Составление уравнений овр методом электронно ионного баланса

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Видео:Окислительно-восстановительные реакции. Метод электронно-ионного баланса.Скачать

Окислительно-восстановительные реакции. Метод электронно-ионного баланса.

«Метод полуреакций, или электронно-ионного баланса»

Разделы: Химия

Тема: метод полуреакций или электронно-ионного баланса

Цель: расширить и углубить знания об ОВР.

Задачи:

  • научить определять возможность протекания ОВР между данными веществами;
  • научить устанавливать продукты реакции с опорой на схемы;
  • раскрыть сущность метода полуреакций;
  • рассмотреть правила и алгоритмы составления уравнений ОВР;
  • научить применять полученные знания для решения конкретных задач.

Формы обучения: разъяснение, рассуждение, общая характеристика.

Методы обучения: словесные (беседа, объяснение), наглядные (компьютерные), практические (упражнения).

Общедидактические методы: объяснительно-иллюстративный, частично-поисковый, проблемный.

Ход урока.

1. Проверка домашнего задания.

Опрос у доски:

1) Самостоятельная работа у доски : определите тип следующих ОВР:

Составление уравнений овр методом электронно ионного баланса

Подготовка устного ответа: классификация ОВР.

2) Самостоятельная работа у доски: расставить коэффициенты методом электронного баланса, указать окислитель и восстановитель, процессы окисления и восстановления:

Составление уравнений овр методом электронно ионного баланса

3) Устный ответ: теория ОВР.

2. Новый материал.

Сегодня на уроке мы познакомимся со способами прогнозирования продуктов в ОВР и новом методе расстановки коэффициентов в ОВР – методе полуреакций или электронно-ионного баланса.
Чтобы написать уравнение реакции, протекающей в смеси заданных веществ, нужно ответить на следующие вопросы:

а) возможна ли в принципе ОВР между данными веществами;
б) если да, то установить продукты реакции;
в) подобрать коэффициенты в уравнении реакции.

Рассмотрим эти вопросы по порядку.
Что касается первого из них, вспомним, что в любой ОВР один из участников окисляется, т.е. повышает свою валентность, а другой – восстанавливается, т.е. понижает валентность. Поэтому реакция невозможна, если оба ее участника находятся в состояниях наиболее высокой или наиболее низкой степени окисления.
Исходя из сказанного, попробуем предположить возможность протекания ОВР.
Например, определим возможна ли ОВР между Составление уравнений овр методом электронно ионного баланса.

Определите степени окисления элементов.

Учащиеся определяют степени окисления элементов по формулам соединений. Рассматривают строение атомов серы и хлора, определяют высшую и низшую степень окисления элементов.

Формулируем вывод: степени окисления серы (-2) и хлора (-1) являются для них предельно низкими, следовательно, и сера, и хлор могут выступать только в роли восстановителя. Т.е. реакция между Составление уравнений овр методом электронно ионного балансаневозможна.

Рассмотрим другой пример. Возможно ли взаимодействие между ионами Составление уравнений овр методом электронно ионного баланса?

Учащиеся рассматривают степени окисления марганца и хрома в ионах, определяют исходя из строения атомов, что оба металла находятся в высшей степени окисления, следовательно, могут выступать только в роли окислителя. Делают вывод: реакция между ионами Составление уравнений овр методом электронно ионного балансаи Составление уравнений овр методом электронно ионного балансаневозможна.

Если же один из участников может повысить, а другой понизить свои степени окисления, реакция в принципе возможна.
Указать продукты реакции только из общих соображений в таких реакциях практически невозможно. Исследование химических свойств элементов как раз и представляет собой экспериментальное выяснение того, при каких условиях его соединения вступают в реакцию с другими элементами и соединениями и какие продукты при этом получаются.
Часто в ОВР участвуют соединения хрома и марганца. Особый интерес представляет поведение пероксида водорода в ОВР. Для прогнозирования продуктов реакций с их участием можно использовать следующие схемы.

Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 1).

Что касается собственно процедуры подбора коэффициентов в уравнениях, то для реакций в растворах удобен так называемый метод полуреакций, или электронно-ионный. В нем сначала записывают и уравнивают отдельно процессы окисления и восстановления, а полная реакция получается их сложением.

Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 2).

Кроме алгоритма составления полуреакций, необходимо придерживаться нескольких очевидных правил:

  1. В кислой среде ни в левой, ни в правой части не должно быть ионов Составление уравнений овр методом электронно ионного балансаУравнивание осуществляется за счет ионов Составление уравнений овр методом электронно ионного балансаи молекул воды.
  2. В щелочной среде ни в левой, ни в правой части не должно быть ионов Составление уравнений овр методом электронно ионного баланса. Уравнивание осуществляется за счет ионов Составление уравнений овр методом электронно ионного балансаи молекул воды.
  3. В нейтральной среде ни ионов Составление уравнений овр методом электронно ионного баланса, ни Составление уравнений овр методом электронно ионного балансав левой части быть не должно. Однако в правой части среди продуктов реакции они могут появиться.

Рассмотрим, как работают предложенные схемы на конкретных примерах.

Задача. Закончить уравнение реакции между бихроматом калия и соляной кислотой.

Ион Составление уравнений овр методом электронно ионного балансасодержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная (HCl).
Полуреакция восстановления: Составление уравнений овр методом электронно ионного баланса

Ионы Составление уравнений овр методом электронно ионного балансамогут только окисляться, т.к. хлор имеет самую низшую степень окисления. Составим полуреакцию окисления: Составление уравнений овр методом электронно ионного баланса

Составление уравнений овр методом электронно ионного баланса

Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой.

Составление уравнений овр методом электронно ионного баланса

Получили сокращенное ионное уравнение.

Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым.

В данном случае источником ионов Составление уравнений овр методом электронно ионного баланса─ была соль Составление уравнений овр методом электронно ионного баланса, поэтому с каждым молем Составление уравнений овр методом электронно ионного балансав раствор попадает 2 моль ионов Составление уравнений овр методом электронно ионного баланса. В реакции они участия не принимают, поэтому в неизменном виде должны перейти в правую часть уравнения. Вместе с 14 моль ионов Составление уравнений овр методом электронно ионного балансав раствор вносится 14 моль ионов Составление уравнений овр методом электронно ионного баланса. Из них 6 участвует в реакции в качестве восстановителя, а остальные 8, как и ионы Составление уравнений овр методом электронно ионного баланса, в неизменном виде остаются после реакции, т.е. дописываются в правую часть.

В результате получаем:

Составление уравнений овр методом электронно ионного баланса

После этого можно объединить ионы в формулы реальных веществ:
Составление уравнений овр методом электронно ионного баланса

Рассмотрим другой пример.

Задача. Закончить уравнение реакции Составление уравнений овр методом электронно ионного баланса→ …

Ион Составление уравнений овр методом электронно ионного балансасодержит марганец в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда нейтральная.

Полуреакция восстановления: Составление уравнений овр методом электронно ионного баланса

Если ион Составление уравнений овр методом электронно ионного балансабудет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления:

Составление уравнений овр методом электронно ионного баланса

Оформляем уравнение ОВР, протекающей в нейтральной среде:

  • Т.к в нейтральной среде ни ионов Составление уравнений овр методом электронно ионного баланса, ни Составление уравнений овр методом электронно ионного балансав левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:

Составление уравнений овр методом электронно ионного баланса

  • Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов:

Составление уравнений овр методом электронно ионного баланса

  • Перед Составление уравнений овр методом электронно ионного балансаставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед Составление уравнений овр методом электронно ионного баланса— его удвоенный коэффициент:

Составление уравнений овр методом электронно ионного баланса

  • Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:

Составление уравнений овр методом электронно ионного баланса

  • Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой:

Составление уравнений овр методом электронно ионного баланса

  • Сокращаем в правой и левой части одинаковые молекулы и ионы:

Составление уравнений овр методом электронно ионного баланса

Таким образом, получаем ионное уравнение.

  • Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым:

Составление уравнений овр методом электронно ионного баланса

Также рассмотрим пример ОВР, протекающей с щелочной среде.

Задача. Закончить уравнение реакции: Составление уравнений овр методом электронно ионного баланса

Определяем окислитель и восстановитель в данной ОВР. В нитрате ртути (II) ртуть содержится в ее высшей степени окисления, следовательно, может выступать только в роли окислителя. Составим полуреакцию восстановления.
Полуреакция восстановления:

Составление уравнений овр методом электронно ионного баланса

  • Если ион Составление уравнений овр методом электронно ионного балансабудет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления пероксида водорода в щелочной среде:

Составление уравнений овр методом электронно ионного баланса

  • Оформляем уравнение ОВР, протекающей в щелочной среде:

Составление уравнений овр методом электронно ионного баланса

  • Добавляем недостающие катионы и анионы.

Составление уравнений овр методом электронно ионного баланса

Преимущества электронно-ионного метода при составлении уравнений реакций и подборе коэффициентов в сравнении с методом электронного баланса особенно проявляются при составлении уравнений реакций с участием органических соединений.

Задача. Составьте уравнение окисления ацетилена раствором Составление уравнений овр методом электронно ионного балансадо щавелевой кислоты в нейтральной среде.

Составляем схему реакции:

Составление уравнений овр методом электронно ионного баланса

Составление уравнений овр методом электронно ионного балансавыступаем в роли окислителя, т.к. содержит марганец в его высшей степени окисления.
Следовательно, схема полуреакции восстановления имеет вид:

Составление уравнений овр методом электронно ионного баланса

Схема полуреакции окисления:

Составление уравнений овр методом электронно ионного баланса

Оформляем уравнение ОВР, протекающей в нейтральной среде:

  • Т.к в нейтральной среде ни ионов Составление уравнений овр методом электронно ионного баланса, ни Составление уравнений овр методом электронно ионного балансав левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:

Составление уравнений овр методом электронно ионного баланса

  • Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов. Перед Составление уравнений овр методом электронно ионного балансаставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед Составление уравнений овр методом электронно ионного балансаего удвоенный коэффициент. Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:

Составление уравнений овр методом электронно ионного баланса

  • Составляем ионное уравнение:

Составление уравнений овр методом электронно ионного баланса

  • Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионы:

Составление уравнений овр методом электронно ионного баланса

Задача. Составьте уравнение реакции окисления фенола дихроматом калия в кислой среде до хинона:

Составление уравнений овр методом электронно ионного баланса

Ион Составление уравнений овр методом электронно ионного балансасодержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная Составление уравнений овр методом электронно ионного баланса.

Составление уравнений овр методом электронно ионного баланса

Используем правила оформления уравнений ОВР, протекающих в кислотной среде.

Составление уравнений овр методом электронно ионного баланса
Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионыи анионы:

Составление уравнений овр методом электронно ионного баланса

Рассмотрев метод электронно-ионного баланса или метод полуреакций можно выделить следующие достоинства данного метода:

  1. Рассматриваются реально существующие ионы и вещества.
  2. Не нужно знать все получающиеся вещества, они появляются в уравнении реакции при его выводе.
  3. Необязательно знать степени окисления. Понятие степени окисления в органической химии употребляется реже, чем о неорганической химии.
  4. Этот метод дает сведения не только о числе электронов, участвующих в каждой полуреакции, но и о том, как изменяется среда.
  5. Сокращенные ионные уравнения лучше передают смысл протекающих процессов и позволяют делать определенные предположения о строении продуктов реакции.

Домашнее задание: Закончить уравнения:

Составление уравнений овр методом электронно ионного баланса

В качестве проверочной работы по изученной теме предлагаю учащимся лабораторные опыты. Учащимся необходимо провести ОВР, объяснить происходящие явления, составив уравнения реакций с помощью метода полуреакций.

Лабораторные опыты «Окислительно-восстановительные реакции»

В три стакана налейте малиновый раствор перманганата калия. Добавьте в первый стакан немного раствора серной кислоты, во второй – воду, в третий – концентрированный раствор гидроксида калия. Окраска растворов при этом не изменяется. Добавьте во все стаканы по 5 мл сульфита калия и хорошо перемешайте смеси стеклянной палочкой.

Задание: объясните изменение окраски растворов, составив ОВР методом полуреакций.

Литература:

Д.Д. Друзцова, Л.Б. Бестаева Окислительно-восстановительные реакции. – М.:Дрофа,2005.

Видео:ОВР Метод электронно-ионного балансаСкачать

ОВР Метод электронно-ионного баланса

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.

Окислители и восстановители

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.

Составление уравнений овр методом электронно ионного баланса

Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F2, кислород O2, хлор Cl2);
  • сложные вещества, в составе которых есть ионыметаллов или неметаллов с высокими положительными (как правило, высшими) степенями окисления : кислоты (H N +5 O3, H Cl +7 O4), соли (K N +5 O3, K Mn +7 O4), оксиды ( S +6 O3, Cr +6 O3)
  • соединения, содержащие некоторые катионы металлов, имеющих высокие степени окисления: Pb 4+ , Fe 3+ , Au 3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления: бинарные водородные соединения (H2S, HBr), соли бескислородных кислот (K2S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn 2+ , Fe 2+ , Cr 2+ ), которые, отдавая электроны, могут повышать свою степень окисления;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S +4 O3) 2– , (НР +3 O3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.

Составление уравнений овр методом электронно ионного баланса

Типичные окислители и восстановители приведены в таблице.

Составление уравнений овр методом электронно ионного баланса

В лабораторной практике наиболее часто используются следующие окислители :

К восстановителям , которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na2S) и сероводород (H2S);
  • сульфит натрия (Na2SO3);
  • хлорид олова (SnCl2).

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления .

2 Al 0 + Fe +3 2O3 → Al +3 2O3 + 2 Fe 0 ,

C 0 + 4H N +5 O3(конц) = C +4 O2 ↑ + 4 N +4 O2 ↑+ 2H2O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например:

2 Na N +5 O -2 3 → 2 Na N +3 O2 + O 0 2↑.

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты:

3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

2H2 S -2 + S +4 O2 = 3 S + 2H2O

Составление уравнений овр методом электронно ионного баланса

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается , а восстановитель окисляется .

В окислительно-восстановительных реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса .

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K + 2 S -2 + 2K + Mn +7 O -2 4 = 2K + 2 Mn +6 O -2 4 + S 0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S -2 -2e = S 0

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Составление уравнений овр методом электронно ионного баланса

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса. Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций .

Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO4, где Mn +7 в кислой среде восстанавливается до Mn +2 , а в щелочной — до Mn +6 );
  • окислительная активность усиливается в более щелочной среде, и окислитель восстанавливается глубже (например, нитрат калия KNO3, где N +5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N -3 );
  • либо окислитель практически не подвержен изменениям среды.

Составление уравнений овр методом электронно ионного баланса

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например , при взаимодействии азотной кислоты HNO3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстанавливается азот N +5 .

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества . Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Составление уравнений овр методом электронно ионного баланса

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn 2+ . Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны . В нейтральном растворе марганец восстанавливается до степени окисления +4 , с образованием амфотерного оксида MnO2коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6 . Соединения марганца +6 проявляют кислотные свойства, в щелочной среде образуют соли — манганаты . Манганаты придают раствору зеленую окраску .

Составление уравнений овр методом электронно ионного баланса

Рассмотрим взаимодействие перманганата калия KMnO4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S 0 .

3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключенияфосфор, мышьяк — до +5 ;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

KMnO4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

KMnO4 + P -3 , As -3 = P +5 , As +5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K2CrO4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K2Cr2O7) — соли, устойчивые в кислой среде .

Восстанавливаются соединения хрома (VI) до соединений хрома (III) . Соединения хрома Cr +3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH)3 , и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K3[Cr(OH)6] .

Составление уравнений овр методом электронно ионного баланса

Соединения хрома VI окисляют:

  • неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключенияфосфор, мышьяк – до +5 ;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель. Такой азот может окислять кислород (О -2 ). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O2 .

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород .

Например:

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь) , то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород . Оксид металла образует также при разложении нитрат лития .

Например , разложение нитрата цинка:

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).

Ионы металлов , расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N +5 , участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород .

Например , разложение нитрата серебра:

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается. При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

Это пример реакции контрдиспропорционирования .

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N +3 и восстановителя N -3

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

Нитрат никеля (II) разлагается до нитрита при нагревании до 150 о С под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).

Окислительные свойства азотной кислоты

Азотная кислота HNO3 при взаимодействии с металлами практически никогда не образует водород , в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H2O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO2 (N +4 ); оксид азота (II) NO (N +2 ); оксид азота (I) N2O («веселящий газ»); молекулярный азот N2; нитрат аммония NH4NO3 . Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты . При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются .

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH4NO3;

Например , взаимодействие цинка с очень разбавленной азотной кислотой:

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe . При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппызолотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами иметаллами средней активности азотная кислота восстанавливается до оксида азота (IV)NO2 ;

Например , окисление меди концентрированной азотной кислотой:

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота(I) N2O ;

Например , окисление натрия концентрированной азотной кислотой:

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO ;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо оксид азота (II) NO, либо оксид азота N2O, либо молекулярный азот N2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N2.

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например , взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода. Окислителем здесь выступают ионы H + , которые восстанавливаются до молекулярного водорода H2. При этом металлы окисляются, как правило, до минимальной степени окисления.

Например :

Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S +4 O2, молекулярная сера S либо сероводород H2S -2 , в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).

Например , медь окисляется концентрированной серной кислотой :

Cu 0 + 2H2 S +6 O4(конц) = Cu +2 SO4 + S +4 O2 + 2H2O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S 2- (в зависимости от температуры, степени измельчения и активности металла).

Например , взаимодействие концентрированной серной кислоты с цинком :

Пероксид водорода

Пероксид водорода H2O2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например :

📸 Видео

Учимся составлять электронный баланс/овр/8классСкачать

Учимся составлять электронный баланс/овр/8класс

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

Метод электронно-ионного балансаСкачать

Метод электронно-ионного баланса

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 5ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 5ч. 10 класс.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 2ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 2ч. 10 класс.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 6ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 6ч. 10 класс.

Решение ОВР методом полуреакцийСкачать

Решение ОВР методом полуреакций

8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

ОВР. Особый случай электронно-ионного баланса (KSCN).Скачать

ОВР. Особый случай электронно-ионного баланса (KSCN).

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)Скачать

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

Окислительно-восстановительные реакции. 1 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 1 часть. 9 класс.

Окислительно-восстановительные реакции. 3 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 3 часть. 9 класс.

Метод электронно-ионного баланса (метод полуреакций)Скачать

Метод электронно-ионного баланса (метод полуреакций)
Поделиться или сохранить к себе: