; 3) действительными и равными. Рассмотрим каждый случай в отдельности. 1. Если корни Л|, Аг характеристического уравнения действительные и разные, то частными решениями уравнения (1) будут функции Эти решения линейно независимы (Aj Ф А2) и, следовательно, образуют фундаментальную систему решений уравнения.
- Общее решение уравнения
- Характеристическое уравнение
- ЛДУ с переменными коэффициентами. Метод Лагранжа
- Линейные дифференциальные уравнения с переменные коэффициентами
- Составление дифференциального уравнения по заданной фундаментальной системе решений
- Разные задачи
- Восстановление линейного однородного уравнения по фундаментальной системе решений Текст научной статьи по специальности « Математика»
- Аннотация научной статьи по математике, автор научной работы — Шумилина Маргарита Алексеевна
- Похожие темы научных работ по математике , автор научной работы — Шумилина Маргарита Алексеевна
- Текст научной работы на тему «Восстановление линейного однородного уравнения по фундаментальной системе решений»
- 💡 Видео
Общее решение уравнения
Общее решение уравнения имеет вид — произвольные постоянные). Пример 1. Найти общее решение уравнения М Составляем характеристическое уравнение: Оно имеет корни Линейные однородные дифференциальные уравнения с постоянными коэффициентами Общий случай: уравнение произвольного порядка Физические приложения: уравнение колебаний Уравнения, приводящие к уравнениям с постоянными коэффициентами Линейные неоднородные дифференциальные уравнения Отсюда получаем искомое общее решение 2.
Пусть корни характеристического уравнения комплексные. Так как коэффициенты р], р2 характеристического уравнения действительные, комплексные корни входят попарно сопряженными. Положим, что Частные решения дифференциального уравнения (1) можно записать в виде Это комплекснозначные функции действительного аргумента х, а мы будем заниматься лишь действительными решениями.
С помощью формул Эйлера частные решения ij и у2 уравнения (1) можно представить в виде Воспользовавшисьтеоремой 4, получим, что частными решениями уравнения (1) будут также функции _ Эти решения линейно независимы, так как Решения образуют фундаментальную систему решений уравне-ния (1), общее решение которого в этом случае имеет вид или Пример 3.
Найти общее решение уравнения 4 Характеристическое уравнение имеет кратные корни Поэтому общее решение исходного дифференциального уравнения: Замечание. Пусть имеем линейное однородное дифференциальное уравнение (вообще, с переменными коэффициентами) Пусть — частное решение уравнения. Введем новую искомую функцию ti(x) соотношением (разрешимым относительно н(х) в тех интервалах, где yi(x) не обращается в нуль).
Из этого соотношения найдем производные от у : и подставим их в уравнение (5): Для функции и(х) получаем опять уравнение порядка п, но коэффициент при м(х) есть £(yil-Он тождественно равен нулю, так как yi (х) есть решение уравнения (5). Следовательно, в полученном уравнении порядок понизится, если ввести новую искомую функцию z(x) = и'(х).
Разделив, кроме того, все члены последнего уравнения на yi(x) Ф 0, приведем его к виду Итак, если известно частное решение уравнения (5), то задача интегрирования этого уравнения приводится к интегрированию линейного однородного уравнения порядка п — . Можно показать, что если известны два частных линейно независимых решения, то порядок уравнения может быть понижен на две единицы. Вообше, если известно г частных линейно независимых решений линейного однородного дифференциального уравнения, то порядок этого уравнения может быть понижен на г единиц. 6.2.
Физические приложения: уравнение колебаний Линейные дифференциальные уравнения с постоянными коэффициентами возникают в задачах о механических и электрических колебаниях. Рассмотрим уравнение свободных механических колебаний, причем независимой переменной будем считать время t: где у — отклонение колеблющейся точки от положения равновесия, rh — масса точки, h — коэффициент трения (считаем, что сила трения пропорциональна скорости), к > 0 — коэффициент упругости восстанавливающей силы (считаем, что эта сила пропорциональна отклонению).
Характеристическое уравнение
Характеристическое уравнение для (6) имеет корни Если трение достаточно велико, h2 > Атк, то эти корни действительные и отрицательные. Общее решение уравнения (6) в этом случае имеет вид Так как то из (7) заключаем, что при большом трен и и отклонение точки от положения равновесия с возрастанием t стремится к нулю, не совершая колебаний. Если трение мало, Атк, то характеристическое уравнение имеет комплексно сопряженные корни Общее решение уравнения (6) в этом случае определяется формулой или Отсюда видно, что в случае малого трения происходят затухающие колебания. Пусть теперь трение отсутствует, .
В этом случае характеристическое уравнение имеет чисто мнимые корни Решение уравне- ния (6) имеет вид . в этом случае происходят незатухающие гармонические колебания с частотой ш = и произвольными амплитудой А и начальной фазой 6. Задача. При каких 1) все решения уравнения стремятся к нулю при 2) каждое решение уравнения обращается в нуль на бесконечном множестве точек х? 6.3. Общий случай: уравнение произвольного порядка Рассмотрим теперь линейное однородное дифференциальное уравнение произвольного порядка п (п ^ 1) с постоянными коэффициентами ) гдерьрг,,Рп — действительные числа.
Общее решение дифференциального уравнения (8) находим так же, как и в случае уравнения второго порядка. Ищем решение в виде Подставляя вместо у величину еХх в уравнение (8), получаем , что приводит к характеристическому уравнению 2. Находим корни характеристического уравнения. 3. По характеру корней выписываем частные линейно независимые решения уравнения (8), руководствуясь тем, что: а) Каждому действительному однократному корню А характеристическою уравнения соответствует частное решение уравнения (8).
б) Каждой паре однократных комплексно сопряженных корней соответствуют два линейно независимых частных решения уравнения (8). в) Каждому действительному корню А кратности г соответствует г линейно независимых частных решений уравнения (8). Рассмотрим случай в) подробнее. Пусть число А есть корень кратности г характеристического уравнения . Функцию будем рассматривать как функцию двух аргументов: ж и А.
Возможно вам будут полезны данные страницы:
Она имеет непрерывные производные по а: и по А всех порядков, причем Поэтому частные производные функции по х и по А не зависят от порядка дифференцирования (операции дифференцирования функции у по х и по А перестановочны), так что Воспользовавшись этой перестановочностью, а также тем, что Если А есть г-кратный корень характеристического уравнения то стало быть, правые части (10) и (11) тождественно по х равны нулю: Это означает, что функции являются в этом случае решениями уравнения (8).
Легко проверить, что функции линейно независимы на любом интервале (a, b) изменения х. г) Приведенные в пункте в) рассуждения сохраняют силу и для комплексных корней.
Поэтому каждой паре комплексно сопряженных корней p кратности l отвечает 2/х частных решений уравнения 4. Число построенных таким образом частных решений уравнения (8) равно порядку п этого уравнения. Можно показать, что все эти решения линейно независимы в совокупности. Имея п линейно независимых частных решений 3/i(x), skfc). уп(я) уравнения (8), получаем общее решение этого уравнения, где произвольные постоянные. Прммер 4. Найти общее решение уравнения Составляем характеристическое уравнение: 2. Находим корни характеристического уравнения: 3.
По характеру корней выписываем частные линейно независимые решения дифференциального уравнения: 4. Общее решение дифференциального уравнения имеет вид Схема решения линейного дифференциального уравнения с постоянными коэффициентами Дифференциальное уравнение действительные числа). Характеристическое уравнение Корни характеристического уравнения Частные линейно независимые решения дифференциального уравнения Общее решение уравнения — произвольные постоянные). §7.
Уравнения, приводящие к уравнениям с постоянными коэффициентами Существуют линейные дифференциальные уравнения с переменными коэффициентами, которые с помощью замены переменных преобразуются в уравнения с постоянными коэффициентами. К их числу принадлежит уравнение Эйлера где pi.tp2, —tPn — постоянные числа.
Ограничимся рассмотрением уравнения Эйлера 2-го порядка (оно встречается в задачах математической физики): Линейные однородные дифференциальные уравнения с постоянными коэффициентами Общий случай: уравнение произвольного порядка Физические приложения: уравнение колебаний Уравнения, приводящие к уравнениям с постоянными коэффициентами Линейные неоднородные дифференциальные уравнения Положим Подставляя выражения для , получим дифференциальное уравнение с постоянными коэффициентами.
Последнее интегрируется обычным приемом: составляем характеристическое уравнение находим его корни и по характеру корней выписываем общее решение уравнения (2), после чего возвращаемся к старой переменной х. Пример. Найти общее решение уравнения Замена переменной х = приводит к уравнению характеристическое уравнение которого имеет корни Общее решение преобразованного уравнения равно Учитывая, что , для общего решения исходного уравнения получаем выражение Замечание 1.
Для преобразованного уравнения (2) в случае действительных и различных корней характеристического уравнения (3) частные решения имеют вид Поэтому можно сразу задаться этим видом частного решения. Подставляя в уравнение (1), получим для к уравнение ) совпадающее с (3). Каждому простому действительному корню уравнения (4) отвечает частное решение уравнения (1); двукратному корню отвечают два решения уравнения (1).
Паре комплексных сопряженных корней уравнения (4) будут соответствовать два решения уравнения (I). Замечание 2. Уравнение постоянные числа) подстановкой также приводится к уравнению с постоянными коэффициентами. §8. Линейные неоднородные дифференциальные уравнения Линейное неоднородное дифференциальное уравнение п-го порядка имеет вид Здесь заданные на некотором интервале (а, р) функции. Если ао(ж) Ф 0 на (а, то после деления на ац(х) получим уравнение.
Из теоремы 1 существования и единственности решения задачи Коши получаем: если на отрезке [а, 6] коэффициенты Рк(х) и правая часть /(х) уравнения (2) непрерывны, то это уравнение имеет единственное решение, удовлетворяющее условиям Уравнение (2) можно записать в виде где, как и выше, Теорема 12. Если у(х) есть решение неоднородного уравнения есть решение соответствующего однородного уравнения мПо условию, В силу линейности оператора £ имеем Это означает, что функция есть решение уравнения Теорема 13.
Если у(х) есть решение уравнения есть решение уравнения та функция есть решение уравнения По условию, используя линейность оператора £, получаем Последнее означает, что функция есть решение уравнения Теорема выражает так называемый принцип суперпозиции (наложения). Теорема 14. Если уравнение где все коэффициенты и функции действительные, имеет решение то действительная часть решения и(х) и его мнимая часть v(x) являются соответственно решениями уравнений.
По условию имеем Отсюда получаем: Теорема 15 (о структуре общего решения линейного неоднородного дифференциального уравнения). Общее решение в области — уравнения с непрерывными на отрезке коэффициентами , и правой частью f(x) равно сумме общего решения соответствующего однородного уравнения и какого-нибудь частного решения у(х) неоднородного уравнения, т. е. Надо доказать, что где произвольные постоянные, линейно независимые решения соответствующего однородного уравнения £[у] = 0, является общим решением неоднородного уравнения.
Будем исходить из определения общего решения и просто проверим, что семейство функций у(ж), определяемое формулой (4), удовлетворяет условиям 1) и 2), содержащимся в этом определении. В самом деле, функция у(х), определяемая формулой (4), является решением уравнения (2) при любых значениях постоянных, поскольку сумма какого-либо решения неоднородного уравнения и любого решения соответствующего однородного уравнения есть решение неоднородного уравнения.
Так как для уравнения (2) при х 6 [а, Ь] выполнены условия теоремы 1 существования и единственности решения задачи Коши, то остается показать, что подбором постоянных С, в (4) можно удовлетворить произвольно заданным начальным условиям где хо € (а,6), т.е. можно решить любую задачу Коши. Ограничимся случаем, когда п = 3.
Потребовав, чтобы решение (4) удовлетворяло начальным условиям (5), приходим к системе уравнений для отыскания Эта линейная по отношению к система трех уравнений с тремя неизвестными допускает единственное решение относительно з при произвольных правых частях, так как определитель этой системы есть определитель Вронского W(x$) для линейно независимой системы решений соответствующего однородного уравнения и, следовательно, отличен от нуля в любой точке ж € (а, Ь), в частности в точке ж = жо.
Значит, какова бы ни была тройка чисел |
уо, Уо> Уо» найдется решение С?, С?, Cj системы (6) такое, что функция будет решением дифференциального уравнения (2), удовлетворяющим начальным условиям Линейные однородные дифференциальные уравнения с постоянными коэффициентами Общий случай: уравнение произвольного порядка Физические приложения: уравнение колебаний.
Уравнения, приводящие к уравнениям с постоянными коэффициентами Линейные неоднородные дифференциальные уравнения Из этой теоремы следует, что задача нахождения общего решения линейного неоднородного уравнения сводится к отысканию какого-либо частного решения этого неоднородного уравнения и общего решения соответствующего однородного уравнения. Интегрирование линейного неоднородного дифференциального уравнения методом вариации постоянных 155 Пример 1.
Найти общее решение уравнения М Нетрудно заметить, что функция является частным решением данного неоднородного уравнения. Чтобы найти общее решение этого уравнения, остается отыскать общее решение соответствующего однородного уравнения Это уравнение есть линейное однородное уравнение с постоянными коэффициентами. Характеристическое уравнение, соответствующее уравнению , есть корни его Поэтому общее решение уравнения (*) имеет вид . Общее решение исходного неоднородного уравнения:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:4. Однородные дифференциальные уравнения (часть 1)Скачать
ЛДУ с переменными коэффициентами. Метод Лагранжа
Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать
Линейные дифференциальные уравнения с переменные коэффициентами
Если известно частное решение уравнения
то его порядок можно понизить на единицу (не нарушая линейности уравнения), полагая , где — новая неизвестная функция, а затем делая замену (можно непосредственно делать замену ).
Если известно частных линейно независимых решений уравнения (32), то порядок уравнения может быть понижен на единиц.
Общее решение уравнения
есть сумма какого-нибудь его частного решения и общего решения соответствующего однородного уравнения (32).
Если известна фундаментальная система соответствующего однородного уравнения (32), то общее решение неоднородного уравнения (33) может быть найдено методом вариации постоянных ( метод Лагранжа ).
Общее решение уравнения (32) имеет вид
где — произвольные постоянные.
Будем искать решение уравнения (33) в виде
где — некоторые пока неизвестные функции от . Для их определения получаем систему
Разрешая эту систему относительно , получаем
где — произвольные постоянные. Внося найденные значения в (34), получаем общее решения уравнения (33).
В частности, для уравнения второго порядка
Решая (36) относительно и , получаем
где и — постоянные интегрирования.
Замечание. Для уравнения , где , система (36) будет выглядеть так:
Пример 1. Найти общее решение уравнения , если есть его частное решение.
Решение. Положим , где — новая неизвестная функция от , тогда
Подставляя в данное уравнение, получаем
Но так как есть частное решение данного уравнения, то , поэтому имеем
Но , а значит , и уравнение (37) примет вид
Перепишем его в виде . Отсюда имеем , откуда
Интегрируя это уравнение, найдем и, следовательно, общее решение данного уравнения будет
Пример 2. Найти общее решение уравнения .
Решение. Общее решение соответствующего однородного уравнения имеет вид (см. пример 1)
и следовательно, его фундаментальная система решений будет
Будем искать общее решение данного уравнения методом вариации произвольных постоянных:
где — постоянные неизвестные функции от , подлежащие определению. Для их нахождения составим следующую систему:
Отсюда находим: . Интегрируя, получаем
Подставляя эти значения и в выражение для , найдем общее решение данного уравнения
Пример 3. Решить уравнение .
Решение. Соответствующее однородное уравнение будет . Его характеристическое уравнение имеет мнимые корни , и общее решение однородного уравнения имеет вид
Общее решение исходного уравнения ищем в виде
где и — неизвестные функции от . Для их нахождения составим систему
Разрешаем эту систему относительно и :
Подставляя выражения и в (38), получаем общее решение данного уравнения
Здесь есть частное решение исходного неоднородного уравнения.
Пример 4. Зная фундаментальную систему решений соответствующего однородного уравнения, найти частное решение уравнения
Решение. Применяя метод вариации постоянных, находим общее решение уравнения (39):
При первые два слагаемых правой части (40) стремятся к бесконечности, причем при любых , неравных нулю одновременно, функция есть бесконечно большая функция при . Третье слагаемое правой части (40) имеет пределом ноль при , что легко установить с помощью правила Лопиталя. Таким образом, функция , которая получается из (40) при и , будет решением уравнения (39), удовлетворяющим условию .
Видео:15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать
Составление дифференциального уравнения по заданной фундаментальной системе решений
Рассмотрим линейно независимую на отрезке систему функций
имеющих все производные до n-го порядка включительно. Тогда уравнение
где — неизвестная функция, будет линейным дифференциальным уравнением, для которого, как нетрудно видеть, функции составляют фундаментальную систему решений. Коэффициент при в (42) есть определитель Вронского системы (41). Те точки, в которых этот определитель обращается в ноль, будут особыми точками построенного уравнения — в этих точках обращается в ноль коэффициент при старшей производной .
Пример 1. Составить дифференциальное уравнение, для которого образуют фундаментальную систему решений.
Решение. Применяя формулу (42), получаем
Раскрывая определитель в левой части (43) по элементам третьего столбца, будем иметь . Это и есть искомое дифференциальное уравнение.
Пример 2. Составить дифференциальное уравнение, для которого функции фундаментальную систему решений образуют функции .
Решение. Составим уравнение вида (42):
Раскрывая последний определитель по элементам 3-го столбца, будем иметь
В этом примере определитель Вронского обращается в ноль при . Это не противоречит общей теории, в силу которой определитель Вронского фундаментальной системы решений линейного однородного дифференциального уравнения
с непрерывными на отрезке коэффициентами не обращается в ноль ни в одной точке отрезка . Записав уравнение (44) в виде
видим, что коэффициент при терпит разрыв при , так что в точке непрерывность коэффициентов уравнения (45) нарушается.
Видео:Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Разные задачи
Пусть — фундаментальная система линейного однородного уравнения
Тогда имеет место формула Остроградского–Лиувилля
где — определитель Вронского, а — любое значение из отрезка , на котором непрерывны коэффициенты уравнения.
Пример 1. Показать, что линейное дифференциальное уравнение имеет решение вида , где — некоторый многочлен. Показать, что второе решение этого уравнения имеет вид , где — также многочлен.
Решение. Будем искать решение в виде многочлена, например, первой степени: . Подставляя в уравнение, найдем, что . Пусть , тогда ;. таким образом, многочлен будет решением данного уравнения. Перепишем данное уравнение в виде
Пусть — второе частное решение данного уравнения, линейно независимое с первым. Находим определитель Вронского системы решений
здесь . Применяя формулу Остроградского–Лиувилля, будем иметь
где — любое значение , причем , или ; здесь . Для нахождения получили линейное дифференциальное уравнение первого порядка. Деля обе части этого уравнения на , приведем его к виду
Видео:Линейное однородное дифференциальное уравнение 2-го порядка с постоянными коэффициентами.Скачать
Восстановление линейного однородного уравнения по фундаментальной системе решений Текст научной статьи по специальности « Математика»
Видео:Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентамСкачать
Аннотация научной статьи по математике, автор научной работы — Шумилина Маргарита Алексеевна
В статье рассмотрен алгоритм восстановления линейного однородного уравнения по фундаментальной системе решений как приложение определителя Вронского . На примерах показана реализация данного алгоритма, возможность его использования.
Видео:Однородное линейное дифференциальное уравнение. Алгоритм решенияСкачать
Похожие темы научных работ по математике , автор научной работы — Шумилина Маргарита Алексеевна
Видео:Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Текст научной работы на тему «Восстановление линейного однородного уравнения по фундаментальной системе решений»
ВОССТАНОВЛЕНИЕ ЛИНЕИНОГО ОДНОРОДНОГО УРАВНЕНИЯ ПО ФУНДАМЕНТАЛЬНОЙ СИСТЕМЕ РЕШЕНИЙ Шумилина М.А.
Шумилина Маргарита Алексеевна — магистрант, физико-математический факультет, Воронежский государственный педагогический университет, г. Воронеж
Аннотация: в статье рассмотрен алгоритм восстановления линейного однородного уравнения по фундаментальной системе решений как приложение определителя Вронского. На примерах показана реализация данного алгоритма, возможность его использования.
Ключевые слова: однородное линейное дифференциальное уравнение, фундаментальная система решений, определителем Вронского.
Приложения определителя Вронского при изучении дифференциальных уравнений часто обходят стороной. Одним из таких приложений является восстановление линейного однородного уравнения по фундаментальной системе решений, о котором практически нигде не упоминается, поэтому в статье показаны применение данного приложения при решении задач.
Предположим, дана система функций на отрезке с определителем
Вронского Ш ( х) не равным нулю. Необходимо составить линейное однородное уравнение, у которого фундаментальная система решений состоит из функций у1 (х) ,у2(х) ,. . . ,уп (х) .
Эта задача решается довольно легко. Так как общее решение этого уравнения должно иметь вид: 3 = С1У1 (х) + С2у2(х) + —I- Спуп(х) , система функций у(х) ,У1(х) ,у2(х) ,. . .,уп (х) линейно зависима, поэтому её вронскиан (имеющий порядок п + 1) должен быть равен нулю: у(х) у^х) . уп(х)
у ( х) у1 ( х) . ■ ■ у1 (х) = о. Раскрывая этот определитель по первому столбцу, получим
уМ(х) у[пх) . у^п)(х) искомое уравнение. [2, с. 98]
Пример №1. Составить приведенное однородное линейное дифференциальное уравнение второго порядка, имеющее фундаментальную систему решений: у1 (х) = 5 ¿пх,у2(х) = £дх. [1] Решение. Составляем определитель третьего порядка:
этх соэх — этх 1 2этх
и приравниваем его к нулю. Раскрывая определитель, получаем:
/sinx „ (2sin2x sin2x , 3sinx
-5—sinx у — -— +- y+-—у = 0
cos¿x ) coszx COS XJ cos¿x
„ sin2x(2 + cos2x) , 3sinx У——-у +7777ГУ = 0
COS2X COS3X COS2X’
Значит, приведенное уравнение имеет вид:
sinx cos х sinx
Его особыми точками являются точки, где s i n х = 0 или со s х = 0 , т.е точки х = —, tt£Z. Алгоритм составления линейного однородного уравнения по заданной фундаментальной системе решений, состоящей из функций у! (х) ,у2(х) ,. . .,уп (х) выглядит следующим образом:
1) найти производные данных функций до и-го порядка;
2) составить вронскиан имеющий порядок п + 1 ;
3) приравнять данный вронскиан к нулю;
4) раскрыть определитель Вронского, упростить выражение;
5) записать полученное уравнение.
Рассмотрим восстановление линейного однородного уравнения по фундаментальной системе решений, на конкретном примере №2, представленном в таблице 1.
Задание Последовательность решения Методика решения
Необходимо построить линейное однородное дифференциальное уравнение, по имеющееся в качестве фундаментальной системы решений функции х, х 1пх. [3] 1 „ 2 m 6 у’2 = 1, у; = о , у;’ = о. Уз = 1пх + 1, Уз’ = ^Уз’ = -^. Находим производные данных функций.
W(x) = 1 У х х xlnx 1 1 lnx+1 у —
2 2 1 у — 0 — X3 X б 1 У —I о —? ‘ X4 X2 = 0 Составим вронскиан и приравняем к нулю, что соответствует искомому дифференциальному уравнению.
X , 1 у—т Inx + 1 X2 „ 2 1 У X3 X ,„ 6 1 У 0 1 у — xlnx X „ 2 1 У X3 X ,„ б 1 У Раскроем определитель по третьему столбцу.
( 2 , 6(1пх + 1) „ у'» х=У х* У х3 2(/пх+1) ,„ у» х3 У X4 / 2 61пх „ х=У х3 У у'» 21пх ,„ у» х2 х2 У X3 Разложим оба определителя третьего порядка по правилу треугольников или правилу Саррюса.
4 4 , 8 „ 4 ,„ Упростим выражение, раскрыв скобки.
х3у»‘ + 2х2у» — ху’ + у = 0 Умножим на — х 5 и разделим на 4.
На примере показана работа составленного алгоритма и возможность его применения при решении задач. С помощью подробного, поэтапного разбора решения, рассмотрена возможность восстановление линейного однородного уравнения по фундаментальной системе решений. Данное приложение определителя Вронского может быть использовано при изучении дифференциальных уравнений. Выполнение данной задачи по алгоритму помогает обучающимся усвоить материал.
1. Виленкин Н.Я. и др. Дифференциальные уравнения: Учеб. пособие для студентов-заочников IV курса физ.-мат. фак. / Н.Я. Виленкин, М.А. Доброхотова, А.Н. Сафонов. М.: Просвещение, 1984. 176 с.
2. Пушкарь Е.А. Дифференциальные уравнения: Учебное пособие. М.: МГИУ, 2007. 254 с.
3. Степанов В. Курс дифференциальных уравнений. М.: Гос. издательство технико-теоретической литературы, 1950. 473 с.
💡 Видео
ЛОДУ 2 порядка c постоянными коэффициентамиСкачать
Дифференциальные уравнения, 8 урок, Линейные дифференциальные уравнения с const коэф-ами 2 порядкаСкачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать
18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Однородное дифференциальное уравнениеСкачать
21. Линейное однородное уравнение с постоянными коэффициентамиСкачать
5. Однородные дифференциальные уравнения. Часть 2.Скачать
Решение однородного дифференциального уравнения. Практическая часть. 11 класс.Скачать
Видеоурок "Нахождение частных решений по виду правой части"Скачать
Дифференциальные уравнения, 9 урок, Линейные дифференциальные уравнения высших порядковСкачать