Привет! В этой статье, предлагаю поговорить о реакциях опор, еще известных как опорные реакции. Для успешного освоения курса – «сопротивление материалов», каждый студент должен уметь определять реакции в опорах, и этому уделяют особое внимание на термехе. А курс термеха, по традиции, читают до сопромата. Для тех, кто проспал механику на первом курсе, я подготовил данную статью, чтобы каждый желающий мог приобрести навыки по расчету опорных реакций.
- Что такое реакция опоры?
- Что вы должны уже уметь?
- Должны уметь находить сумму проекций сил
- Должны уметь составлять сумму моментов относительно точки
- Должны разбираться в основных видах опор
- Примеры определения сил реакций опор
- Определение реакций опор для балки
- Определение реакций опор для балки с распределенной нагрузкой
- Определение опорных реакций для плоской рамы
- iSopromat.ru
- Пример составления уравнений равновесия
- Суммы проекций сил
- Суммы моментов
- Раздел 1.Статика- это раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.
- Задача 1. Определение реакций опор балки под действием плоской произвольной системы сил
- 2. Условия равновесия:
- 3. Составление уравнений равновесия:
- Задача 2.Определение реакций опор составной конструкции
- 🔍 Видео
Видео:Определение реакций опор в балке. Сопромат.Скачать
Что такое реакция опоры?
Реакция опоры – это та сила, которая возникает в опоре от действия внешней нагрузки. В зависимости от конструкции опоры и ее назначения, в ней может появляться разное количество реакций, это может быть как сила, так и момент.
В начале этой статьи, расскажу о том, что должен уже уметь читатель, для успешного освоения данного урока. Если у Вас есть проблемы по поднятым вопросам на старте статьи, переходите по ссылкам на другие материалы на нашем сайте, после чего возвращайтесь к нам на чай реакции. Во второй части статьи, посмотрим, как вычисляются реакции на простейшем примере – балки, загруженной по центру сосредоточенной силой. Тут я покажу, как пользоваться уравнениями равновесия статики, как их правильно составлять. Дальше по плану, научу учитывать распределенную нагрузку, на примере той же балки. И завершать данный урок, будет пример определения реакций для плоской рамы, загруженной всевозможными типами нагрузок. Где применим уже все фишки, о которых я буду рассказывать по ходу урока. Что же, давайте начнем разбираться с реакциями!
Что вы должны уже уметь?
В этом блоке статье, я расскажу, как и обещал, что Вы должны УЖЕ уметь, чтобы понять то, что я буду докладывать дальше, про реакции опор.
Должны уметь находить сумму проекций сил
Да, это то, что Вам когда-то рассказывали на термехе, как собственно, и опорные реакции. Если Вы шарите немного в этих проекциях, то можете смело переходить к следующему пункту. Если же нет, то специально на этот случай, у меня есть другая статья, про проекции сил. Переходите, просвещайтесь, после чего, обязательно, возвращайтесь сюда!
Должны уметь составлять сумму моментов относительно точки
Немного теории! Познакомимся для начала с самим понятием момент силы. Момент силы — это произведение силы на плечо. Где плечо — это кратчайшее расстояние от точки до силы, то есть перпендикуляр. Проиллюстрирую написанное:
На изображении показано, как определить момент силы F, относительно точки O.
Так же, для моментов, нужно задаться каким-то правилом знаков. Сила относительно точки может поворачивать как по часовой стрелке, так и против нее. Я в своих уроках буду придерживаться такого правила:
- Если сила относительно точки крутит ПРОТИВ часовой стрелке, то момент положительный.
- Если она крутит ПО часовой стрелки, то соответственно момент отрицательный.
Причем, это правило условно! Какое правило Вы будете использовать совсем не важно, результат получите тот же самый. В теоретической механике, к примеру, делают также как я рассказываю.
Должны разбираться в основных видах опор
Теперь поговорим о самих опорах. В этой статье, будем работать с двумя типами опор: шарнирно-подвижной и шарнирно-неподвижной.
Шарнирно-подвижная опора препятствует вертикальному перемещению элементу конструкции, в связи с чем, в ней, под действием внешней нагрузки возникает вертикальная реакция. Обозначают ее обычно как Ri, где i — точка крепления опоры.
Шарнирно-неподвижная опора имеет две реакции: вертикальную и горизонтальную. Так как препятствует перемещению в этих двух направлениях.
Вообще-то способов закрепления элементов конструкций и их условных обозначений достаточно много, но в рамках этой статьи их рассматривать не будем.
Видео:Определение опорных реакций балки. Сопромат для чайников ;)Скачать
Примеры определения сил реакций опор
Вроде, всю подготовительную информацию дал, теперь будем рассматривать конкретные примеры. И начнем с простейшей расчетной схемы балки.
Определение реакций опор для балки
Возьмем балку на двух опорах, длиной 2 метра. Загрузим ее, посередине пролета, сосредоточенной силой:
Для этой расчетной схемы, выгодно записать такое условие равновесия:
То есть, будем составлять две суммы моментов относительно опорных точек, из которых можно сразу выразить реакции в опорах. В шарнирно-неподвижной опоре горизонтальная реакция будет равна нулю, ввиду того, что горизонтальные силы отсутствуют. Последним уравнением, взяв сумму проекций на вертикальную ось, сможем проверить правильность нахождения опорных реакций, это сумма должна быть равна нулю.
Введем систему координат, пустим ось х вдоль балки, а ось y вертикально. Обозначим реакции в опорах как RA и RB:
Запишем уравнение моментов, относительно точки А. Сила F поворачивает ПО часовой стрелки, записываем ее со знаком МИНУС и умножаем на плечо. Сила RB поворачивает ПРОТИВ часовой стрелки, пишем ее со знаком ПЛЮС и умножаем на плечо. Все это приравниваем к нулю:
Из полученного уравнения выражаем реакцию RB.
Первая реакция найдена! Вторая реакция находится аналогично, только теперь уравнение моментов записываем относительно другой точки:
После нахождения реакций, делаем проверку:
Определение реакций опор для балки с распределенной нагрузкой
Теперь рассмотрим балку, загруженную распределенной нагрузкой:
Перед тем как посчитать реакции опор, распределенную нагрузку нужно свернуть до сосредоточенной силы. Если умножить интенсивность q на длину участка, на которой действует нагрузка, получим силу Q. Сила Q будет находиться ровно посередине балки, как и сила F в нашем первом примере:
Подробно комментировать нахождение реакций в опорах здесь, не буду. Просто приведу решение:
Определение опорных реакций для плоской рамы
Теперь, после освоения азов по расчету реакций, предлагаю выполнить расчет плоской рамы. Для примера, возьмем раму, загруженную всевозможными видами нагрузок:
Проводим ряд действий с расчетной схемой рамы:
- заменяем опоры на реакции;
- сворачиваем распределенную нагрузку до сосредоточенной силы;
- вводим глобальную систему координат x и y.
Для такой расчетной схемы, лучше использовать следующую форму условий равновесия:
Составив первое уравнение, относительно точки A, сразу найдем реакцию в опоре B:
Записав второе уравнение, сумму проекций на ось х, найдем горизонтальную реакцию HA:
И, наконец, третье уравнение, позволит найти реакцию RA:
Не пугайтесь отрицательного значения реакции! Это значит, что при отбрасывании опоры, мы не угадали с направлением этой силы.
Расчет же показал, что RA, направленна в другую сторону:
В итоге, получили следующие реакции в опорах рамы:
Осталось проверить наши расчеты! Для этого предлагаю записать уравнение моментов, относительно точки B. И если, эта сумму будет равна нулю, то расчет выполнен верно:
Как видим, расчет реакций выполнен правильно!
На этом заканчиваю данный урок. Если у Вас остались какие-то вопросы по нахождению опорных реакций, смело задавайте их в комментариях к этой статье. Обязательно на все отвечу!
Спасибо за внимание! Если понравилась данная статья, расскажите о ней своим одногруппникам, не жадничайте 🙂
Также рекомендую подписаться на наши соц. сети, чтобы быть в курсе обновлений материалов проекта.
Видео:Определение реакций опор простой рамыСкачать
iSopromat.ru
Уравнения равновесия (статики) характеризуют неподвижность заданной системы нагруженной комплексом внешних усилий.
При решении задач теоретической механики и сопротивления материалов (например, при определении опорных реакций или внутренних силовых факторов) исходя из условия неподвижности системы или ее частей, записываются уравнения равенства нулю сумм проекций всех сил на оси выбранной системы координат
что следует из условия отсутствия перемещения системы вдоль этих осей, и сумм моментов относительно произвольных точек системы
из условия отсутствия ее вращения относительно указанных осей.
Надо отметить что в случае действия плоской системы сил можно получить только три уравнения статики, а линейная схема нагружения позволяет записать лишь одно уравнение.
Видео:БАЛКА С СИЛОЙ ПОД УГЛОМ. Реакции опор. Техническая механикаСкачать
Пример составления уравнений равновесия
В качестве примера, рассмотрим общий случай пространственного нагружения, где комплекс усилий, включающий сосредоточенные силы F1-F6, равномерно распределенную нагрузку q, и момент m расположенный в плоскости перпендикулярной длинному стержню, удерживает L-образную систему в равновесии.
Обозначим характерные точки системы буквами A, B, C и D, зададим положение трехмерной системы координат xyz и запишем уравнения равновесия.
Суммы проекций сил
Сумма проекций всех сил на ось x (с учетом правила знаков для сил):
здесь при записи силы от распределенной нагрузки ее интенсивность q умножается на ее длину AB.
Суммы моментов
Суммы моментов всех нагрузок, например, относительно точки B (с учетом правила знаков для моментов):
- в плоскости xOy:
- в плоскости xOz:
- в плоскости yOz:
Из полученных шести уравнений можно определить не более шести неизвестных усилий.
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:Определение реакций опор простой рамыСкачать
Раздел 1.Статика- это раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.
Сила — это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия. Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Сила изображается вектором.
Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело.Одним из основных положений механики является пpuнцип освобождаемости т тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил действуют реакции связей.
Видео:Определение опорных реакций в раме. СопроматСкачать
Задача 1. Определение реакций опор балки под действием плоской произвольной системы сил
Определить реакции R A и R B опор балки, размеры и нагрузки которой показаны на рис. 1,а (поменять значения F и М).
Ось х направим вдоль горизонтальной оси балки вправо, а ось у — вертикально вверх (рис.1,а).
Видео:Определение опорных реакций в балке. СопроматСкачать
2. Условия равновесия:
Видео:Определение опорных реакций в простой балке. Урок №1Скачать
3. Составление уравнений равновесия:
4. Определение искомых величин, проверка правильности решения и анализ полученных результатов .
Решая систему уравнений (1 – 3), определяем неизвестные реакции
Величина реакции R A х имеет отрицательный знак, значит направлена не так, как показано на рисунке, а в противоположную сторону.
Для проверки правильности решения составим уравнение суммы моментов относительно точки Е.
Подставив в это уравнение значения входящих в него величин, получим:
0,58 ∙ 1 – 4 + 5,02 ∙ 3 – 3 ∙ 3,5 = 0.
Уравнение удовлетворяется тождественно, что подтверждает правильность решения задачи.
Видео:Определение опорных реакций балки | ISopromatСкачать
Задача 2.Определение реакций опор составной конструкции
Конструкция состоит из двух тел, соединенных шарнирно в точке С . Тело АС закреплено с помощью заделки, тело ВС имеет шарнирно-подвижную (скользящую) опору (рис. 1). На тела системы действуют распределенная по линейному закону сила с максимальной интенсивностью q тах = 2 кН/м , сила F = 4 кН под углом α = 30 o и пара сил с моментом М = 3 кНм . Геометрические размеры указаны в метрах. Определить реакции опор и усилие, передаваемое через шарнир. Вес элементов конструкции не учитывать.
Конструкция состоит из двух тел, соединенных шарнирно в точке С . Тело АС закреплено с помощью заделки, тело ВС имеет шарнирно-подвижную (скользящую) опору (рис.
Решение .Если рассмотреть равновесие всей конструкции в целом, учитывая, что реакция заделки состоит из силы неизвестного направления и пары, а реакция скользящей опоры перпендикулярна опорной поверхности, то расчетная схема будет иметь вид, представленный на рис. 2.
Здесь равнодействующая распределенной нагрузки
расположена на расстоянии двух метров (1/3 длины AD ) от точки А ; М А — неизвестный момент заделки.
В данной системе сил четыре неизвестных реакции (Х А , Y A , M A , R B ), и их нельзя определить из трех уравнений равновесия плоской произвольной системы сил.
Поэтому расчленим систему на отдельные тела по шарниру (рис.3).
В данной системе сил четыре неизвестных реакции (Х А , Y A , M A , R B ), и их нельзя определить из трех уравнений равновесия плоской произвольной системы сил.
Силу, приложенную в шарнире, следует при этом учитывать лишь на одном теле (любом из них). Уравнения для тела ВС :
Уравнения для тела АС :
Здесь при вычислении момента силы F относительно точки А использована теорема Вариньона: сила F разложена на составляющие F cos α и F sin α и определена сумма их моментов.
Из последней системы уравнений находим:
Для проверки полученного решения составим уравнение моментов сил для всей конструкции относительно точки D (рис. 2):
Вывод: проверка показала, что модули реакций определены верно. Знак минус у реакций говорит о том, что реально они направлены в противоположные стороны.
Балки предназначены для восприятия поперечных нагрузок. По способу приложения нагрузки делятся на сосредоточенные (действуют на точку) и распределенные (действуют на значительную площадь или длину).
q — интенсивность нагрузки, кн/м
G = q L – равнодействующая распределенной нагрузки
Балки имеют опорные устройства для сопряжения их с другими элементами и передачи на них усилий. Применяются следующие виды опор:
Балки предназначены для восприятия поперечных нагрузок. По способу приложения нагрузки делятся на сосредоточенные (действуют на точку) и распределенные (действуют на значительную площадь или длину).
Эта опора допускает поворот вокруг оси и линейное перемещение параллельно опорной плоскости. Реакция направлена перпендикулярно опорной поверхности.
Эта опора допускает поворот вокруг оси и линейное перемещение параллельно опорной плоскости. Реакция направлена перпендикулярно опорной поверхности.
Эта опора допускает поворот вокруг оси, но не допускает никаких линейных перемещений. Направление и значение опорной реакции неизвестно, поэтому заменяется двумя составляющими R A у и R A х вдоль осей координат.
· Жесткая заделка (защемление)
Эта опора допускает поворот вокруг оси, но не допускает никаких линейных перемещений. Направление и значение опорной реакции неизвестно, поэтому заменяется двумя составляющими R A у и R A х вдоль осей координат.
Опора не допускает перемещений и поворотов. Неизвестны не только направление и значение опорной реакции, но и точка её приложения. Поэтому заделку заменяют двумя составляющими R A у, R A х и моментом М А. Для определения этих неизвестных удобно использовать систему уравнений.
Для контроля правильности решения используется дополнительное уравнение моментов относительно любой точки на консольной балке, например точка В ∑ m В (F к)= 0
Пример. Определить опорные реакции жесткой заделки консольной балки длиной 8 метров, на конце которой подвешен груз Р = 1 кн. Сила тяжести балки G = 0,4 кн приложена посередине балки.
Пример. Определить опорные реакции жесткой заделки консольной балки длиной 8 метров, на конце которой подвешен груз Р = 1 кн. Сила тяжести балки G = 0,4 кн приложена посередине балки.
Освобождаем балку от связей, т.е отбрасываем заделку и заменяем её действие реакциями. Выбираем координатные оси и составляем уравнения равновесия.
∑ F kx = 0 R A х = 0
∑ F k у = 0 R A у – G – P = 0
∑ m А (F к)= 0 — M A + G L / 2 + P L = 0
Решая уравнения, получим R A у = G + P = 0,4 + 1 = 1,4 кн
M A = G L / 2 + P L = 0,4 . 4 + 1 . 8 = 9,6 кн. м
Проверяем полученные значения реакций:
∑ m в (F к)= 0 — M A + R A у L — G L / 2 = 0
— 9,6 + 1,4 . 8 – 0,4 . 4 = 0
— 11,2 + 11,2 = 0 реакции найдены верно.
Для балок расположенных на двух шарнирных опорах удобнее определять опорные реакции по 2 системе уравнений, поскольку момент силы на опоре равен нулю и в уравнении остается одна неизвестная сила.
Для контроля правильности решения используется дополнительное уравнение ∑ F k у = 0
1) Освобождаем балку от опор, а их действие заменяем опорными реакциями;
2) Заменяем распределенную нагрузку на равнодействующую G = q . L;
3) Выбираем координатные оси;
4) Составляем уравнения равновесия.
∑ F kx = 0 R Вх = 0
∑ m А (F к)= 0 G . L/2 + m — R Ву (L + B)= 0
R Ву = /(L + B) = (6+6) = 2,08 кн
∑ m В (F k)= 0 R A у. (L + B) — Q . (L/2 + B) + m = 0
R A у = / (L + B) = / (6 + 6) = 2,92 кн
Если испытываете трудности в написании , оформите заявку и Вы узнаете сроки и стоимость работы.
3. Изгиб. Определение напряжений.
Рассмотрим несколько примеров.
Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).
Решение. Реакцию заделки представляем в виде двух сил Az и Ay , направленных, как указано на чертеже, и реактивного момента MA .
Составляем уравнение равновесия балки.
1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.
2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз , приложенной посредине участка aз :
Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.
3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:
Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.
Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.
Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.
Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 — 40 — 40 + 55 = 0, т.е. тождество.
Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).
Решение. т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.
1. , которая выдаст расписанное решение любой балки. .
Кроме построения эпюр эта программа так же подбирает профиль сечения по условию прочности на изгиб, считает прогибы и углы поворота в балке.
2. , которая строит 4 вида эпюр и рассчитывает реакции для любых балок (даже для статически неопределимых).
🔍 Видео
Определение реакций двухопорной балкиСкачать
Термех. Статика. Расчётно-графическая работа по статике №2. Задание 1 и решениеСкачать
Практическая работа №3 Нахождение реакций в заделкеСкачать
Определение опорных реакций балки на двух опорахСкачать
Задача о составной конструкцииСкачать
Определение опорных реакцийСкачать
Видеоурок 2. Определение реакций двухопорных балок.Скачать
Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1Скачать
Техническая механика/ Определение равнодействующей. Плоская система сходящихся сил.Скачать
Определение реакций опор в жесткой заделке консольной балкиСкачать
определение реакций в стержнях от действия грузовСкачать